
Whitney’s Theorem

Theorem (Whitney ’32)

For every graph G ,

κ(G ) ≤ κ′(G ) ≤ δ(G ).

Some graphs G with κ(G ) = κ′(G ) = δ(G ):

G κ(G ) = κ′(G ) = δ(G )

Kn n − 1
Km,n min{m, n}
Qk k

Exercise: Find a graph G with κ(G ) < κ′(G ).

Theorem
If G is 3-regular, then

κ(G ) = κ′(G ).
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More about edge cuts

Proposition

If S ⊆ V (G ), then∣∣[S ,S ]∣∣ = ∑
v∈S

d(v)− 2e(G [S ]).

An edge cut may contain another edge cut.
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Blocks

Definition
A block of G is a maximal connected subgraph that has no
cut-vertex.

Notes:
A block H of G may contain vertices that are cut-vertices of
G , but not of H.
If a block has more than 2 vertices, then it is 2-connected.
An edge of a cycle cannot be a block by itself, because it’s not
maximal.
A cut-edge always forms a block by itself.
The blocks of a graph decompose the graph (i.e., they
partition the set of edges).

Proposition
Two blocks in a graph share at most one vertex.
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4.2 k-connected graphs

A graph G is 1-connected (a.k.a. connected) if and only if, for
every u, v ∈ V (G ), there is a u, v -path.

Question: Is there a similar characterization for 2-connected
graphs?

Definition
Two u, v -paths are internally disjoint if they have no common
internal vertex.

Theorem (Whitney ’32)

A graph G is 2-connected if and only if, for every u, v ∈ V (G ),
there are at least two internally disjoint u, v -paths.

Theorem
A graph is 2-connected if and only if it has an “ear decomposition”.
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x , y -cuts

Definition
Given x , y ∈ V (G ), a set S ⊆ V (G ) \ {x , y} is an x , y-cut if
G − S has no x , y -path.

κ(x , y) = minimum size of an x , y -cut.

Note: If S is an x , y -cut, then G − S has more than one
component. Thus

κ(x , y) ≥ κ(G ).

In fact,
κ(G ) = min

x ,y∈V (G)
κ(x , y).
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Menger’s theorem

Definition
A set of x , y -paths is called pairwise internally disjoint if no two
paths share an internal vertex.

λ(x , y) = maximum size of a set of pairwise internally disjoint
x , y -paths.

Note that κ(x , y) ≥ λ(x , y), since no vertex can cut two internally
disjoint x , y -paths.

Theorem (Menger ’27)

If x , y ∈ V (G ) and xy /∈ E (G ), then

κ(x , y) = λ(x , y).

Corollary

A graph G is k-connected if and only if, for every x , y ∈ V (G ),
there are at least k internally disjoint u, v -paths.



Menger’s theorem

Definition
A set of x , y -paths is called pairwise internally disjoint if no two
paths share an internal vertex.

λ(x , y) = maximum size of a set of pairwise internally disjoint
x , y -paths.

Note that κ(x , y) ≥ λ(x , y), since no vertex can cut two internally
disjoint x , y -paths.

Theorem (Menger ’27)

If x , y ∈ V (G ) and xy /∈ E (G ), then

κ(x , y) = λ(x , y).

Corollary

A graph G is k-connected if and only if, for every x , y ∈ V (G ),
there are at least k internally disjoint u, v -paths.



Menger’s theorem

Definition
A set of x , y -paths is called pairwise internally disjoint if no two
paths share an internal vertex.

λ(x , y) = maximum size of a set of pairwise internally disjoint
x , y -paths.

Note that κ(x , y) ≥ λ(x , y)

, since no vertex can cut two internally
disjoint x , y -paths.

Theorem (Menger ’27)

If x , y ∈ V (G ) and xy /∈ E (G ), then

κ(x , y) = λ(x , y).

Corollary

A graph G is k-connected if and only if, for every x , y ∈ V (G ),
there are at least k internally disjoint u, v -paths.



Menger’s theorem

Definition
A set of x , y -paths is called pairwise internally disjoint if no two
paths share an internal vertex.

λ(x , y) = maximum size of a set of pairwise internally disjoint
x , y -paths.

Note that κ(x , y) ≥ λ(x , y), since no vertex can cut two internally
disjoint x , y -paths.

Theorem (Menger ’27)

If x , y ∈ V (G ) and xy /∈ E (G ), then

κ(x , y) = λ(x , y).

Corollary

A graph G is k-connected if and only if, for every x , y ∈ V (G ),
there are at least k internally disjoint u, v -paths.



Menger’s theorem

Definition
A set of x , y -paths is called pairwise internally disjoint if no two
paths share an internal vertex.

λ(x , y) = maximum size of a set of pairwise internally disjoint
x , y -paths.

Note that κ(x , y) ≥ λ(x , y), since no vertex can cut two internally
disjoint x , y -paths.

Theorem (Menger ’27)

If x , y ∈ V (G ) and xy /∈ E (G ), then

κ(x , y) = λ(x , y).

Corollary

A graph G is k-connected if and only if, for every x , y ∈ V (G ),
there are at least k internally disjoint u, v -paths.



Menger’s theorem

Definition
A set of x , y -paths is called pairwise internally disjoint if no two
paths share an internal vertex.

λ(x , y) = maximum size of a set of pairwise internally disjoint
x , y -paths.

Note that κ(x , y) ≥ λ(x , y), since no vertex can cut two internally
disjoint x , y -paths.

Theorem (Menger ’27)

If x , y ∈ V (G ) and xy /∈ E (G ), then

κ(x , y) = λ(x , y).

Corollary

A graph G is k-connected if and only if, for every x , y ∈ V (G ),
there are at least k internally disjoint u, v -paths.



Edge version of Menger’s theorem

Definition
Given x , y ∈ V (G ), let

κ′(x , y) = minimum size of an x , y-disconnecting set of edges.

λ′(x , y) = maximum size of a set of pairwise edge-disjoint
x , y -paths.

As in the case of vertices, we have

κ′(G ) = min
x ,y∈V (G)

κ′(x , y).

Also, κ′(x , y) ≥ λ′(x , y), since no edge can cut two edge-disjoint
x , y -paths.

Theorem
If x , y ∈ V (G ), then

κ′(x , y) = λ′(x , y).
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The line graph

The proof of the edge version of Menger’s theorem uses the notion
of line graphs.

Definition
The line graph of G , denoted by L(G ), is the graph whose vertices
are the edges of G , and with ef ∈ E (L(G )) if e and f are edges of
G that share an endpoint.
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4.3 Network flow problems

Examples:
Edges represent pipes where water flows in one direction, and
the labels indicate their capacity (amount of water per
second). What is the maximum flow from s to t?

Edges represent one-way streets, and the labels indicate the
maximum number of cars per hour. What is the maximum
number of cars per hour that can travel from s to t?
The diagram represents a computer (or electrical) network,
and the labels indicate the data (or electricity) transmission
capacities. How much data (or current) can be transmitted
from s to t?
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Networks

Definition
A network is a weighted digraph D with two distinguished vertices:
the source s and the sink t.
Each edge has a nonnegative label c(e), called its capacity.

Definition
A feasible flow is a function f : E (D) → R≥0 that assigns to each
edge a non-negative real number, such that

0 ≤ f (e) ≤ c(e) for all e ∈ E (D); (capacity constraints)
f +(v) = f −(v) for all v ∈ V (G ) \ {s, t},
where f +(v) is the flow on edges leaving v ,
and f −(v) is the flow on edges entering v .

(conservation constraints)
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