
Finding shortest paths

Definition
Given vertices u, v in weighted graph, the distance d(u, v) is the
minimum sum of the weights on the edges of a u, v -path.

We will describe an algorithm that, given a weighted graph and a
vertex u, it finds the shortest path to every vertex.

It is called Dijkstra’s algorithm.

We denote the weight of the edge xy ∈ E (G ) by w(xy).
We set w(xy) = ∞ if xy /∈ E (G ).



Finding shortest paths

Definition
Given vertices u, v in weighted graph, the distance d(u, v) is the
minimum sum of the weights on the edges of a u, v -path.

We will describe an algorithm that, given a weighted graph and a
vertex u, it finds the shortest path to every vertex.

It is called Dijkstra’s algorithm.

We denote the weight of the edge xy ∈ E (G ) by w(xy).
We set w(xy) = ∞ if xy /∈ E (G ).



Finding shortest paths

Definition
Given vertices u, v in weighted graph, the distance d(u, v) is the
minimum sum of the weights on the edges of a u, v -path.

We will describe an algorithm that, given a weighted graph and a
vertex u, it finds the shortest path to every vertex.

It is called Dijkstra’s algorithm.

We denote the weight of the edge xy ∈ E (G ) by w(xy).
We set w(xy) = ∞ if xy /∈ E (G ).



Dijkstra’s algorithm

Input: A weighted graph G and a vertex u.

At any time, we maintain:
A set S of vertices v ∈ V (G ) for which the shortest u, v -path
is known.
A function t(z) which records the tentative distance from u to
z , using only vertices in S .

Initialization:
S = {u}
t(u) = 0, t(z) = w(uz) if uz ∈ E (G ), t(z) = ∞ otherwise

Iteration:
Choose v /∈ S such that t(v) = min

z /∈S
t(z)

Add v to S .
For each edge vz with z /∈ S , update t(z) to
min{t(z), t(v) + w(vz)}.

End when S = V (G ). Set d(u, v) = t(v) for all v .



Dijkstra’s algorithm

Input: A weighted graph G and a vertex u.

At any time, we maintain:
A set S of vertices v ∈ V (G ) for which the shortest u, v -path
is known.

A function t(z) which records the tentative distance from u to
z , using only vertices in S .

Initialization:
S = {u}
t(u) = 0, t(z) = w(uz) if uz ∈ E (G ), t(z) = ∞ otherwise

Iteration:
Choose v /∈ S such that t(v) = min

z /∈S
t(z)

Add v to S .
For each edge vz with z /∈ S , update t(z) to
min{t(z), t(v) + w(vz)}.

End when S = V (G ). Set d(u, v) = t(v) for all v .



Dijkstra’s algorithm

Input: A weighted graph G and a vertex u.

At any time, we maintain:
A set S of vertices v ∈ V (G ) for which the shortest u, v -path
is known.
A function t(z) which records the tentative distance from u to
z , using only vertices in S .

Initialization:
S = {u}
t(u) = 0, t(z) = w(uz) if uz ∈ E (G ), t(z) = ∞ otherwise

Iteration:
Choose v /∈ S such that t(v) = min

z /∈S
t(z)

Add v to S .
For each edge vz with z /∈ S , update t(z) to
min{t(z), t(v) + w(vz)}.

End when S = V (G ). Set d(u, v) = t(v) for all v .



Dijkstra’s algorithm

Input: A weighted graph G and a vertex u.

At any time, we maintain:
A set S of vertices v ∈ V (G ) for which the shortest u, v -path
is known.
A function t(z) which records the tentative distance from u to
z , using only vertices in S .

Initialization:
S = {u}

t(u) = 0, t(z) = w(uz) if uz ∈ E (G ), t(z) = ∞ otherwise

Iteration:
Choose v /∈ S such that t(v) = min

z /∈S
t(z)

Add v to S .
For each edge vz with z /∈ S , update t(z) to
min{t(z), t(v) + w(vz)}.

End when S = V (G ). Set d(u, v) = t(v) for all v .



Dijkstra’s algorithm

Input: A weighted graph G and a vertex u.

At any time, we maintain:
A set S of vertices v ∈ V (G ) for which the shortest u, v -path
is known.
A function t(z) which records the tentative distance from u to
z , using only vertices in S .

