
Examples of radius and diameter

Note that the diameter is the maximum of the vertex eccentricities,
whereas the radius is the minimum.

What are the diameter and the radius of:

the Petersen graph? diam = rad = 2.

the hypercube Qk? diam = rad = k .

the cycle Cn? diam = rad = ⌊n/2⌋.

For n ≥ 3, what are the n-vertex trees of smallest/largest diameter?

Theorem

If G is a simple graph with diam(G ) ≥ 3, then diam(G ) ≤ 3.

De�nition

The center of G is the subgraph induced by the vertices of
minimum eccentricity.



Examples of radius and diameter

Note that the diameter is the maximum of the vertex eccentricities,
whereas the radius is the minimum.

What are the diameter and the radius of:

the Petersen graph?

diam = rad = 2.

the hypercube Qk? diam = rad = k .

the cycle Cn? diam = rad = ⌊n/2⌋.

For n ≥ 3, what are the n-vertex trees of smallest/largest diameter?

Theorem

If G is a simple graph with diam(G ) ≥ 3, then diam(G ) ≤ 3.

De�nition

The center of G is the subgraph induced by the vertices of
minimum eccentricity.



Examples of radius and diameter

Note that the diameter is the maximum of the vertex eccentricities,
whereas the radius is the minimum.

What are the diameter and the radius of:

the Petersen graph? diam = rad = 2.

the hypercube Qk? diam = rad = k .

the cycle Cn? diam = rad = ⌊n/2⌋.

For n ≥ 3, what are the n-vertex trees of smallest/largest diameter?

Theorem

If G is a simple graph with diam(G ) ≥ 3, then diam(G ) ≤ 3.

De�nition

The center of G is the subgraph induced by the vertices of
minimum eccentricity.



Examples of radius and diameter

Note that the diameter is the maximum of the vertex eccentricities,
whereas the radius is the minimum.

What are the diameter and the radius of:

the Petersen graph? diam = rad = 2.

the hypercube Qk?

diam = rad = k .

the cycle Cn? diam = rad = ⌊n/2⌋.

For n ≥ 3, what are the n-vertex trees of smallest/largest diameter?

Theorem

If G is a simple graph with diam(G ) ≥ 3, then diam(G ) ≤ 3.

De�nition

The center of G is the subgraph induced by the vertices of
minimum eccentricity.



Examples of radius and diameter

Note that the diameter is the maximum of the vertex eccentricities,
whereas the radius is the minimum.

What are the diameter and the radius of:

the Petersen graph? diam = rad = 2.

the hypercube Qk? diam = rad = k .

the cycle Cn? diam = rad = ⌊n/2⌋.

For n ≥ 3, what are the n-vertex trees of smallest/largest diameter?

Theorem

If G is a simple graph with diam(G ) ≥ 3, then diam(G ) ≤ 3.

De�nition

The center of G is the subgraph induced by the vertices of
minimum eccentricity.



Examples of radius and diameter

Note that the diameter is the maximum of the vertex eccentricities,
whereas the radius is the minimum.

What are the diameter and the radius of:

the Petersen graph? diam = rad = 2.

the hypercube Qk? diam = rad = k .

the cycle Cn?

diam = rad = ⌊n/2⌋.

For n ≥ 3, what are the n-vertex trees of smallest/largest diameter?

Theorem

If G is a simple graph with diam(G ) ≥ 3, then diam(G ) ≤ 3.

De�nition

The center of G is the subgraph induced by the vertices of
minimum eccentricity.



Examples of radius and diameter

Note that the diameter is the maximum of the vertex eccentricities,
whereas the radius is the minimum.

What are the diameter and the radius of:

the Petersen graph? diam = rad = 2.

the hypercube Qk? diam = rad = k .

the cycle Cn? diam = rad = ⌊n/2⌋.

For n ≥ 3, what are the n-vertex trees of smallest/largest diameter?

Theorem

If G is a simple graph with diam(G ) ≥ 3, then diam(G ) ≤ 3.

De�nition

The center of G is the subgraph induced by the vertices of
minimum eccentricity.



Examples of radius and diameter

Note that the diameter is the maximum of the vertex eccentricities,
whereas the radius is the minimum.

What are the diameter and the radius of:

the Petersen graph? diam = rad = 2.

the hypercube Qk? diam = rad = k .

the cycle Cn? diam = rad = ⌊n/2⌋.

For n ≥ 3, what are the n-vertex trees of smallest/largest diameter?

Theorem

If G is a simple graph with diam(G ) ≥ 3, then diam(G ) ≤ 3.

