
Summary of notation

α(G ) = maximum size of an independent set in G
α′(G ) = maximum size of a matching in G
β(G ) = minimum size of a vertex cover in G
β′(G ) = minimum size of an edge cover in G

Some relations we have discussed so far:

β(G ) ≥ α′(G )

(with equality if G is bipartite)

β′(G ) ≥ α(G )

β′(G ) ≥ n(G )

2
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More relations

Theorem

Let S ⊆ V (G ) be a set of vertices. Then

S is an independent set if and only if V (G ) \ S is a vertex cover.

Hence,

α(G ) + β(G ) = n(G ).

Theorem

If G has no isolated vertices, then

α′(G ) + β′(G ) = n(G ).

Corollary

If G is bipartite with no isolated vertices, then

α(G ) = β′(G ).
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Chapter 4

Connectivity and paths



Connectivity

When a graph represents a communication network, an important

property is that it remains connected even if some vertices

(stations) or edges (links or cables) fail.

However, adding links is expensive, so we want to have good

connectivity without having too many edges.

Question: How can we measure the connectivity of a graph?

One way is to look at how many vertices (or edges) must one

delete in order to disconnect it.

In this chapter, graphs will have no loops (since loops do not a�ect

connectivity).
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Separating sets

De�nition

A separating set or vertex cut of G is a set S ⊆ V (G ) such that

G − S has more than one component.

The connectivity of G , denoted by κ(G ), is the minimum size of a

separating set.

Examples: κ(Km,n) = min{m, n}, κ(Qk) = k .

For the complete graph, we de�ne κ(Kn) = n − 1.

κ(G ) gives a measure of how connected G is.

De�nition

We say that G is k-connected if κ(G ) ≥ k . Equivalently, if
removing fewer than k vertices does not disconnect G .

Note: if G is k-connected, then it is also ℓ-connected for ℓ ≤ k .

Note: 1-connected ≡ connected
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