
Min-max theorems

How can we show that a graph G is not bipartite?

It is enough to exhibit an odd cycle.

How can we show that a matching M is a maximum matching?

We could show that it has no M-augmenting path, but that’s too
hard!

We will show that, in some cases, there is an easier way.
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Vertex covers and matchings

Definition
A vertex cover of G is a set Q ⊆ V (G ) that contains at least one
endpoint of every edge.

Think of security guards in an art gallery.

Observation: size of a vertex cover in G ≥ size of a matching in G .

This is because no vertex can cover two edges of a matching.

Notation:
β(G ) = minimum size of a vertex cover in G
α′(G ) = maximum size of a matching in G

For every graph G ,
β(G ) ≥ α′(G ).

Obtaining a matching and a vertex cover of the same size proves
that both are optimal!
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Vertex covers and matchings of bipartite graphs

There are graphs for which β(G ) > α′(G ).

Theorem (König-Egerváry)

If G is bipartite, then
β(G ) = α′(G ).

This is an example of a min-max relation.

In general, we have a maximization problem and a minimization
problem, and any solution to the first has a smaller size than any
solution to the second.

If we find solutions with the same value, then they are both optimal.
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Independent sets and edge covers

Recall that an independent set is a set of mutually non-adjacent
vertices.

Definition
An edge cover of G is a set L ⊆ E (G ) such that every vertex of G
is incident to some edge in L.

Observation:
size of an edge cover in G ≥ size of an independent set in G .

This is because no edge can cover two edges of an independent set.

Notation:
α(G ) = maximum size of an independent set in G

(called independence number)
β′(G ) = minimum size of an edge cover in G

For every graph G ,
β′(G ) ≥ α(G ).
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Summary of notation

α(G ) = maximum size of an independent set in G
α′(G ) = maximum size of a matching in G
β(G ) = minimum size of a vertex cover in G
β′(G ) = minimum size of an edge cover in G

Some relations we have discussed so far:

β(G ) ≥ α′(G )

(with equality if G is bipartite)

β′(G ) ≥ α(G )

β′(G ) ≥ n(G )

2
≥ α′(G )
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