De�nition

The center of G is the subgraph induced by the vertices of
minimum eccentricity.



Examples of radius and diameter

Note that the diameter is the maximum of the vertex eccentricities,
whereas the radius is the minimum.

What are the diameter and the radius of:

the Petersen graph? diam = rad = 2.

the hypercube Qk? diam = rad = k .

the cycle Cn? diam = rad = ⌊n/2⌋.

For n ≥ 3, what are the n-vertex trees of smallest/largest diameter?

Theorem

If G is a simple graph with diam(G ) ≥ 3, then diam(G ) ≤ 3.

De�nition

The center of G is the subgraph induced by the vertices of
minimum eccentricity.



Examples of radius and diameter

Note that the diameter is the maximum of the vertex eccentricities,
whereas the radius is the minimum.

What are the diameter and the radius of:

the Petersen graph? diam = rad = 2.

the hypercube Qk? diam = rad = k .

the cycle Cn? diam = rad = ⌊n/2⌋.

For n ≥ 3, what are the n-vertex trees of smallest/largest diameter?

Theorem

If G is a simple graph with diam(G ) ≥ 3, then diam(G ) ≤ 3.

De�nition

The center of G is the subgraph induced by the vertices of
minimum eccentricity.



2.2 Spanning trees and enumeration

There are 2(
n
2
) simple graphs with vertex set [n] := {1, 2, . . . , n}.

How many of these are trees?

n 2 3 4 5 . . .

#trees 1 3 16 125 . . .

We often call these labeled trees, meaning that the vertices are
labeled with 1, 2, . . . , n.

Theorem (Cayley)

The number of labeled trees with n vertices is nn−2.

We will give a bijective proof, by encoding each tree with a unique
sequence of length n− 2 with entries in [n], called the Prüfer code.



2.2 Spanning trees and enumeration

There are 2(
n
2
) simple graphs with vertex set [n] := {1, 2, . . . , n}.

How many of these are trees?

n 2 3 4 5 . . .

#trees 1 3 16 125 . . .

We often call these labeled trees, meaning that the vertices are
labeled with 1, 2, . . . , n.

Theorem (Cayley)

The number of labeled trees with n vertices is nn−2.

We will give a bijective proof, by encoding each tree with a unique
sequence of length n− 2 with entries in [n], called the Prüfer code.



2.2 Spanning trees and enumeration

There are 2(
n
2
) simple graphs with vertex set [n] := {1, 2, . . . , n}.

How many of these are trees?

n 2 3 4 5 . . .

#trees 1 3

16 125 . . .

We often call these labeled trees, meaning that the vertices are
labeled with 1, 2, . . . , n.

Theorem (Cayley)

The number of labeled trees with n vertices is nn−2.

We will give a bijective proof, by encoding each tree with a unique
sequence of length n− 2 with entries in [n], called the Prüfer code.



2.2 Spanning trees and enumeration

There are 2(
n
2
) simple graphs with vertex set [n] := {1, 2, . . . , n}.

How many of these are trees?

n 2 3 4 5 . . .

#trees 1 3 16

125 . . .

We often call these labeled trees, meaning that the vertices are
labeled with 1, 2, . . . , n.

Theorem (Cayley)

The number of labeled trees with n vertices is nn−2.

We will give a bijective proof, by encoding each tree with a unique
sequence of length n− 2 with entries in [n], called the Prüfer code.



2.2 Spanning trees and enumeration

There are 2(
n
2
) simple graphs with vertex set [n] := {1, 2, . . . , n}.

How many of these are trees?

n 2 3 4 5 . . .

#trees 1 3 16 125 . . .

We often call these labeled trees, meaning that the vertices are
labeled with 1, 2, . . . , n.

Theorem (Cayley)

The number of labeled trees with n vertices is nn−2.

We will give a bijective proof, by encoding each tree with a unique
sequence of length n− 2 with entries in [n], called the Prüfer code.



2.2 Spanning trees and enumeration

There are 2(
n
2
) simple graphs with vertex set [n] := {1, 2, . . . , n}.

How many of these are trees?

n 2 3 4 5 . . .

#trees 1 3 16 125 . . .

We often call these labeled trees, meaning that the vertices are
labeled with 1, 2, . . . , n.

Theorem (Cayley)

The number of labeled trees with n vertices is nn−2.

We will give a bijective proof, by encoding each tree with a unique
sequence of length n− 2 with entries in [n], called the Prüfer code.



2.2 Spanning trees and enumeration

There are 2(
n
2
) simple graphs with vertex set [n] := {1, 2, . . . , n}.

