Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Some graphs G with $\kappa(G)=\kappa^{\prime}(G)=\delta(G)$:

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Some graphs G with $\kappa(G)=\kappa^{\prime}(G)=\delta(G)$:

$$
\begin{array}{l|l}
G & \kappa(G)=\kappa^{\prime}(G)=\delta(G) \\
\hline K_{n} & n-1
\end{array}
$$

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Some graphs G with $\kappa(G)=\kappa^{\prime}(G)=\delta(G)$:

$$
\begin{array}{l|l}
G & \kappa(G)=\kappa^{\prime}(G)=\delta(G) \\
\hline K_{n} & n-1 \\
K_{m, n} & \min \{m, n\}
\end{array}
$$

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Some graphs G with $\kappa(G)=\kappa^{\prime}(G)=\delta(G)$:

$$
\begin{array}{l|l}
G & \kappa(G)=\kappa^{\prime}(G)=\delta(G) \\
\hline K_{n} & n-1 \\
K_{m, n} & \min \{m, n\} \\
Q_{k} & k
\end{array}
$$

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Some graphs G with $\kappa(G)=\kappa^{\prime}(G)=\delta(G)$:

$$
\begin{array}{l|l}
G & \kappa(G)=\kappa^{\prime}(G)=\delta(G) \\
\hline K_{n} & n-1 \\
K_{m, n} & \min \{m, n\} \\
Q_{k} & k
\end{array}
$$

Exercise: Find a graph G with $\kappa(G)<\kappa^{\prime}(G)$.

Whitney's Theorem

Theorem (Whitney '32)

For every graph G,

$$
\kappa(G) \leq \kappa^{\prime}(G) \leq \delta(G)
$$

Some graphs G with $\kappa(G)=\kappa^{\prime}(G)=\delta(G)$:

$$
\begin{array}{l|l}
G & \kappa(G)=\kappa^{\prime}(G)=\delta(G) \\
\hline K_{n} & n-1 \\
K_{m, n} & \min \{m, n\} \\
Q_{k} & k
\end{array}
$$

Exercise: Find a graph G with $\kappa(G)<\kappa^{\prime}(G)$.

Theorem

If G is 3-regular, then

$$
\kappa(G)=\kappa^{\prime}(G)
$$

More about edge cuts

Proposition
 If $S \subseteq V(G)$, then

$$
|[S, \bar{S}]|=\sum_{v \in S} d(v)-2 e(G[S])
$$

More about edge cuts

Proposition
If $S \subseteq V(G)$, then

$$
|[S, \bar{S}]|=\sum_{v \in S} d(v)-2 e(G[S])
$$

An edge cut may contain another edge cut.

Blocks

Definition

A block of G is a maximal connected subgraph that has no cut-vertex.

Blocks

Definition

A block of G is a maximal connected subgraph that has no cut-vertex.

Notes:

- A block H of G may contain vertices that are cut-vertices of G, but not of H.

Blocks

Definition

A block of G is a maximal connected subgraph that has no cut-vertex.

Notes:

- A block H of G may contain vertices that are cut-vertices of G, but not of H.
- If a block has more than 2 vertices, then it is 2 -connected.
- An edge of a cycle cannot be a block by itself, because it's not maximal.

Blocks

Definition

A block of G is a maximal connected subgraph that has no cut-vertex.

Notes:

- A block H of G may contain vertices that are cut-vertices of G, but not of H.
- If a block has more than 2 vertices, then it is 2-connected.
- An edge of a cycle cannot be a block by itself, because it's not maximal.
- A cut-edge always forms a block by itself.

Blocks

Definition

A block of G is a maximal connected subgraph that has no cut-vertex.

Notes:

- A block H of G may contain vertices that are cut-vertices of G, but not of H.
- If a block has more than 2 vertices, then it is 2-connected.
- An edge of a cycle cannot be a block by itself, because it's not maximal.
- A cut-edge always forms a block by itself.
- The blocks of a graph decompose the graph (i.e., they partition the set of edges).

Blocks

Definition

A block of G is a maximal connected subgraph that has no cut-vertex.

Notes:

- A block H of G may contain vertices that are cut-vertices of G, but not of H.
- If a block has more than 2 vertices, then it is 2 -connected.
- An edge of a cycle cannot be a block by itself, because it's not maximal.
- A cut-edge always forms a block by itself.
- The blocks of a graph decompose the graph (i.e., they partition the set of edges).

Proposition

Two blocks in a graph share at most one vertex.

4.2 k-connected graphs

A graph G is 1-connected (a.k.a. connected) if and only if, for every $u, v \in V(G)$, there is a u, v-path.

4.2 k-connected graphs

A graph G is 1-connected (a.k.a. connected) if and only if, for every $u, v \in V(G)$, there is a u, v-path.

Question: Is there a similar characterization for 2-connected graphs?