Initialization:
S = {u}
t(u) = 0, t(z) = w(uz) if uz ∈ E (G ), t(z) = ∞ otherwise

Iteration:
Choose v /∈ S such that t(v) = min

z /∈S
t(z)

Add v to S .
For each edge vz with z /∈ S , update t(z) to
min{t(z), t(v) + w(vz)}.

End when S = V (G ). Set d(u, v) = t(v) for all v .



Dijkstra’s algorithm

Input: A weighted graph G and a vertex u.

At any time, we maintain:
A set S of vertices v ∈ V (G ) for which the shortest u, v -path
is known.
A function t(z) which records the tentative distance from u to
z , using only vertices in S .

Initialization:
S = {u}
t(u) = 0, t(z) = w(uz) if uz ∈ E (G ), t(z) = ∞ otherwise

Iteration:
Choose v /∈ S such that t(v) = min

z /∈S
t(z)

Add v to S .
For each edge vz with z /∈ S , update t(z) to
min{t(z), t(v) + w(vz)}.

End when S = V (G ). Set d(u, v) = t(v) for all v .



Dijkstra’s algorithm

Input: A weighted graph G and a vertex u.

At any time, we maintain:
A set S of vertices v ∈ V (G ) for which the shortest u, v -path
is known.
A function t(z) which records the tentative distance from u to
z , using only vertices in S .

Initialization:
S = {u}
t(u) = 0, t(z) = w(uz) if uz ∈ E (G ), t(z) = ∞ otherwise

Iteration:
Choose v /∈ S such that t(v) = min

z /∈S
t(z)

Add v to S .

For each edge vz with z /∈ S , update t(z) to
min{t(z), t(v) + w(vz)}.

End when S = V (G ). Set d(u, v) = t(v) for all v .



Dijkstra’s algorithm

Input: A weighted graph G and a vertex u.

At any time, we maintain:
A set S of vertices v ∈ V (G ) for which the shortest u, v -path
is known.
A function t(z) which records the tentative distance from u to
z , using only vertices in S .

Initialization:
S = {u}
t(u) = 0, t(z) = w(uz) if uz ∈ E (G ), t(z) = ∞ otherwise

Iteration:
Choose v /∈ S such that t(v) = min

z /∈S
t(z)

Add v to S .
For each edge vz with z /∈ S , update t(z) to
min{t(z), t(v) + w(vz)}.

End when S = V (G ). Set d(u, v) = t(v) for all v .



Dijkstra’s algorithm

Input: A weighted graph G and a vertex u.

At any time, we maintain:
A set S of vertices v ∈ V (G ) for which the shortest u, v -path
is known.
A function t(z) which records the tentative distance from u to
z , using only vertices in S .

Initialization:
S = {u}
t(u) = 0, t(z) = w(uz) if uz ∈ E (G ), t(z) = ∞ otherwise

Iteration:
Choose v /∈ S such that t(v) = min

z /∈S
t(z)

Add v to S .
For each edge vz with z /∈ S , update t(z) to
min{t(z), t(v) + w(vz)}.

End when S = V (G ). Set d(u, v) = t(v) for all v .



Dijkstra’s algorithm

[Example]

Theorem
Dijkstra’s algorithm computes d(u, z) for every z ∈ V (G ).

In addition, one can reconstruct the shortest paths by recording, for
each z , which is the chosen vertex v when t(z) is updated. This
means that the shortest u, z-path ends with the edge vz .

The same algorithm also works for digraphs.

The special case of unweighted graphs is called Breadth First
Search.



Dijkstra’s algorithm

[Example]

Theorem
Dijkstra’s algorithm computes d(u, z) for every z ∈ V (G ).

In addition, one can reconstruct the shortest paths by recording, for
each z , which is the chosen vertex v when t(z) is updated. This
means that the shortest u, z-path ends with the edge vz .

The same algorithm also works for digraphs.

The special case of unweighted graphs is called Breadth First
Search.



Dijkstra’s algorithm

[Example]

Theorem
Dijkstra’s algorithm computes d(u, z) for every z ∈ V (G ).

In addition, one can reconstruct the shortest paths by recording, for
each z , which is the chosen vertex v when t(z) is updated. This
means that the shortest u, z-path ends with the edge vz .

The same algorithm also works for digraphs.

The special case of unweighted graphs is called Breadth First
Search.



Dijkstra’s algorithm

[Example]

Theorem
Dijkstra’s algorithm computes d(u, z) for every z ∈ V (G ).

