
Examples of radius and diameter

Note that the diameter is the maximum of the vertex eccentricities,
whereas the radius is the minimum.

What are the diameter and the radius of:

the Petersen graph? diam = rad = 2.

the hypercube Qk? diam = rad = k .

the cycle Cn? diam = rad = ⌊n/2⌋.

For n ≥ 3, what are the n-vertex trees of smallest/largest diameter?

Theorem

If G is a simple graph with diam(G ) ≥ 3, then diam(G ) ≤ 3.

De�nition

The center of G is the subgraph induced by the vertices of
minimum eccentricity.
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2.2 Spanning trees and enumeration

There are 2(
n
2
) simple graphs with vertex set [n] := {1, 2, . . . , n}.

How many of these are trees?

n 2 3 4 5 . . .

#trees 1 3 16 125 . . .

We often call these labeled trees, meaning that the vertices are
labeled with 1, 2, . . . , n.

Theorem (Cayley)

The number of labeled trees with n vertices is nn−2.

We will give a bijective proof, by encoding each tree with a unique
sequence of length n− 2 with entries in [n], called the Prüfer code.
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Prüfer code

Input: A labeled tree T with n vertices.

Output: A sequence (a1, a2, . . . , an−2) where ai ∈ [n] for all i .

For i from 1 to n − 2:

Find the leaf v with the smallest label.

Let ai be the label of the neighbor of this leaf.

Remove v from the tree to create a new tree.
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Recovering a tree from its Prüfer code

Note: the leaves of T are precisely the elements that do not
appear in (a1, a2, . . . , an−2).

The �rst deleted leaf x1 must be the smallest such element, and it
is adjacent to a1.

The second deleted leaf x2 must be the smallest element ̸= x1 that
does not appear in (a2, . . . , an−2), and it is adjacent to a2.

In general, the ith deleted leaf xi must be the smallest element not
in the set {x1, . . . , xi−1, ai , ai+1, . . . , an−2}, and it is adjacent to ai .

To recover T , we repeat the above procedure for i from 1 to n− 2.
Finally, we join the two vertices not in {x1, . . . , xn−2}.
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Remarks on the Prüfer code

We saw that the leaves of T are the elements that do not appear in
the Prüfer code.

More generally, how can we determine the degree of a vertex?

The degree of a vertex is the number of times that it appears in the
Prüfer code, plus 1.

Proposition

Given positive integers d1, d2, . . . , dn summing to 2n − 2, there are

exactly
(n − 2)!∏n
i=1

(di − 1)!

trees with vertex set [n] such that vertex i has degree di for each i .

Example: The number of trees with vertex set [7] with degrees
(d1, . . . , d7) = (3, 1, 2, 1, 3, 1, 1) is 30.
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Spanning trees in graphs

Recall that a spanning tree of a connected graph G is a subgraph
with vertex set V (G ) that is a tree.

Question: Given a graph G , how many spanning trees does it have?

Let τ(G ) denote the number of spanning trees of G .

Examples:

τ(Kn) = nn−2

. . .
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Contraction of an edge

De�nition

Let G be a graph and let e = uv be an edge. The contraction of e
is the operation that replaces e with a single vertex, which is
incident to those edges that were incident to either u or v in G .

Denote by G · e the resulting graph.

This construction may create loops and multiple edges.

G · e has one fewer edge than G .
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Deletion-contraction method

How do the numbers τ(G ), τ(G − e), and τ(G · e) relate to each
other?

Proposition (Deletion-contraction recurrence)

If e ∈ E (G ) is not a loop, then

τ(G ) = τ(G − e) + τ(G · e).

[Example]

If e is a loop, one can just delete it since it does not a�ect the
number of spanning trees.

With this recurrence, one can in theory compute τ(G ) for any
graph recursively, but it's computationally impractical, since
one would have to compute up to 2e(G) terms.
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