
Contraction of an edge

De�nition

Let G be a graph and let e = uv be an edge that is not a loop.
The contraction of e is the operation that replaces e with a single
vertex, which is incident to those edges that were incident to either
u or v in G .

Denote by G · e the resulting graph.

This construction may create loops and multiple edges.

G · e has one fewer edge than G .

Contraction of an edge

De�nition

Let G be a graph and let e = uv be an edge that is not a loop.
The contraction of e is the operation that replaces e with a single
vertex, which is incident to those edges that were incident to either
u or v in G .

Denote by G · e the resulting graph.

This construction may create loops and multiple edges.

G · e has one fewer edge than G .

Contraction of an edge

De�nition

Let G be a graph and let e = uv be an edge that is not a loop.
The contraction of e is the operation that replaces e with a single
vertex, which is incident to those edges that were incident to either
u or v in G .

Denote by G · e the resulting graph.

This construction may create loops and multiple edges.

G · e has one fewer edge than G .

Contraction of an edge

De�nition

Let G be a graph and let e = uv be an edge that is not a loop.
The contraction of e is the operation that replaces e with a single
vertex, which is incident to those edges that were incident to either
u or v in G .

Denote by G · e the resulting graph.

This construction may create loops and multiple edges.

G · e has one fewer edge than G .

Deletion-contraction method

How do the numbers τ(G), τ(G − e), and τ(G · e) relate to each
other?

Proposition (Deletion-contraction recurrence)

If e ∈ E (G) is not a loop, then

τ(G) = τ(G − e) + τ(G · e).

[Example]

If e is a loop, one can just delete it since it does not a�ect the
number of spanning trees.

With this recurrence, one can in theory compute τ(G) for any
graph recursively, but it's computationally impractical, since
one would have to compute up to 2e(G) terms.

Deletion-contraction method

How do the numbers τ(G), τ(G − e), and τ(G · e) relate to each
other?

Proposition (Deletion-contraction recurrence)

If e ∈ E (G) is not a loop, then

τ(G) = τ(G − e) + τ(G · e).

[Example]

If e is a loop, one can just delete it since it does not a�ect the
number of spanning trees.

With this recurrence, one can in theory compute τ(G) for any
graph recursively, but it's computationally impractical, since
one would have to compute up to 2e(G) terms.

Deletion-contraction method

How do the numbers τ(G), τ(G − e), and τ(G · e) relate to each
other?

Proposition (Deletion-contraction recurrence)

If e ∈ E (G) is not a loop, then

τ(G) = τ(G − e) + τ(G · e).

[Example]

If e is a loop, one can just delete it since it does not a�ect the
number of spanning trees.

With this recurrence, one can in theory compute τ(G) for any
graph recursively, but it's computationally impractical, since
one would have to compute up to 2e(G) terms.

Deletion-contraction method

How do the numbers τ(G), τ(G − e), and τ(G · e) relate to each
other?

Proposition (Deletion-contraction recurrence)

If e ∈ E (G) is not a loop, then

τ(G) = τ(G − e) + τ(G · e).

[Example]

If e is a loop, one can just delete it since it does not a�ect the
number of spanning trees.

With this recurrence, one can in theory compute τ(G) for any
graph recursively, but it's computationally impractical, since
one would have to compute up to 2e(G) terms.

Deletion-contraction method

How do the numbers τ(G), τ(G − e), and τ(G · e) relate to each
other?

Proposition (Deletion-contraction recurrence)

If e ∈ E (G) is not a loop, then

τ(G) = τ(G − e) + τ(G · e).

[Example]

If e is a loop, one can just delete it since it does not a�ect the
number of spanning trees.

With this recurrence, one can in theory compute τ(G) for any
graph recursively, but it's computationally impractical, since
one would have to compute up to 2e(G) terms.

Matrix Tree Theorem

Theorem

Let G be a loopless graph with vertices v1, v2, . . . , vn.
Let A be its adjacency matrix.