In addition, one can reconstruct the shortest paths by recording, for
each z , which is the chosen vertex v when t(z) is updated. This
means that the shortest u, z-path ends with the edge vz .

The same algorithm also works for digraphs.

The special case of unweighted graphs is called Breadth First
Search.



Dijkstra’s algorithm

[Example]

Theorem
Dijkstra’s algorithm computes d(u, z) for every z ∈ V (G ).

In addition, one can reconstruct the shortest paths by recording, for
each z , which is the chosen vertex v when t(z) is updated. This
means that the shortest u, z-path ends with the edge vz .

The same algorithm also works for digraphs.

The special case of unweighted graphs is called Breadth First
Search.



Chapter 3
Matchings



Matchings

Example 1: After medical school, students become residents at
hospitals. Assigning students to hospitals is a complex problem as
there are many factors to take into consideration. Consider a
simplified version where

each student is willing to go to some hospitals and the choices
are not ranked,
each hospital will accept at most one student.

Example 2: The housing office has to distribute 2n students into n
rooms (two in each room). Some pairs are compatible as
roommates, some aren’t. Under what conditions can they be all
paired up?

These problems can be modeled in terms of finding matchings in
graphs.



Matchings

Example 1: After medical school, students become residents at
hospitals. Assigning students to hospitals is a complex problem as
there are many factors to take into consideration. Consider a
simplified version where

each student is willing to go to some hospitals and the choices
are not ranked,
each hospital will accept at most one student.

Example 2: The housing office has to distribute 2n students into n
rooms (two in each room). Some pairs are compatible as
roommates, some aren’t. Under what conditions can they be all
paired up?

These problems can be modeled in terms of finding matchings in
graphs.



Matchings

Example 1: After medical school, students become residents at
hospitals. Assigning students to hospitals is a complex problem as
there are many factors to take into consideration. Consider a
simplified version where

each student is willing to go to some hospitals and the choices
are not ranked,
each hospital will accept at most one student.

Example 2: The housing office has to distribute 2n students into n
rooms (two in each room). Some pairs are compatible as
roommates, some aren’t. Under what conditions can they be all
paired up?

These problems can be modeled in terms of finding matchings in
graphs.



Matchings

Definition
A matching M in a graph G is a set of edges with no shared
endpoints.

We say that a vertex is saturated if it is incident to some edge
in M, otherwise it is called unsaturated.

Definition
A perfect matching is one that saturates every vertex.



Matchings

Definition
A matching M in a graph G is a set of edges with no shared
endpoints.

We say that a vertex is saturated if it is incident to some edge
in M, otherwise it is called unsaturated.

Definition
A perfect matching is one that saturates every vertex.



Matchings

Definition
A matching M in a graph G is a set of edges with no shared
endpoints.

We say that a vertex is saturated if it is incident to some edge
in M, otherwise it is called unsaturated.

Definition
A perfect matching is one that saturates every vertex.



Counting matchings

How many perfect matchings does Kn,n have?

n!

How many perfect matchings does K2n have?

(2n − 1) · (2n − 3) · · · · · 3 · 1 =
(2n)!
2nn!

Does every connected graph with an even number of vertices have
a perfect matching? No.



Counting matchings

How many perfect matchings does Kn,n have? n!

How many perfect matchings does K2n have?

(2n − 1) · (2n − 3) · · · · · 3 · 1 =
(2n)!
2nn!

Does every connected graph with an even number of vertices have
a perfect matching? No.



Counting matchings

How many perfect matchings does Kn,n have? n!

How many perfect matchings does K2n have?

(2n − 1) · (2n − 3) · · · · · 3 · 1 =
(2n)!
2nn!

Does every connected graph with an even number of vertices have
a perfect matching? No.



Counting matchings

How many perfect matchings does Kn,n have? n!

How many perfect matchings does K2n have?

(2n − 1) · (2n − 3) · · · · · 3 · 1 =
(2n)!
2nn!

Does every connected graph with an even number of vertices have
a perfect matching? No.



Counting matchings

How many perfect matchings does Kn,n have? n!

How many perfect matchings does K2n have?

(2n − 1) · (2n − 3) · · · · · 3 · 1 =
(2n)!
2nn!

Does every connected graph with an even number of vertices have
a perfect matching?

No.



Counting matchings

How many perfect matchings does Kn,n have? n!

How many perfect matchings does K2n have?