How many of these are trees?

n 2 3 4 5 . . .

#trees 1 3 16 125 . . .

We often call these labeled trees, meaning that the vertices are
labeled with 1, 2, . . . , n.

Theorem (Cayley)

The number of labeled trees with n vertices is nn−2.

We will give a bijective proof, by encoding each tree with a unique
sequence of length n− 2 with entries in [n], called the Prüfer code.



2.2 Spanning trees and enumeration

There are 2(
n
2
) simple graphs with vertex set [n] := {1, 2, . . . , n}.

How many of these are trees?

n 2 3 4 5 . . .

#trees 1 3 16 125 . . .

We often call these labeled trees, meaning that the vertices are
labeled with 1, 2, . . . , n.

Theorem (Cayley)

The number of labeled trees with n vertices is nn−2.

We will give a bijective proof, by encoding each tree with a unique
sequence of length n− 2 with entries in [n], called the Prüfer code.



Prüfer code

Input: A labeled tree T with n vertices.

Output: A sequence (a1, a2, . . . , an−2) where ai ∈ [n] for all i .

For i from 1 to n − 2:

Find the leaf v with the smallest label.

Let ai be the label of the neighbor of this leaf.

Remove v from the tree to create a new tree.



Prüfer code

Input: A labeled tree T with n vertices.

Output: A sequence (a1, a2, . . . , an−2) where ai ∈ [n] for all i .

For i from 1 to n − 2:

Find the leaf v with the smallest label.

Let ai be the label of the neighbor of this leaf.

Remove v from the tree to create a new tree.



Recovering a tree from its Prüfer code

Note: the leaves of T are precisely the elements that do not
appear in (a1, a2, . . . , an−2).

The �rst deleted leaf x1 must be the smallest such element, and it
is adjacent to a1.

The second deleted leaf x2 must be the smallest element ̸= x1 that
does not appear in (a2, . . . , an−2), and it is adjacent to a2.

In general, the ith deleted leaf xi must be the smallest element not
in the set {x1, . . . , xi−1, ai , ai+1, . . . , an−2}, and it is adjacent to ai .

To recover T , we repeat the above procedure for i from 1 to n− 2.
Finally, we join the two vertices not in {x1, . . . , xn−2}.



Recovering a tree from its Prüfer code

Note: the leaves of T are precisely the elements that do not
appear in (a1, a2, . . . , an−2).

The �rst deleted leaf x1 must be the smallest such element, and it
is adjacent to a1.

The second deleted leaf x2 must be the smallest element ̸= x1 that
does not appear in (a2, . . . , an−2), and it is adjacent to a2.

In general, the ith deleted leaf xi must be the smallest element not
in the set {x1, . . . , xi−1, ai , ai+1, . . . , an−2}, and it is adjacent to ai .

To recover T , we repeat the above procedure for i from 1 to n− 2.
Finally, we join the two vertices not in {x1, . . . , xn−2}.



Recovering a tree from its Prüfer code

Note: the leaves of T are precisely the elements that do not
appear in (a1, a2, . . . , an−2).

The �rst deleted leaf x1 must be the smallest such element, and it
is adjacent to a1.

The second deleted leaf x2 must be the smallest element ̸= x1 that
does not appear in (a2, . . . , an−2), and it is adjacent to a2.

In general, the ith deleted leaf xi must be the smallest element not
in the set {x1, . . . , xi−1, ai , ai+1, . . . , an−2}, and it is adjacent to ai .

To recover T , we repeat the above procedure for i from 1 to n− 2.
Finally, we join the two vertices not in {x1, . . . , xn−2}.



Recovering a tree from its Prüfer code

Note: the leaves of T are precisely the elements that do not
appear in (a1, a2, . . . , an−2).

The �rst deleted leaf x1 must be the smallest such element, and it
is adjacent to a1.

The second deleted leaf x2 must be the smallest element ̸= x1 that
does not appear in (a2, . . . , an−2), and it is adjacent to a2.

In general, the ith deleted leaf xi must be the smallest element not
in the set {x1, . . . , xi−1, ai , ai+1, . . . , an−2}, and it is adjacent to ai .

To recover T , we repeat the above procedure for i from 1 to n− 2.
Finally, we join the two vertices not in {x1, . . . , xn−2}.



Recovering a tree from its Prüfer code

Note: the leaves of T are precisely the elements that do not
appear in (a1, a2, . . . , an−2).

The �rst deleted leaf x1 must be the smallest such element, and it
is adjacent to a1.

