Math 38. Graph Theory

Solutions to Homework 8.

4.3.14. We build a network D as follows.

There is a node u_{i} for each of academic department i (recall that there are k academic departments), a node v_{j} for each professor j, three nodes w_{r} for $r \in\{$ assistant,associate,full\}, plus a source s and a sink t.
The edges of the network are:

- $s u_{i}$ for all i, with capacity 1 ;
- $u_{i} v_{j}$ for each professor j belonging to department i, with capacity 1 ;
$-v_{j} w_{r}$ for each professor j at rank r, with capacity 1 ;
- $w_{r} t$ for all r, with capacity $k / 3$.

There is a committee satisfying the requirements if and only if the network D has a flow with value k. From an integral flow f of value k, the committee is obtained by choosing those professors j such that $f^{+}\left(v_{j}\right)=1$.
5.1.12. FALSE. As a counterexample, consider the tree G with 6 vertices, consisting of one edge $u v$ plus two leaves adjacent to u and two leaves adjacent to v. Then $\chi(G)=2$ because trees are bipartite, and $\alpha(G)=4$ because the 4 leaves of G form an independent set. However, the only partition of the vertices of G into two independent sets consists of two sets of size 3 , so a 2 -coloring cannot have a color class with 4 vertices.
5.1.14. TRUE. Pick an independent set of size $\alpha(G)$ and color its vertices with color 1. Then color each one of the $n-\alpha(G)$ remaining vertices with different colors $2,3, \ldots, n-\alpha(G)+1$. This gives a proper $(n-\alpha(G)+1)$-coloring.
5.1.33. Let $k=\chi(G)$. Consider a proper k-coloring $f: V(G) \rightarrow\{1,2, \ldots, k\}$ such that the sum of the colors of the vertices $\sum_{v \in V(G)} f(v)$ is minimum among all proper k-colorings. Now, order the vertices so that all vertices colored 1 by f are listed first, followed by all the vertices colored 2 , then the vertices colored 3 , etc. We will show that, with this ordering, the greedy algorithm will produce coloring f.
To see this, we claim that when the greedy algorithm gets to a vertex v with $f(v)=c$, then color c is available for that vertex (because f is proper), but no color c^{\prime} with $c^{\prime}<c$ is available for v, and so the algorithm chooses c for that vertex. Indeed, suppose for contradiction that color c^{\prime} (with $c^{\prime}<c$) was available for v. Then the coloring f^{\prime} defined by $f^{\prime}(v)=c^{\prime}$ and $f^{\prime}(u)=f(u)$ for all $u \neq v$ would still be a proper k-coloring, since all the vertices incident to v that haven't been colored at this point of the algorithm receive colors $\geq c$. But f^{\prime} has a smaller color sum than f, contradicting the choice of f.
5.3.1. For the graph G on the left, we have $\chi(G ; k)=k(k-1)^{2}(k-2)$. This is because we have $k(k-1)(k-2)$ ways to color the triangle, and then we can color the vertex of degree 1 with any color except for the one of its neighbor, so we have $k-1$ colors for it.

For the graph G^{\prime} on the right, we have $\chi\left(G^{\prime} ; k\right)=k(k-1)(k-2)\left(k^{2}-3 k+3\right)$. This because we first have $k(k-1)\left(k^{2}-3 k+3\right)$ ways to color the 4 -cycle (using $\chi\left(C_{4} ; k\right)$ as given by Example 5.3.5), and then $k-2$ ways to color the remaining vertex, since its color has to be different than its two neighbors.
5.3.3. Plugging in $k=2$ we get $2^{4}-4 \cdot 2^{3}+3 \cdot 2^{2}=-4<0$, which is impossible for a chromatic polynomial.
5.3.5. We will use induction on n. For $n=1, G_{n}=K_{2}$, and $\chi\left(G_{1} ; k\right)=k(k-1)$, which agrees with the given formula.
For the induction step, let $n>1$ and assume that $\chi\left(G_{n-1} ; k\right)=\left(k^{2}-3 k+3\right)^{n-2} k(k-$ 1) (induction hypothesis). Let e be the rightmost vertical edge of G_{n}. By the chromatic recurrence, $\chi\left(G_{n} ; k\right)=\chi\left(G_{n}-e ; k\right)-\chi\left(G_{n} \cdot e ; k\right)$.
To compute $\chi\left(G_{n}-e ; k\right)$, note that a k-coloring of $G_{n}-e$ can be found by first coloring G_{n-1} and then coloring each one of the two additional leaves with $k-1$ colors each, giving $\chi\left(G_{n}-e ; k\right)=\chi\left(G_{n-1} ; k\right)(k-1)^{2}$.
On the other hand, to compute $\chi\left(G_{n} \cdot e ; k\right)$, note that a k-coloring of $G_{n} \cdot e$ can be found by first coloring G_{n-1} and then coloring the additional vertex with $k-2$ colors (since it has two neighbors that have received 2 different colors already), giving $\chi\left(G_{n} \cdot e ; k\right)=\chi\left(G_{n-1} ; k\right)(k-2)$. It follows that

$$
\begin{aligned}
\chi\left(G_{n} ; k\right) & =\chi\left(G_{n}-e ; k\right)-\chi\left(G_{n} \cdot e ; k\right)=\chi\left(G_{n-1} ; k\right)\left[(k-1)^{2}-(k-2)\right] \\
& =\chi\left(G_{n-1} ; k\right)\left(k^{2}-3 k+3\right)=\left(k^{2}-3 k+3\right)^{n-1} k(k-1),
\end{aligned}
$$

using the induction hypothesis in the last equality.
5.1.25. (Bonus) Come to my office hours to ask me if you want to see a solution to this problem.

