Given $x, y \in V(G)$, a set $S \subseteq V(G) \setminus \{x, y\}$ is an x, y-cut if G - S has no x, y-path.

Given $x, y \in V(G)$, a set $S \subseteq V(G) \setminus \{x, y\}$ is an x, y-cut if G - S has no x, y-path.

 $\kappa(x, y) = \min \min size of an x, y-cut.$

Given $x, y \in V(G)$, a set $S \subseteq V(G) \setminus \{x, y\}$ is an x, y-cut if G - S has no x, y-path.

 $\kappa(x, y) = \min \min size of an x, y-cut.$

Note: If S is an x, y-cut, then G - S has more than one component. Thus

 $\kappa(x,y) \geq \kappa(G).$

Given $x, y \in V(G)$, a set $S \subseteq V(G) \setminus \{x, y\}$ is an x, y-cut if G - S has no x, y-path.

 $\kappa(x, y) = \min \min size of an x, y-cut.$

Note: If S is an x, y-cut, then G - S has more than one component. Thus

 $\kappa(x,y) \geq \kappa(G).$

In fact,

$$\kappa(G) = \min_{x,y \in V(G)} \kappa(x,y).$$

Definition

A set of x, y-paths is called **pairwise internally disjoint** if no two paths share an internal vertex.

Definition

A set of x, y-paths is called **pairwise internally disjoint** if no two paths share an internal vertex.

 $\lambda(x, y) =$ maximum size of a set of pairwise internally disjoint x, y-paths.

Definition

A set of x, y-paths is called **pairwise internally disjoint** if no two paths share an internal vertex.

 $\lambda(x, y) = \max \min size of a set of pairwise internally disjoint x, y-paths.$

Note that $\kappa(x,y) \geq \lambda(x,y)$

Definition

A set of x, y-paths is called **pairwise internally disjoint** if no two paths share an internal vertex.

 $\lambda(x, y) = \max \min size of a set of pairwise internally disjoint x, y-paths.$

Note that $\kappa(x, y) \ge \lambda(x, y)$, since no vertex can cut two internally disjoint x, y-paths.

Definition

A set of x, y-paths is called **pairwise internally disjoint** if no two paths share an internal vertex.

 $\lambda(x, y) = \max \min size of a set of pairwise internally disjoint x, y-paths.$

Note that $\kappa(x, y) \ge \lambda(x, y)$, since no vertex can cut two internally disjoint x, y-paths.

Theorem (Menger '27)

If $x, y \in V(G)$ and $xy \notin E(G)$, then $\kappa(x,y) = \lambda(x,y).$

Definition

A set of x, y-paths is called **pairwise internally disjoint** if no two paths share an internal vertex.

 $\lambda(x, y) = \max \min size of a set of pairwise internally disjoint x, y-paths.$

Note that $\kappa(x, y) \ge \lambda(x, y)$, since no vertex can cut two internally disjoint x, y-paths.

Theorem (Menger '27)

If $x, y \in V(G)$ and $xy \notin E(G)$, then $\kappa(x, y) = \lambda(x, y).$

Corollary

A graph G is k-connected if and only if, for every $u, v \in V(G)$, there are at least k internally disjoint u, v-paths.

Definition

Given $x, y \in V(G)$, let

 $\kappa'(x, y) =$ minimum size of an x, y-disconnecting set of edges.

Definition

Given $x, y \in V(G)$, let

 $\kappa'(x, y) =$ minimum size of an x, y-disconnecting set of edges.

 $\lambda'(x, y) =$ maximum size of a set of pairwise edge-disjoint x, y-paths.

Definition

Given $x, y \in V(G)$, let $\kappa'(x, y) =$ minimum size of an x, y-disconnecting set of edges. $\lambda'(x, y) =$ maximum size of a set of pairwise edge-disjoint x, y-paths.

As in the case of vertices, we have

$$\kappa'(G) = \min_{x,y \in V(G)} \kappa'(x,y).$$

Definition

Given
$$x, y \in V(G)$$
, let
 $\kappa'(x, y) =$ minimum size of an x, y -disconnecting set of edges.
 $\lambda'(x, y) =$ maximum size of a set of pairwise edge-disjoint
 x, y -paths.

As in the case of vertices, we have

$$\kappa'(G) = \min_{x,y \in V(G)} \kappa'(x,y).$$

Also, $\kappa'(x,y) \ge \lambda'(x,y)$, since no edge can cut two edge-disjoint x, y-paths.

Definition

Given
$$x, y \in V(G)$$
, let
 $\kappa'(x, y) =$ minimum size of an x, y -disconnecting set of edges.
 $\lambda'(x, y) =$ maximum size of a set of pairwise edge-disjoint
 x, y -paths.

As in the case of vertices, we have

$$\kappa'(G) = \min_{x,y \in V(G)} \kappa'(x,y).$$

Also, $\kappa'(x,y) \geq \lambda'(x,y)$, since no edge can cut two edge-disjoint x, y-paths.