The second deleted leaf x2 must be the smallest element ̸= x1 that
does not appear in (a2, . . . , an−2), and it is adjacent to a2.

In general, the ith deleted leaf xi must be the smallest element not
in the set {x1, . . . , xi−1, ai , ai+1, . . . , an−2}, and it is adjacent to ai .

To recover T , we repeat the above procedure for i from 1 to n− 2.
Finally, we join the two vertices not in {x1, . . . , xn−2}.



Remarks on the Prüfer code

We saw that the leaves of T are the elements that do not appear in
the Prüfer code.

More generally, how can we determine the degree of a vertex?

The degree of a vertex is the number of times that it appears in the
Prüfer code, plus 1.

Proposition

Given positive integers d1, d2, . . . , dn summing to 2n − 2, there are

exactly
(n − 2)!∏n
i=1

(di − 1)!

trees with vertex set [n] such that vertex i has degree di for each i .

Example: The number of trees with vertex set [7] with degrees
(d1, . . . , d7) = (3, 1, 2, 1, 3, 1, 1) is 30.



Remarks on the Prüfer code

We saw that the leaves of T are the elements that do not appear in
the Prüfer code.

More generally, how can we determine the degree of a vertex?

The degree of a vertex is the number of times that it appears in the
Prüfer code, plus 1.

Proposition

Given positive integers d1, d2, . . . , dn summing to 2n − 2, there are

exactly
(n − 2)!∏n
i=1

(di − 1)!

trees with vertex set [n] such that vertex i has degree di for each i .

Example: The number of trees with vertex set [7] with degrees
(d1, . . . , d7) = (3, 1, 2, 1, 3, 1, 1) is 30.



Remarks on the Prüfer code

We saw that the leaves of T are the elements that do not appear in
the Prüfer code.

More generally, how can we determine the degree of a vertex?

The degree of a vertex is the number of times that it appears in the
Prüfer code, plus 1.

Proposition

Given positive integers d1, d2, . . . , dn summing to 2n − 2, there are

exactly
(n − 2)!∏n
i=1

(di − 1)!

trees with vertex set [n] such that vertex i has degree di for each i .

Example: The number of trees with vertex set [7] with degrees
(d1, . . . , d7) = (3, 1, 2, 1, 3, 1, 1) is 30.



Remarks on the Prüfer code

We saw that the leaves of T are the elements that do not appear in
the Prüfer code.

More generally, how can we determine the degree of a vertex?

The degree of a vertex is the number of times that it appears in the
Prüfer code, plus 1.

Proposition

Given positive integers d1, d2, . . . , dn summing to 2n − 2, there are

exactly
(n − 2)!∏n
i=1

(di − 1)!

trees with vertex set [n] such that vertex i has degree di for each i .

Example: The number of trees with vertex set [7] with degrees
(d1, . . . , d7) = (3, 1, 2, 1, 3, 1, 1) is 30.



Remarks on the Prüfer code

We saw that the leaves of T are the elements that do not appear in
the Prüfer code.

More generally, how can we determine the degree of a vertex?

The degree of a vertex is the number of times that it appears in the
Prüfer code, plus 1.

Proposition

Given positive integers d1, d2, . . . , dn summing to 2n − 2, there are

exactly
(n − 2)!∏n
i=1

(di − 1)!

trees with vertex set [n] such that vertex i has degree di for each i .

Example: The number of trees with vertex set [7] with degrees
(d1, . . . , d7) = (3, 1, 2, 1, 3, 1, 1) is

30.



Remarks on the Prüfer code

We saw that the leaves of T are the elements that do not appear in
the Prüfer code.

More generally, how can we determine the degree of a vertex?

The degree of a vertex is the number of times that it appears in the
Prüfer code, plus 1.

Proposition

Given positive integers d1, d2, . . . , dn summing to 2n − 2, there are

exactly
(n − 2)!∏n
i=1

(di − 1)!

trees with vertex set [n] such that vertex i has degree di for each i .

Example: The number of trees with vertex set [7] with degrees
(d1, . . . , d7) = (3, 1, 2, 1, 3, 1, 1) is 30.



Spanning trees in graphs

Recall that a spanning tree of a connected graph G is a subgraph
with vertex set V (G ) that is a tree.

Question: Given a graph G , how many spanning trees does it have?

Let τ(G ) denote the number of spanning trees of G .

Examples:

τ(Kn) = nn−2

. . .



Spanning trees in graphs

Recall that a spanning tree of a connected graph G is a subgraph
with vertex set V (G ) that is a tree.