(2n − 1) · (2n − 3) · · · · · 3 · 1 =
(2n)!
2nn!

Does every connected graph with an even number of vertices have
a perfect matching? No.



Maximal and maximum matchings

Definition
A maximal matching is one that cannot be enlarged by adding
more edges to it.

A maximum matching is one of maximum size among all
matchings in the graph.

Maximum implies maximal, but not the other way.

Definition
Given a graph G and a matching M, a path in G is called
M-alternating if its edges alternate between edges in M and edges
not in M.
If, additionally, its endpoints are unsaturated by M, the path is
called M-augmenting.

Note: If M is maximum, there is no M-augmenting path. We will
show that the converse is also true.



Maximal and maximum matchings

Definition
A maximal matching is one that cannot be enlarged by adding
more edges to it.
A maximum matching is one of maximum size among all
matchings in the graph.

Maximum implies maximal, but not the other way.

Definition
Given a graph G and a matching M, a path in G is called
M-alternating if its edges alternate between edges in M and edges
not in M.
If, additionally, its endpoints are unsaturated by M, the path is
called M-augmenting.

Note: If M is maximum, there is no M-augmenting path. We will
show that the converse is also true.



Maximal and maximum matchings

Definition
A maximal matching is one that cannot be enlarged by adding
more edges to it.
A maximum matching is one of maximum size among all
matchings in the graph.

Maximum implies maximal, but not the other way.

Definition
Given a graph G and a matching M, a path in G is called
M-alternating if its edges alternate between edges in M and edges
not in M.
If, additionally, its endpoints are unsaturated by M, the path is
called M-augmenting.

Note: If M is maximum, there is no M-augmenting path. We will
show that the converse is also true.



Maximal and maximum matchings

Definition
A maximal matching is one that cannot be enlarged by adding
more edges to it.
A maximum matching is one of maximum size among all
matchings in the graph.

Maximum implies maximal, but not the other way.

Definition
Given a graph G and a matching M, a path in G is called
M-alternating if its edges alternate between edges in M and edges
not in M.

If, additionally, its endpoints are unsaturated by M, the path is
called M-augmenting.

Note: If M is maximum, there is no M-augmenting path. We will
show that the converse is also true.



Maximal and maximum matchings

Definition
A maximal matching is one that cannot be enlarged by adding
more edges to it.
A maximum matching is one of maximum size among all
matchings in the graph.

Maximum implies maximal, but not the other way.

Definition
Given a graph G and a matching M, a path in G is called
M-alternating if its edges alternate between edges in M and edges
not in M.
If, additionally, its endpoints are unsaturated by M, the path is
called M-augmenting.

Note: If M is maximum, there is no M-augmenting path. We will
show that the converse is also true.



Maximal and maximum matchings

Definition
A maximal matching is one that cannot be enlarged by adding
more edges to it.
A maximum matching is one of maximum size among all
matchings in the graph.

Maximum implies maximal, but not the other way.

Definition
Given a graph G and a matching M, a path in G is called
M-alternating if its edges alternate between edges in M and edges
not in M.
If, additionally, its endpoints are unsaturated by M, the path is
called M-augmenting.

Note: If M is maximum, there is no M-augmenting path. We will
show that the converse is also true.



Comparing matchings

Definition
The symmetric difference of M and M ′ consists of those edges
that appear in exactly one of M and M ′:

M△M ′ = (M \M ′) ∪ (M ′ \M).

Lemma
If M and M ′ are matchings, then every component of M△M ′ is a
path or an even cycle.

Theorem (Berge ’57)

A matching M in a graph G is a maximum matching if and only if
G has no M-augmenting path.



Comparing matchings

Definition
The symmetric difference of M and M ′ consists of those edges
that appear in exactly one of M and M ′:

M△M ′ = (M \M ′) ∪ (M ′ \M).

Lemma
If M and M ′ are matchings, then every component of M△M ′ is a
path or an even cycle.

Theorem (Berge ’57)

A matching M in a graph G is a maximum matching if and only if
G has no M-augmenting path.



Comparing matchings

Definition
The symmetric difference of M and M ′ consists of those edges
that appear in exactly one of M and M ′:

M△M ′ = (M \M ′) ∪ (M ′ \M).

Lemma
If M and M ′ are matchings, then every component of M△M ′ is a
path or an even cycle.

Theorem (Berge ’57)

A matching M in a graph G is a maximum matching if and only if
G has no M-augmenting path.


