Separating sets

Definition

A separating set or vertex cut of G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component.

Separating sets

Definition

A separating set or vertex cut of G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component.

The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a separating set.

Separating sets

Definition

A separating set or vertex cut of G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component.

The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a separating set.

Examples: $\quad \kappa\left(K_{m, n}\right)=$

Separating sets

Definition

A separating set or vertex cut of G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component.

The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a separating set.

Examples: $\quad \kappa\left(K_{m, n}\right)=\min \{m, n\}, \quad \kappa\left(Q_{k}\right)=$

Separating sets

Definition

A separating set or vertex cut of G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component.

The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a separating set.

Examples: $\quad \kappa\left(K_{m, n}\right)=\min \{m, n\}, \quad \kappa\left(Q_{k}\right)=k$.

Separating sets

Definition

A separating set or vertex cut of G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component.

The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a separating set.

Examples: $\quad \kappa\left(K_{m, n}\right)=\min \{m, n\}, \quad \kappa\left(Q_{k}\right)=k$.
For the complete graph, we define $\kappa\left(K_{n}\right)=n-1$.

Separating sets

Definition

A separating set or vertex cut of G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component.

The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a separating set.

Examples: $\quad \kappa\left(K_{m, n}\right)=\min \{m, n\}, \quad \kappa\left(Q_{k}\right)=k$.
For the complete graph, we define $\kappa\left(K_{n}\right)=n-1$.
$\kappa(G)$ gives a measure of how connected G is.

Separating sets

Definition

A separating set or vertex cut of G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component.

The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a separating set.

Examples: $\quad \kappa\left(K_{m, n}\right)=\min \{m, n\}, \quad \kappa\left(Q_{k}\right)=k$.
For the complete graph, we define $\kappa\left(K_{n}\right)=n-1$.
$\kappa(G)$ gives a measure of how connected G is.

Definition

We say that G is k-connected if $\kappa(G) \geq k$.

Separating sets

Definition

A separating set or vertex cut of G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component.

The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a separating set.

Examples: $\quad \kappa\left(K_{m, n}\right)=\min \{m, n\}, \quad \kappa\left(Q_{k}\right)=k$.
For the complete graph, we define $\kappa\left(K_{n}\right)=n-1$.
$\kappa(G)$ gives a measure of how connected G is.

Definition

We say that G is k-connected if $\kappa(G) \geq k$. Equivalently, if removing fewer than k vertices does not disconnect G.

Separating sets

Definition

A separating set or vertex cut of G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component.

The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a separating set.

Examples: $\quad \kappa\left(K_{m, n}\right)=\min \{m, n\}, \quad \kappa\left(Q_{k}\right)=k$.
For the complete graph, we define $\kappa\left(K_{n}\right)=n-1$.
$\kappa(G)$ gives a measure of how connected G is.

Definition

We say that G is k-connected if $\kappa(G) \geq k$. Equivalently, if removing fewer than k vertices does not disconnect G.

Note: if G is k-connected, then it is also ℓ-connected for $\ell \leq k$.

Separating sets

Definition

A separating set or vertex cut of G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component.

The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a separating set.

Examples: $\quad \kappa\left(K_{m, n}\right)=\min \{m, n\}, \quad \kappa\left(Q_{k}\right)=k$.
For the complete graph, we define $\kappa\left(K_{n}\right)=n-1$.
$\kappa(G)$ gives a measure of how connected G is.

Definition

We say that G is k-connected if $\kappa(G) \geq k$. Equivalently, if removing fewer than k vertices does not disconnect G.

Note: if G is k-connected, then it is also ℓ-connected for $\ell \leq k$. Note: 1-connected \equiv connected

Separating sets

Definition

A separating set or vertex cut of G is a set $S \subseteq V(G)$ such that $G-S$ has more than one component.

The connectivity of G, denoted by $\kappa(G)$, is the minimum size of a separating set.

Examples: $\quad \kappa\left(K_{m, n}\right)=\min \{m, n\}, \quad \kappa\left(Q_{k}\right)=k$.
For the complete graph, we define $\kappa\left(K_{n}\right)=n-1$.
$\kappa(G)$ gives a measure of how connected G is.

Definition

We say that G is k-connected if $\kappa(G) \geq k$. Equivalently, if removing fewer than k vertices does not disconnect G.

Note: if G is k-connected, then it is also ℓ-connected for $\ell \leq k$. Note: 1-connected \equiv connected

Maximizing connectivity

How are $\kappa(G)$ and $\delta(G)$ related?

Maximizing connectivity

How are $\kappa(G)$ and $\delta(G)$ related? Always $\kappa(G) \leq \delta(G)$.