Question: Given a graph G , how many spanning trees does it have?

Let τ(G ) denote the number of spanning trees of G .

Examples:

τ(Kn) = nn−2

. . .



Spanning trees in graphs

Recall that a spanning tree of a connected graph G is a subgraph
with vertex set V (G ) that is a tree.

Question: Given a graph G , how many spanning trees does it have?

Let τ(G ) denote the number of spanning trees of G .

Examples:

τ(Kn) =

nn−2

. . .



Spanning trees in graphs

Recall that a spanning tree of a connected graph G is a subgraph
with vertex set V (G ) that is a tree.

Question: Given a graph G , how many spanning trees does it have?

Let τ(G ) denote the number of spanning trees of G .

Examples:

τ(Kn) = nn−2

. . .



Contraction of an edge

De�nition

Let G be a graph and let e = uv be an edge. The contraction of e
is the operation that replaces e with a single vertex, which is
incident to those edges that were incident to either u or v in G .

Denote by G · e the resulting graph.

This construction may create loops and multiple edges.

G · e has one fewer edge than G .



Contraction of an edge

De�nition

Let G be a graph and let e = uv be an edge. The contraction of e
is the operation that replaces e with a single vertex, which is
incident to those edges that were incident to either u or v in G .

Denote by G · e the resulting graph.

This construction may create loops and multiple edges.

G · e has one fewer edge than G .



Contraction of an edge

De�nition

Let G be a graph and let e = uv be an edge. The contraction of e
is the operation that replaces e with a single vertex, which is
incident to those edges that were incident to either u or v in G .

Denote by G · e the resulting graph.

This construction may create loops and multiple edges.

G · e has one fewer edge than G .



Contraction of an edge

De�nition

Let G be a graph and let e = uv be an edge. The contraction of e
is the operation that replaces e with a single vertex, which is
incident to those edges that were incident to either u or v in G .

Denote by G · e the resulting graph.

This construction may create loops and multiple edges.

G · e has one fewer edge than G .



Deletion-contraction method

How do the numbers τ(G ), τ(G − e), and τ(G · e) relate to each
other?

Proposition (Deletion-contraction recurrence)

If e ∈ E (G ) is not a loop, then

τ(G ) = τ(G − e) + τ(G · e).

[Example]

If e is a loop, one can just delete it since it does not a�ect the
number of spanning trees.

With this recurrence, one can in theory compute τ(G ) for any
graph recursively, but it's computationally impractical, since
one would have to compute up to 2e(G) terms.



Deletion-contraction method

How do the numbers τ(G ), τ(G − e), and τ(G · e) relate to each
other?

Proposition (Deletion-contraction recurrence)

If e ∈ E (G ) is not a loop, then

τ(G ) = τ(G − e) + τ(G · e).

[Example]

If e is a loop, one can just delete it since it does not a�ect the
number of spanning trees.

With this recurrence, one can in theory compute τ(G ) for any
graph recursively, but it's computationally impractical, since
one would have to compute up to 2e(G) terms.



Deletion-contraction method

How do the numbers τ(G ), τ(G − e), and τ(G · e) relate to each
other?

Proposition (Deletion-contraction recurrence)

If e ∈ E (G ) is not a loop, then

τ(G ) = τ(G − e) + τ(G · e).

[Example]

If e is a loop, one can just delete it since it does not a�ect the
number of spanning trees.

With this recurrence, one can in theory compute τ(G ) for any
graph recursively, but it's computationally impractical, since
one would have to compute up to 2e(G) terms.



Deletion-contraction method

How do the numbers τ(G ), τ(G − e), and τ(G · e) relate to each
other?

Proposition (Deletion-contraction recurrence)

If e ∈ E (G ) is not a loop, then

τ(G ) = τ(G − e) + τ(G · e).

[Example]

If e is a loop, one can just delete it since it does not a�ect the
number of spanning trees.

With this recurrence, one can in theory compute τ(G ) for any
graph recursively, but it's computationally impractical, since
one would have to compute up to 2e(G) terms.



Deletion-contraction method

How do the numbers τ(G ), τ(G − e), and τ(G · e) relate to each
other?

Proposition (Deletion-contraction recurrence)

If e ∈ E (G ) is not a loop, then

τ(G ) = τ(G − e) + τ(G · e).

[Example]

If e is a loop, one can just delete it since it does not a�ect the
number of spanning trees.

With this recurrence, one can in theory compute τ(G ) for any
graph recursively, but it's computationally impractical, since
one would have to compute up to 2e(G) terms.