De�ne the matrix

Q =

d(v1) 0 . . . 0
0 d(v2) . . . 0
...

...
. . .

...

0 0 . . . d(vn)

− A.

Let Q⋆ be obtained from Q by deleting row s and column t.

Then

τ(G) = (−1)s+t detQ⋆.

[Example] (We won't prove the theorem here.)

Matrix Tree Theorem

Theorem

Let G be a loopless graph with vertices v1, v2, . . . , vn.
Let A be its adjacency matrix.

De�ne the matrix

Q =

d(v1) 0 . . . 0
0 d(v2) . . . 0
...

...
. . .

...

0 0 . . . d(vn)

− A.

Let Q⋆ be obtained from Q by deleting row s and column t.

Then

τ(G) = (−1)s+t detQ⋆.

[Example] (We won't prove the theorem here.)

Matrix Tree Theorem

Theorem

Let G be a loopless graph with vertices v1, v2, . . . , vn.
Let A be its adjacency matrix.

De�ne the matrix

Q =

d(v1) 0 . . . 0
0 d(v2) . . . 0
...

...
. . .

...

0 0 . . . d(vn)

− A.

Let Q⋆ be obtained from Q by deleting row s and column t.

Then

τ(G) = (−1)s+t detQ⋆.

[Example] (We won't prove the theorem here.)

Matrix Tree Theorem

Theorem

Let G be a loopless graph with vertices v1, v2, . . . , vn.
Let A be its adjacency matrix.

De�ne the matrix

Q =

d(v1) 0 . . . 0
0 d(v2) . . . 0
...

...
. . .

...

0 0 . . . d(vn)

− A.

Let Q⋆ be obtained from Q by deleting row s and column t.

Then

τ(G) = (−1)s+t detQ⋆.

[Example] (We won't prove the theorem here.)

Matrix Tree Theorem

Theorem

Let G be a loopless graph with vertices v1, v2, . . . , vn.
Let A be its adjacency matrix.

De�ne the matrix

Q =

d(v1) 0 . . . 0
0 d(v2) . . . 0
...

...
. . .

...

0 0 . . . d(vn)

− A.

Let Q⋆ be obtained from Q by deleting row s and column t.

Then

τ(G) = (−1)s+t detQ⋆.

[Example] (We won't prove the theorem here.)

Graceful labelings

De�nition

A graceful labeling of a tree T of order n is a bijection

f : V (T) → {0, 1, . . . , n − 1}

such that

{|f (u)− f (v)| : uv ∈ E (T)} = {1, 2, . . . , n − 1}.

[Example]

Conjecture (Graceful Tree Conjecture '64)

Every tree has a graceful labeling.

Graceful labelings

De�nition

A graceful labeling of a tree T of order n is a bijection

f : V (T) → {0, 1, . . . , n − 1}

such that

{|f (u)− f (v)| : uv ∈ E (T)} = {1, 2, . . . , n − 1}.

[Example]

Conjecture (Graceful Tree Conjecture '64)

Every tree has a graceful labeling.

Graceful labelings

De�nition

A graceful labeling of a tree T of order n is a bijection

f : V (T) → {0, 1, . . . , n − 1}

such that

{|f (u)− f (v)| : uv ∈ E (T)} = {1, 2, . . . , n − 1}.

[Example]

Conjecture (Graceful Tree Conjecture '64)

Every tree has a graceful labeling.

Graceful trees and decompositions

The Graceful Tree Conjecture is known to be true in some special
cases.

De�nition

A caterpillar is a tree which contains a path that is incident to
every edge.

Exercise (optional): Prove that every caterpillar has a graceful
labeling.

Graceful trees and decompositions

The Graceful Tree Conjecture is known to be true in some special
cases.

De�nition

A caterpillar is a tree which contains a path that is incident to
every edge.

Exercise (optional): Prove that every caterpillar has a graceful
labeling.

Graceful trees and decompositions

The Graceful Tree Conjecture is known to be true in some special
cases.