$4.2 k$-connected graphs

A graph G is 1-connected (a.k.a. connected) if and only if, for every $u, v \in V(G)$, there is a u, v-path.

Question: Is there a similar characterization for 2-connected graphs?

Definition

Two u, v-paths are internally disjoint if they have no common internal vertex.

$4.2 k$-connected graphs

A graph G is 1-connected (a.k.a. connected) if and only if, for every $u, v \in V(G)$, there is a u, v-path.

Question: Is there a similar characterization for 2-connected graphs?

Definition

Two u, v-paths are internally disjoint if they have no common internal vertex.

Theorem (Whitney '32)

A graph G is 2-connected if and only if, for every $u, v \in V(G)$, there are at least two internally disjoint u, v-paths.

4.2 k-connected graphs

A graph G is 1-connected (a.k.a. connected) if and only if, for every $u, v \in V(G)$, there is a u, v-path.

Question: Is there a similar characterization for 2-connected graphs?

Definition

Two u, v-paths are internally disjoint if they have no common internal vertex.

Theorem (Whitney '32)

A graph G is 2-connected if and only if, for every $u, v \in V(G)$, there are at least two internally disjoint u, v-paths.

Theorem

A graph is 2-connected if and only if it has an "ear decomposition".

x, y-cuts

Definition

Given $x, y \in V(G)$, a set $S \subseteq V(G) \backslash\{x, y\}$ is an x, y-cut if $G-S$ has no x, y-path.

x, y-cuts

Definition

Given $x, y \in V(G)$, a set $S \subseteq V(G) \backslash\{x, y\}$ is an x, y-cut if $G-S$ has no x, y-path.
$\kappa(x, y)=$ minimum size of an x, y-cut.

x, y-cuts

Definition

Given $x, y \in V(G)$, a set $S \subseteq V(G) \backslash\{x, y\}$ is an x, y-cut if $G-S$ has no x, y-path.
$\kappa(x, y)=$ minimum size of an x, y-cut.
Note: If S is an x, y-cut, then $G-S$ has more than one component. Thus

$$
\kappa(x, y) \geq \kappa(G)
$$

x, y-cuts

Definition

Given $x, y \in V(G)$, a set $S \subseteq V(G) \backslash\{x, y\}$ is an x, y-cut if $G-S$ has no x, y-path.
$\kappa(x, y)=$ minimum size of an x, y-cut.
Note: If S is an x, y-cut, then $G-S$ has more than one component. Thus

$$
\kappa(x, y) \geq \kappa(G)
$$

In fact,

$$
\kappa(G)=\min _{x, y \in V(G)} \kappa(x, y)
$$

Menger's theorem

Definition

A set of x, y-paths is called pairwise internally disjoint if no two paths share an internal vertex.

Menger's theorem

Definition

A set of x, y-paths is called pairwise internally disjoint if no two paths share an internal vertex.
$\lambda(x, y)=$ maximum size of a set of pairwise internally disjoint x, y-paths.

Menger's theorem

Definition

A set of x, y-paths is called pairwise internally disjoint if no two paths share an internal vertex.
$\lambda(x, y)=$ maximum size of a set of pairwise internally disjoint x, y-paths.

Note that $\kappa(x, y) \geq \lambda(x, y)$

Menger's theorem

Definition

A set of x, y-paths is called pairwise internally disjoint if no two paths share an internal vertex.
$\lambda(x, y)=$ maximum size of a set of pairwise internally disjoint x, y-paths.

Note that $\kappa(x, y) \geq \lambda(x, y)$, since no vertex can cut two internally disjoint x, y-paths.

Menger's theorem

Definition

A set of x, y-paths is called pairwise internally disjoint if no two paths share an internal vertex.
$\lambda(x, y)=$ maximum size of a set of pairwise internally disjoint x, y-paths.

Note that $\kappa(x, y) \geq \lambda(x, y)$, since no vertex can cut two internally disjoint x, y-paths.

Theorem (Menger '27)

$$
\text { If } x, y \in V(G) \text { and } x y \notin E(G) \text {, then }
$$

$$
\kappa(x, y)=\lambda(x, y)
$$

Menger's theorem

Definition

A set of x, y-paths is called pairwise internally disjoint if no two paths share an internal vertex.
$\lambda(x, y)=$ maximum size of a set of pairwise internally disjoint x, y-paths.

Note that $\kappa(x, y) \geq \lambda(x, y)$, since no vertex can cut two internally disjoint x, y-paths.

Theorem (Menger '27)

If $x, y \in V(G)$ and $x y \notin E(G)$, then

$$
\kappa(x, y)=\lambda(x, y)
$$

Corollary

A graph G is k-connected if and only if, for every $x, y \in V(G)$, there are at least k internally disjoint u, v-paths.

