
Characterizations of trees

Theorem

Let G be a graph with n vertices. Then the following are

equivalent:

A) G is a tree (i.e., it is connected and has no cycles).

B) G is connected and has n − 1 edges.

C) G has n − 1 edges and no cycles.

D) For any u, v ∈ V (G ), there is exactly one u, v -path.

Some consequences:

Every edge of a tree is a cut-edge.

Adding an edge to a tree forms exactly one cycle.
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Spanning trees

De�nition

A spanning tree of G is a subgraph of G with vertex set V (G )
that is a tree.

Every connected graph contains a spanning tree.

Proposition

If T and T ′ are spanning trees of G and e ∈ E (T ) \ E (T ′), then
there is an edge e ′ ∈ E (T ′) \ E (T ) so that T − e + e ′ is a

spanning tree of G .

Proposition

If T and T ′ are spanning trees of G and e ∈ E (T ) \ E (T ′), then
there is an edge e ′ ∈ E (T ′) \ E (T ) so that T ′ + e − e ′ is a

spanning tree of G .
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Distance in trees and graphs

De�nition

The distance between vertices u and v in G , d(u, v), is the
shortest length of a u, v -path.

If no such path exists, we de�ne d(u, v) = ∞.

The diameter of G is

diam(G ) = max
u,v∈V (G)

d(u, v).

The eccentricity of a vertex u is

ϵ(u) = max
v∈V (G)

d(u, v).

The radius of G is

rad(G ) = min
u∈V (G)

ϵ(u).
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Examples of radius and diameter

Note that the diameter is the maximum of the vertex eccentricities,
whereas the radius is the minimum.

What are the diameter and the radius of:

the Petersen graph? diam = rad = 2.

the hypercube Qk? diam = rad = k .

the cycle Cn? diam = rad = ⌊n/2⌋.

For n ≥ 3, what are the n-vertex trees of smallest/largest diameter?

Theorem

If G is a simple graph with diam(G ) ≥ 3, then diam(G ) ≤ 3.

De�nition

The center of G is the subgraph induced by the vertices of
minimum eccentricity.
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