
Contraction of an edge

De�nition

Let G be a graph and let e = uv be an edge that is not a loop.
The contraction of e is the operation that replaces e with a single
vertex, which is incident to those edges that were incident to either
u or v in G .

Denote by G · e the resulting graph.

This construction may create loops and multiple edges.

G · e has one fewer edge than G .
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Deletion-contraction method

How do the numbers τ(G ), τ(G − e), and τ(G · e) relate to each
other?

Proposition (Deletion-contraction recurrence)

If e ∈ E (G ) is not a loop, then

τ(G ) = τ(G − e) + τ(G · e).

[Example]

If e is a loop, one can just delete it since it does not a�ect the
number of spanning trees.

With this recurrence, one can in theory compute τ(G ) for any
graph recursively, but it's computationally impractical, since
one would have to compute up to 2e(G) terms.
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Matrix Tree Theorem

Theorem

Let G be a loopless graph with vertices v1, v2, . . . , vn.
Let A be its adjacency matrix.

De�ne the matrix

Q =


d(v1) 0 . . . 0
0 d(v2) . . . 0
...

...
. . .

...

0 0 . . . d(vn)

− A.

Let Q⋆ be obtained from Q by deleting row s and column t.

Then

τ(G ) = (−1)s+t detQ⋆.

[Example] (We won't prove the theorem here.)
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Graceful labelings

De�nition

A graceful labeling of a tree T of order n is a bijection

f : V (T ) → {0, 1, . . . , n − 1}

such that

{|f (u)− f (v)| : uv ∈ E (T )} = {1, 2, . . . , n − 1}.

[Example]

Conjecture (Graceful Tree Conjecture '64)

Every tree has a graceful labeling.
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Graceful trees and decompositions

The Graceful Tree Conjecture is known to be true in some special
cases.

De�nition

A caterpillar is a tree which contains a path that is incident to
every edge.

Exercise (optional): Prove that every caterpillar has a graceful
labeling.
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2.3 Optimization and trees

A weighted graph is a graph with nonnegative numbers on the
edges.

They can represent the cost of building a road, or a distance, or the
amount of data that can be sent per second.

A minimum spanning tree is a spanning tree that minimizes the
sum of its edge weights.

Minimum Connector Problem: Given an arbitrary weighted
connected graph G , �nd a minimum spanning tree.



2.3 Optimization and trees

A weighted graph is a graph with nonnegative numbers on the
edges.

They can represent the cost of building a road, or a distance, or the
amount of data that can be sent per second.

A minimum spanning tree is a spanning tree that minimizes the
sum of its edge weights.

Minimum Connector Problem: Given an arbitrary weighted
connected graph G , �nd a minimum spanning tree.



2.3 Optimization and trees

A weighted graph is a graph with nonnegative numbers on the
edges.

They can represent the cost of building a road, or a distance, or the
amount of data that can be sent per second.

A minimum spanning tree is a spanning tree that minimizes the
sum of its edge weights.

Minimum Connector Problem: Given an arbitrary weighted
connected graph G , �nd a minimum spanning tree.



2.3 Optimization and trees

A weighted graph is a graph with nonnegative numbers on the
edges.

They can represent the cost of building a road, or a distance, or the
amount of data that can be sent per second.

A minimum spanning tree is a spanning tree that minimizes the
sum of its edge weights.

Minimum Connector Problem: Given an arbitrary weighted
connected graph G , �nd a minimum spanning tree.



Kruskal's algorithm

Input: A weighted connected graph G .

Output: A minimum spanning tree T with edges e1, . . . , en−1.

Start with no edges.

At each step, add the edge with smallest weight that does not
create a cycle with the edges added so far.

Finish when we have a spanning tree of G .

This is an example of a greedy algorithm.

Theorem

Kruskal's algorithm constructs a minimum-weight spanning tree.
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