Theorem

If $x, y \in V(G)$, then

$$\kappa'(x,y) = \lambda'(x,y).$$

The proof of the edge version of Menger's theorem uses the notion of line graphs.

The proof of the edge version of Menger's theorem uses the notion of line graphs.

Definition

The line graph of G, denoted by L(G), is the graph whose vertices are the edges of G, and with $ef \in E(L(G))$ if e and f are edges of G that share an endpoint.

4.3 Network flow problems

Examples:

• Edges represent pipes where water flows in one direction, and the labels indicate their capacity (amount of water per second). What is the maximum flow from s to t?

4.3 Network flow problems

Examples:

- Edges represent pipes where water flows in one direction, and the labels indicate their capacity (amount of water per second). What is the maximum flow from s to t?
- Edges represent one-way streets, and the labels indicate the maximum number of cars per hour. What is the maximum number of cars per hour that can travel from s to t?

4.3 Network flow problems

Examples:

- Edges represent pipes where water flows in one direction, and the labels indicate their capacity (amount of water per second). What is the maximum flow from s to t?
- Edges represent one-way streets, and the labels indicate the maximum number of cars per hour. What is the maximum number of cars per hour that can travel from s to t?
- The diagram represents a computer (or electrical) network, and the labels indicate the data (or electricity) transmission capacities. How much data (or current) can be transmitted from s to t?

A **network** is a weighted digraph D with two distinguished vertices: the **source** s and the **sink** t. Each edge has a nonnegative label c(e), called its **capacity**.

A **network** is a weighted digraph D with two distinguished vertices: the source s and the sink t.

Each edge has a nonnegative label c(e), called its capacity.

Definition

A feasible flow is a function $f : E(D) \to \mathbb{R}_{\geq 0}$ that assigns to each edge a non-negative real number, such that

• $0 \le f(e) \le c(e)$ for all $e \in E(D)$; (capacity constraints)

A **network** is a weighted digraph D with two distinguished vertices: the source s and the sink t.

Each edge has a nonnegative label c(e), called its capacity.

Definition

A feasible flow is a function $f: E(D) \to \mathbb{R}_{\geq 0}$ that assigns to each edge a non-negative real number, such that

- $0 \le f(e) \le c(e)$ for all $e \in E(D)$; (capacity constraints)
- f⁺(v) = f⁻(v) for all v ∈ V(G) \ {s, t}, where f⁺(v) is the flow on edges leaving v, and f⁻(v) is the flow on edges entering v. (conservation constraints)

The value of a flow f, denoted by val(f), is the net flow into the sink, that is,

 $f^{-}(t) - f^{+}(t).$

The value of a flow f, denoted by val(f), is the net flow into the sink, that is,

$$f^{-}(t)-f^{+}(t).$$

Equivalently, by the conservation constraints, this equals the net flow out of the source, that is,

$$f^{+}(s) - f^{-}(s).$$

The value of a flow f, denoted by val(f), is the net flow into the sink, that is,

$$f^{-}(t)-f^{+}(t).$$

Equivalently, by the conservation constraints, this equals the net flow out of the source, that is,

$$f^{+}(s) - f^{-}(s).$$

A maximum flow is a feasible flow of maximum value.

Definition

If f is a feasible flow, an f-augmenting path is a path P from s to t such that, for each $e \in E(P)$,

• if P follows e in the forward direction, then f(e) < c(e),

Definition

If f is a feasible flow, an f-augmenting path is a path P from s to t such that, for each $e \in E(P)$,

- if P follows e in the forward direction, then f(e) < c(e),
- if P follows e in the backward direction, then f(e) > 0.

Definition

If f is a feasible flow, an f-augmenting path is a path P from s to t such that, for each $e \in E(P)$,

- if P follows e in the forward direction, then f(e) < c(e), (let $\epsilon(e) = c(e) - f(e)$)
- if P follows e in the backward direction, then f(e) > 0. (let $\epsilon(e) = f(e)$)

The tolerance of P is

 $\min_{e\in E(P)}\epsilon(e).$

Definition

If f is a feasible flow, an f-augmenting path is a path P from s to t such that, for each $e \in E(P)$,

- if P follows e in the forward direction, then f(e) < c(e), (let $\epsilon(e) = c(e) - f(e)$)
- if P follows e in the backward direction, then f(e) > 0. (let $\epsilon(e) = f(e)$)

The tolerance of P is

$$\min_{e\in E(P)} \epsilon(e).$$

An f-augmenting path leads to a feasible flow with larger value, by changing f on the edges of P.

Definition

If f is a feasible flow, an f-augmenting path is a path P from s to t such that, for each $e \in E(P)$,

- if P follows e in the forward direction, then f(e) < c(e), (let $\epsilon(e) = c(e) - f(e)$)
- if P follows e in the backward direction, then f(e) > 0. (let $\epsilon(e) = f(e)$)

The tolerance of P is

$$\min_{e\in E(P)} \epsilon(e).$$

An f-augmenting path leads to a feasible flow with larger value, by changing f on the edges of P.

How can we know when our flow is maximum?