Maximizing connectivity

How are $\kappa(G)$ and $\delta(G)$ related? Always $\kappa(G) \leq \delta(G)$.
Question: What's the minimum number of edges that a k-connected graph G with n vertices must have?

Maximizing connectivity

How are $\kappa(G)$ and $\delta(G)$ related? Always $\kappa(G) \leq \delta(G)$.
Question: What's the minimum number of edges that a k-connected graph G with n vertices must have?

For $k=1$, we already know that G must have at least $n-1$ edges. Suppose that $k \geq 2$.

Maximizing connectivity

How are $\kappa(G)$ and $\delta(G)$ related? Always $\kappa(G) \leq \delta(G)$.
Question: What's the minimum number of edges that a k-connected graph G with n vertices must have?

For $k=1$, we already know that G must have at least $n-1$ edges. Suppose that $k \geq 2$.

We must have $\delta(G) \geq k$,

Maximizing connectivity

How are $\kappa(G)$ and $\delta(G)$ related? Always $\kappa(G) \leq \delta(G)$.
Question: What's the minimum number of edges that a k-connected graph G with n vertices must have?

For $k=1$, we already know that G must have at least $n-1$ edges. Suppose that $k \geq 2$.
We must have $\delta(G) \geq k$, and so $e(G) \geq\left\lceil\frac{k n}{2}\right\rceil$.

Maximizing connectivity

How are $\kappa(G)$ and $\delta(G)$ related? Always $\kappa(G) \leq \delta(G)$.
Question: What's the minimum number of edges that a k-connected graph G with n vertices must have?

For $k=1$, we already know that G must have at least $n-1$ edges. Suppose that $k \geq 2$.
We must have $\delta(G) \geq k$, and so $e(G) \geq\left\lceil\frac{k n}{2}\right\rceil$.
The hypercube Q_{k} achieves this bound in the case that $n=2^{k}$.

Maximizing connectivity

How are $\kappa(G)$ and $\delta(G)$ related? Always $\kappa(G) \leq \delta(G)$.
Question: What's the minimum number of edges that a k-connected graph G with n vertices must have?

For $k=1$, we already know that G must have at least $n-1$ edges. Suppose that $k \geq 2$.
We must have $\delta(G) \geq k$, and so $e(G) \geq\left\lceil\frac{k n}{2}\right\rceil$.
The hypercube Q_{k} achieves this bound in the case that $n=2^{k}$.
For general n and $k \geq 2$, there is an n-vertex graph $H_{n, k}$, called the Harary graph, which has

$$
\kappa\left(H_{k, n}\right)=k \quad \text { and } \quad e\left(H_{k, n}\right)=\left\lceil\frac{k n}{2}\right\rceil .
$$

Edge-connectivity

If instead of network computers failing, it is the cables that fail, we want a graph that is hard to disconnect by deleting edges.

Edge-connectivity

If instead of network computers failing, it is the cables that fail, we want a graph that is hard to disconnect by deleting edges.

Definition

A disconnecting set of G is a set $F \subseteq E(G)$ such that $G-F$ has more than one component.

Edge-connectivity

If instead of network computers failing, it is the cables that fail, we want a graph that is hard to disconnect by deleting edges.

Definition

A disconnecting set of G is a set $F \subseteq E(G)$ such that $G-F$ has more than one component.

The edge-connectivity of G, denoted by $\kappa^{\prime}(G)$, is the minimum size of a disconnecting set.

Edge-connectivity

If instead of network computers failing, it is the cables that fail, we want a graph that is hard to disconnect by deleting edges.

Definition

A disconnecting set of G is a set $F \subseteq E(G)$ such that $G-F$ has more than one component.

The edge-connectivity of G, denoted by $\kappa^{\prime}(G)$, is the minimum size of a disconnecting set.

Definition

G is k-edge-connected if $\kappa^{\prime}(G) \geq k$.

Edge-connectivity

If instead of network computers failing, it is the cables that fail, we want a graph that is hard to disconnect by deleting edges.

Definition

A disconnecting set of G is a set $F \subseteq E(G)$ such that $G-F$ has more than one component.

The edge-connectivity of G, denoted by $\kappa^{\prime}(G)$, is the minimum size of a disconnecting set.

Definition

G is k-edge-connected if $\kappa^{\prime}(G) \geq k$. Equivalently, if removing fewer than k edges does not disconnect G.

Edge-connectivity

If instead of network computers failing, it is the cables that fail, we want a graph that is hard to disconnect by deleting edges.

Definition

A disconnecting set of G is a set $F \subseteq E(G)$ such that $G-F$ has more than one component.

The edge-connectivity of G, denoted by $\kappa^{\prime}(G)$, is the minimum size of a disconnecting set.