Edge version of Menger's theorem

Definition

Given $x, y \in V(G)$, let
$\kappa^{\prime}(x, y)=$ minimum size of an x, y-disconnecting set of edges.

Edge version of Menger's theorem

Definition

Given $x, y \in V(G)$, let
$\kappa^{\prime}(x, y)=$ minimum size of an x, y-disconnecting set of edges.
$\lambda^{\prime}(x, y)=$ maximum size of a set of pairwise edge-disjoint x, y-paths.

Edge version of Menger's theorem

Definition

Given $x, y \in V(G)$, let
$\kappa^{\prime}(x, y)=$ minimum size of an x, y-disconnecting set of edges.
$\lambda^{\prime}(x, y)=$ maximum size of a set of pairwise edge-disjoint x, y-paths.

As in the case of vertices, we have

$$
\kappa^{\prime}(G)=\min _{x, y \in V(G)} \kappa^{\prime}(x, y)
$$

Edge version of Menger's theorem

Definition

Given $x, y \in V(G)$, let
$\kappa^{\prime}(x, y)=$ minimum size of an x, y-disconnecting set of edges.
$\lambda^{\prime}(x, y)=$ maximum size of a set of pairwise edge-disjoint x, y-paths.

As in the case of vertices, we have

$$
\kappa^{\prime}(G)=\min _{x, y \in V(G)} \kappa^{\prime}(x, y)
$$

Also, $\kappa^{\prime}(x, y) \geq \lambda^{\prime}(x, y)$, since no edge can cut two edge-disjoint x, y-paths.

Edge version of Menger's theorem

Definition

Given $x, y \in V(G)$, let
$\kappa^{\prime}(x, y)=$ minimum size of an x, y-disconnecting set of edges.
$\lambda^{\prime}(x, y)=$ maximum size of a set of pairwise edge-disjoint x, y-paths.

As in the case of vertices, we have

$$
\kappa^{\prime}(G)=\min _{x, y \in V(G)} \kappa^{\prime}(x, y)
$$

Also, $\kappa^{\prime}(x, y) \geq \lambda^{\prime}(x, y)$, since no edge can cut two edge-disjoint x, y-paths.

Theorem

If $x, y \in V(G)$, then

$$
\kappa^{\prime}(x, y)=\lambda^{\prime}(x, y)
$$

The line graph

The proof of the edge version of Menger's theorem uses the notion of line graphs.

The line graph

The proof of the edge version of Menger's theorem uses the notion of line graphs.

Definition

The line graph of G, denoted by $L(G)$, is the graph whose vertices are the edges of G, and with ef $\in E(L(G))$ if e and f are edges of G that share an endpoint.

4.3 Network flow problems

Examples:

- Edges represent pipes where water flows in one direction, and the labels indicate their capacity (amount of water per second). What is the maximum flow from s to t ?

4.3 Network flow problems

Examples:

- Edges represent pipes where water flows in one direction, and the labels indicate their capacity (amount of water per second). What is the maximum flow from s to t ?
- Edges represent one-way streets, and the labels indicate the maximum number of cars per hour. What is the maximum number of cars per hour that can travel from s to t ?

4.3 Network flow problems

Examples:

- Edges represent pipes where water flows in one direction, and the labels indicate their capacity (amount of water per second). What is the maximum flow from s to t ?
- Edges represent one-way streets, and the labels indicate the maximum number of cars per hour. What is the maximum number of cars per hour that can travel from s to t ?
- The diagram represents a computer (or electrical) network, and the labels indicate the data (or electricity) transmission capacities. How much data (or current) can be transmitted from s to t ?

Networks

Definition

A network is a weighted digraph D with two distinguished vertices: the source s and the sink t.
Each edge has a nonnegative label $c(e)$, called its capacity.

Networks

Definition

A network is a weighted digraph D with two distinguished vertices: the source s and the sink t.
Each edge has a nonnegative label $c(e)$, called its capacity.

Definition

A feasible flow is a function $f: E(D) \rightarrow \mathbb{R}_{\geq 0}$ that assigns to each edge a non-negative real number, such that

- $0 \leq f(e) \leq c(e)$ for all $e \in E(D) ; \quad$ (capacity constraints)

Networks

Definition

A network is a weighted digraph D with two distinguished vertices: the source s and the sink t.
Each edge has a nonnegative label $c(e)$, called its capacity.

Definition

A feasible flow is a function $f: E(D) \rightarrow \mathbb{R}_{\geq 0}$ that assigns to each edge a non-negative real number, such that

- $0 \leq f(e) \leq c(e)$ for all $e \in E(D)$; (capacity constraints)
- $f^{+}(v)=f^{-}(v)$ for all $v \in V(G) \backslash\{s, t\}$,
where $f^{+}(v)$ is the flow on edges leaving v, and $f^{-}(v)$ is the flow on edges entering v.
(conservation constraints)