De�nition

A caterpillar is a tree which contains a path that is incident to
every edge.

Exercise (optional): Prove that every caterpillar has a graceful
labeling.

2.3 Optimization and trees

A weighted graph is a graph with nonnegative numbers on the
edges.

They can represent the cost of building a road, or a distance, or the
amount of data that can be sent per second.

A minimum spanning tree is a spanning tree that minimizes the
sum of its edge weights.

Minimum Connector Problem: Given an arbitrary weighted
connected graph G , �nd a minimum spanning tree.

2.3 Optimization and trees

A weighted graph is a graph with nonnegative numbers on the
edges.

They can represent the cost of building a road, or a distance, or the
amount of data that can be sent per second.

A minimum spanning tree is a spanning tree that minimizes the
sum of its edge weights.

Minimum Connector Problem: Given an arbitrary weighted
connected graph G , �nd a minimum spanning tree.

2.3 Optimization and trees

A weighted graph is a graph with nonnegative numbers on the
edges.

They can represent the cost of building a road, or a distance, or the
amount of data that can be sent per second.

A minimum spanning tree is a spanning tree that minimizes the
sum of its edge weights.

Minimum Connector Problem: Given an arbitrary weighted
connected graph G , �nd a minimum spanning tree.

2.3 Optimization and trees

A weighted graph is a graph with nonnegative numbers on the
edges.

They can represent the cost of building a road, or a distance, or the
amount of data that can be sent per second.

A minimum spanning tree is a spanning tree that minimizes the
sum of its edge weights.

Minimum Connector Problem: Given an arbitrary weighted
connected graph G , �nd a minimum spanning tree.

Kruskal's algorithm

Input: A weighted connected graph G .

Output: A minimum spanning tree T with edges e1, . . . , en−1.

Start with no edges.

At each step, add the edge with smallest weight that does not
create a cycle with the edges added so far.

Finish when we have a spanning tree of G .

This is an example of a greedy algorithm.

Theorem

Kruskal's algorithm constructs a minimum-weight spanning tree.

Kruskal's algorithm

Input: A weighted connected graph G .

Output: A minimum spanning tree T with edges e1, . . . , en−1.

Start with no edges.

At each step, add the edge with smallest weight that does not
create a cycle with the edges added so far.

Finish when we have a spanning tree of G .

This is an example of a greedy algorithm.

Theorem

Kruskal's algorithm constructs a minimum-weight spanning tree.

Kruskal's algorithm

Input: A weighted connected graph G .

Output: A minimum spanning tree T with edges e1, . . . , en−1.

Start with no edges.

At each step, add the edge with smallest weight that does not
create a cycle with the edges added so far.

Finish when we have a spanning tree of G .

This is an example of a greedy algorithm.

Theorem

Kruskal's algorithm constructs a minimum-weight spanning tree.

Kruskal's algorithm

Input: A weighted connected graph G .

Output: A minimum spanning tree T with edges e1, . . . , en−1.

Start with no edges.

At each step, add the edge with smallest weight that does not
create a cycle with the edges added so far.

Finish when we have a spanning tree of G .

This is an example of a greedy algorithm.

Theorem

Kruskal's algorithm constructs a minimum-weight spanning tree.

Kruskal's algorithm

Input: A weighted connected graph G .

Output: A minimum spanning tree T with edges e1, . . . , en−1.

Start with no edges.

At each step, add the edge with smallest weight that does not
create a cycle with the edges added so far.

Finish when we have a spanning tree of G .

This is an example of a greedy algorithm.

Theorem

Kruskal's algorithm constructs a minimum-weight spanning tree.

Kruskal's algorithm

Input: A weighted connected graph G .

Output: A minimum spanning tree T with edges e1, . . . , en−1.

Start with no edges.

At each step, add the edge with smallest weight that does not
create a cycle with the edges added so far.

Finish when we have a spanning tree of G .

This is an example of a greedy algorithm.

Theorem

Kruskal's algorithm constructs a minimum-weight spanning tree.

