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Definition
Given x,y € V(G), aset S C V(G)\ {x,y} is an x, y-cut if
G — S has no x, y-path.

k(x,y) = minimum size of an x, y-cut.

Note: If S is an x, y-cut, then G — S has more than one
component. Thus
k(x,y) > k(G).

In fact,

G)= mi .
K(G) nyrg‘l/qc)ﬁ(x,y)
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Menger's theorem

Definition
A set of x, y-paths is called pairwise internally disjoint if no two
paths share an internal vertex.

A(x,y) = maximum size of a set of pairwise internally disjoint

X, y-paths.

Note that x(x,y) > A(x,y), since no vertex can cut two internally
disjoint x, y-paths.

Theorem (Menger '27)
Ifx,y € V(G) and xy ¢ E(G), then

K(x,y) = A(x,y).

Corollary

A graph G is k-connected if and only if, for every u,v € V(G),
there are at least k internally disjoint u, v-paths.
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The line graph

The proof of the edge version of Menger's theorem uses the notion
of line graphs.

Definition

The line graph of G, denoted by L(G), is the graph whose vertices
are the edges of G, and with ef € E(L(G)) if e and f are edges of
G that share an endpoint.
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4.3 Network flow problems

Examples:

e Edges represent pipes where water flows in one direction, and
the labels indicate their capacity (amount of water per
second). What is the maximum flow from s to t?

o Edges represent one-way streets, and the labels indicate the
maximum number of cars per hour. What is the maximum
number of cars per hour that can travel from s to t?

@ The diagram represents a computer (or electrical) network,
and the labels indicate the data (or electricity) transmission
capacities. How much data (or current) can be transmitted
from s to t?
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Definition

A network is a weighted digraph D with two distinguished vertices:
the source s and the sink t.
Each edge has a nonnegative label c(e), called its capacity.

Definition
A feasible flow is a function f : E(D) — R>g that assigns to each
edge a non-negative real number, such that
e 0 < f(e) <c(e) for all e € E(D); (capacity constraints)
o fT(v)="Ff"(v)forallveV(G)\{s, t}
where fT(v) is the flow on edges leaving v,

and 7~ (v) is the flow on edges entering v.
(conservation constraints)
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Maximum flow

Definition
The value of a flow f, denoted by val(f), is the net flow into the
sink, that is,

F(t) — £ (¢).

Equivalently, by the conservation constraints, this equals the net
flow out of the source, that is,

fr(s) — f(s).

A maximum flow is a feasible flow of maximum value.
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f-augmenting paths

If f is a feasible flow, an f-augmenting path is a path P from s
to t such that, for each e € E(P),

o if P follows e in the forward direction, then f(e) < c(e),
(let e(e) = c(e) — f(e))
o if P follows e in the backward direction, then f(e) > 0.

(let e(e) = f(e))

The tolerance of P is

ecE(P) e(e).

An f-augmenting path leads to a feasible flow with larger value, by
changing f on the edges of P.

How can we know when our flow is maximum?