Definition

G is k-edge-connected if $\kappa^{\prime}(G) \geq k$. Equivalently, if removing fewer than k edges does not disconnect G.

Note: 1-edge-connected \equiv connected

Edge cuts

Recall that a separating set and a vertex cut are the same thing, namely a set of vertices whose removal makes the graph disconnected.

Edge cuts

Recall that a separating set and a vertex cut are the same thing, namely a set of vertices whose removal makes the graph disconnected.

However, a disconnecting set and an edge cut are not exactly the same thing. An edge cut is defined to be a special kind of disconnecting set.

Edge cuts

Recall that a separating set and a vertex cut are the same thing, namely a set of vertices whose removal makes the graph disconnected.

However, a disconnecting set and an edge cut are not exactly the same thing. An edge cut is defined to be a special kind of disconnecting set.

Definition

Given $S, T \subseteq V(G)$, let $[S, T]$ denote the set of edges of G with an endpoint in S and an endpoint in T.

Edge cuts

Recall that a separating set and a vertex cut are the same thing, namely a set of vertices whose removal makes the graph disconnected.

However, a disconnecting set and an edge cut are not exactly the same thing. An edge cut is defined to be a special kind of disconnecting set.

Definition

Given $S, T \subseteq V(G)$, let $[S, T]$ denote the set of edges of G with an endpoint in S and an endpoint in T.
An edge cut is a set of edges of the form $[S, \bar{S}]$ for some $S \in V(G)$.

Edge cuts

Recall that a separating set and a vertex cut are the same thing, namely a set of vertices whose removal makes the graph disconnected.

However, a disconnecting set and an edge cut are not exactly the same thing. An edge cut is defined to be a special kind of disconnecting set.

Definition

Given $S, T \subseteq V(G)$, let $[S, T]$ denote the set of edges of G with an endpoint in S and an endpoint in T.
An edge cut is a set of edges of the form $[S, \bar{S}]$ for some $S \in V(G)$.

Note: Every edge cut is a disconnecting set, but the converse is false.

Edge cuts

Recall that a separating set and a vertex cut are the same thing, namely a set of vertices whose removal makes the graph disconnected.

However, a disconnecting set and an edge cut are not exactly the same thing. An edge cut is defined to be a special kind of disconnecting set.

Definition

Given $S, T \subseteq V(G)$, let $[S, T]$ denote the set of edges of G with an endpoint in S and an endpoint in T.
An edge cut is a set of edges of the form $[S, \bar{S}]$ for some $S \in V(G)$.

Note: Every edge cut is a disconnecting set, but the converse is false. However, every disconnecting set contains an edge cut.

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Some graphs G with $\kappa(G)=\kappa^{\prime}(G)=\delta(G)$:

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Some graphs G with $\kappa(G)=\kappa^{\prime}(G)=\delta(G)$:

$$
\begin{array}{l|l}
G & \kappa(G)=\kappa^{\prime}(G)=\delta(G) \\
\hline K_{n} & n-1
\end{array}
$$

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Some graphs G with $\kappa(G)=\kappa^{\prime}(G)=\delta(G)$:

$$
\begin{array}{l|l}
G & \kappa(G)=\kappa^{\prime}(G)=\delta(G) \\
\hline K_{n} & n-1 \\
K_{m, n} & \min \{m, n\}
\end{array}
$$

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Some graphs G with $\kappa(G)=\kappa^{\prime}(G)=\delta(G)$:

$$
\begin{array}{l|l}
G & \kappa(G)=\kappa^{\prime}(G)=\delta(G) \\
\hline K_{n} & n-1 \\
K_{m, n} & \min \{m, n\} \\
Q_{k} & k
\end{array}
$$

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Some graphs G with $\kappa(G)=\kappa^{\prime}(G)=\delta(G)$:

$$
\begin{array}{l|l}
G & \kappa(G)=\kappa^{\prime}(G)=\delta(G) \\
\hline K_{n} & n-1 \\
K_{m, n} & \min \{m, n\} \\
Q_{k} & k
\end{array}
$$

Exercise: Find a graph G with $\kappa(G)<\kappa^{\prime}(G)$.

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Some graphs G with $\kappa(G)=\kappa^{\prime}(G)=\delta(G)$:

$$
\begin{array}{l|l}
G & \kappa(G)=\kappa^{\prime}(G)=\delta(G) \\
\hline K_{n} & n-1 \\
K_{m, n} & \min \{m, n\} \\
Q_{k} & k
\end{array}
$$

Exercise: Find a graph G with $\kappa(G)<\kappa^{\prime}(G)$.

Theorem

If G is 3-regular, then

$$
\kappa(G)=\kappa^{\prime}(G)
$$

