Math 38 - Graph theory

Sergi Elizalde
Dartmouth College

Spring 2024

Introductions

- name
- class year
- major
- why are you taking this class
- fun fact about yourself

Overview of the course

Course website:
https://canvas.dartmouth.edu/courses/65155

- Textbook: Douglas B. West, Introduction to Graph Theory
- Assessment: weekly homework +4 in-class quizes (check the dates!) + final exam + class participation
- Check the syllabus on the website

Examples of problems in graph theory

- Minimum Connector Problem: Find the most cost-effective way to connect some towns by building roads/railroads.

Examples of problems in graph theory

- Minimum Connector Problem: Find the most cost-effective way to connect some towns by building roads/railroads.
- Find the shortest path between two points in a map. More complicated versions of this are used by google maps.

Examples of problems in graph theory

- Minimum Connector Problem: Find the most cost-effective way to connect some towns by building roads/railroads.
- Find the shortest path between two points in a map. More complicated versions of this are used by google maps.
- Match jobs with qualified applicants.

Examples of problems in graph theory

- Minimum Connector Problem: Find the most cost-effective way to connect some towns by building roads/railroads.
- Find the shortest path between two points in a map. More complicated versions of this are used by google maps.
- Match jobs with qualified applicants.
- Network flow problems. Used to optimize transmission of data, and to understand traffic patterns.

Examples of problems in graph theory

- Minimum Connector Problem: Find the most cost-effective way to connect some towns by building roads/railroads.
- Find the shortest path between two points in a map. More complicated versions of this are used by google maps.
- Match jobs with qualified applicants.
- Network flow problems. Used to optimize transmission of data, and to understand traffic patterns.
- Traveling Salesman Problem: In what order should a traveling salesman visit some cities to minimize the travel time?

Examples of problems in graph theory

- Minimum Connector Problem: Find the most cost-effective way to connect some towns by building roads/railroads.
- Find the shortest path between two points in a map. More complicated versions of this are used by google maps.
- Match jobs with qualified applicants.
- Network flow problems. Used to optimize transmission of data, and to understand traffic patterns.
- Traveling Salesman Problem: In what order should a traveling salesman visit some cities to minimize the travel time?
- Map coloring: How many different colors do we need to color the regions of a map so that neighboring regions receive different colors?

Minimum Connector Problem

Find the most cost-effective way to connect some towns by building roads/railroads.

In this example, the numbers indicate the cost of building a railroad between those cities.

Minimum Connector Problem

Find the most cost-effective way to connect some towns by building roads/railroads.

In this example, the numbers indicate the cost of building a railroad between those cities. The minimum cost is 179 .

Minimum Connector Problem

Find the most cost-effective way to connect some towns by building roads/railroads.

In this example, the numbers indicate the cost of building a railroad between those cities. The minimum cost is 179 .

Similar problems involve connecting computers in a network by laying cable, or connecting houses to the electric grid.

Finding matchings

Consider a set of applicants, each of whom is capable of doing some subset of jobs. Find an assignment of applicants to jobs such that each job is assigned to one capable applicant.

Maximum five people can get jobs (Maximum Matching)

Traveling Salesman Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the starting point?

Here is the shortest route connecting the US state capitals.

Traveling Salesman Problem

Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the starting point?

Here is the shortest route connecting the US state capitals.
Other related problems involve finding the most efficient way for a robot's arm to solder all the connections on a printed circuit board.

The Four Color Theorem

In 1852, Francis Guthrie noticed that four colors sufficed to color the counties of England, Wales and Scotland:

The Four Color Theorem

In 1852, Francis Guthrie noticed that four colors sufficed to color the counties of England, Wales and Scotland:

The same is true for the states in the continental US.

The Four Color Theorem

In 1852, Francis Guthrie noticed that four colors sufficed to color the counties of England, Wales and Scotland:

The same is true for the states in the continental US.
Can any map be colored using four colors?

Origins of Graph Theory: the Königsberg bridge problem

In 1735, Euler asked whether one could walk around this city crossing each bridge exactly once and returning to the starting point.

Origins of Graph Theory: the Königsberg bridge problem

In 1735, Euler asked whether one could walk around this city crossing each bridge exactly once and returning to the starting point. The bridges of this city can be modeled as

where the dots are land masses and the lines are bridges.

Origins of Graph Theory: the Königsberg bridge problem

Euler showed that such a walk is not possible. This is considered to be the first problem in graph theory.

Origins of Graph Theory: the Königsberg bridge problem

Euler showed that such a walk is not possible. This is considered to be the first problem in graph theory.

Similar questions are relevant nowadays. The Chinese Postman Problem asks to design a route for a postman (or garbage truck, snowplow, etc.) around a city, so that every road is traversed at least once.
To minimize driving time, we would like each road to be traversed exactly once. Can this be done? Otherwise, what is the most efficient way?

Basic graph definitions

A graph G consists of a set of vertices, and a set of edges. Each edge has two vertices as their endpoints.

Basic graph definitions

A graph G consists of a set of vertices, and a set of edges. Each edge has two vertices as their endpoints.

We write $G=(V, E)$ to indicate that G is a graph with vertices V and edges E.

Basic graph definitions

A graph G consists of a set of vertices, and a set of edges. Each edge has two vertices as their endpoints.

We write $G=(V, E)$ to indicate that G is a graph with vertices V and edges E.

We draw graphs by representing the vertices as points, and by drawing a curve between two vertices if they are the endpoints of one edge. The same graph can be drawn in different ways.

Basic graph definitions

A graph G consists of a set of vertices, and a set of edges. Each edge has two vertices as their endpoints.

We write $G=(V, E)$ to indicate that G is a graph with vertices V and edges E.

We draw graphs by representing the vertices as points, and by drawing a curve between two vertices if they are the endpoints of one edge. The same graph can be drawn in different ways.
A loop is an edge whose endpoints are the same vertex.

Basic graph definitions

A graph G consists of a set of vertices, and a set of edges. Each edge has two vertices as their endpoints.

We write $G=(V, E)$ to indicate that G is a graph with vertices V and edges E.

We draw graphs by representing the vertices as points, and by drawing a curve between two vertices if they are the endpoints of one edge. The same graph can be drawn in different ways.
A loop is an edge whose endpoints are the same vertex.
Multiple edges are edges with the same pair of endpoints.

Basic graph definitions

A graph G consists of a set of vertices, and a set of edges. Each edge has two vertices as their endpoints.

We write $G=(V, E)$ to indicate that G is a graph with vertices V and edges E.

We draw graphs by representing the vertices as points, and by drawing a curve between two vertices if they are the endpoints of one edge. The same graph can be drawn in different ways.
A loop is an edge whose endpoints are the same vertex.
Multiple edges are edges with the same pair of endpoints.
A simple graph is a graph without loops or multiple edges.

