
x , y -cuts

De�nition

Given x , y ∈ V (G ), a set S ⊆ V (G ) \ {x , y} is an x , y-cut if
G − S has no x , y -path.

κ(x , y) = minimum size of an x , y -cut.

Note: If S is an x , y -cut, then G − S has more than one

component. Thus

κ(x , y) ≥ κ(G ).

In fact,

κ(G ) = min
x ,y∈V (G)

κ(x , y).
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Menger's theorem

De�nition

A set of x , y -paths is called pairwise internally disjoint if no two

paths share an internal vertex.

λ(x , y) = maximum size of a set of pairwise internally disjoint

x , y -paths.

Note that κ(x , y) ≥ λ(x , y), since no vertex can cut two internally

disjoint x , y -paths.

Theorem (Menger '27)

If x , y ∈ V (G ) and xy /∈ E (G ), then

κ(x , y) = λ(x , y).

Corollary

A graph G is k-connected if and only if, for every u, v ∈ V (G ),
there are at least k internally disjoint u, v -paths.
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Edge version of Menger's theorem

De�nition

Given x , y ∈ V (G ), let

κ′(x , y) = minimum size of an x , y-disconnecting set of edges.

λ′(x , y) = maximum size of a set of pairwise edge-disjoint

x , y -paths.

As in the case of vertices, we have

κ′(G ) = min
x ,y∈V (G)

κ′(x , y).

Also, κ′(x , y) ≥ λ′(x , y), since no edge can cut two edge-disjoint

x , y -paths.

Theorem

If x , y ∈ V (G ), then

κ′(x , y) = λ′(x , y).
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The line graph

The proof of the edge version of Menger's theorem uses the notion

of line graphs.

De�nition

The line graph of G , denoted by L(G ), is the graph whose vertices

are the edges of G , and with ef ∈ E (L(G )) if e and f are edges of

G that share an endpoint.
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4.3 Network �ow problems

Examples:

Edges represent pipes where water �ows in one direction, and

the labels indicate their capacity (amount of water per

second). What is the maximum �ow from s to t?

Edges represent one-way streets, and the labels indicate the

maximum number of cars per hour. What is the maximum

number of cars per hour that can travel from s to t?
The diagram represents a computer (or electrical) network,

and the labels indicate the data (or electricity) transmission

capacities. How much data (or current) can be transmitted

from s to t?
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Networks

De�nition

A network is a weighted digraph D with two distinguished vertices:

the source s and the sink t.
Each edge has a nonnegative label c(e), called its capacity.

De�nition

A feasible �ow is a function f : E (D) → R≥0 that assigns to each

edge a non-negative real number, such that

0 ≤ f (e) ≤ c(e) for all e ∈ E (D); (capacity constraints)

f +(v) = f −(v) for all v ∈ V (G ) \ {s, t},
where f +(v) is the �ow on edges leaving v ,
and f −(v) is the �ow on edges entering v .

(conservation constraints)
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Maximum �ow

De�nition

The value of a �ow f , denoted by val(f ), is the net �ow into the

sink, that is,

f −(t)− f +(t).

Equivalently, by the conservation constraints, this equals the net

�ow out of the source, that is,

f +(s)− f −(s).

A maximum �ow is a feasible �ow of maximum value.
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f -augmenting paths

De�nition

If f is a feasible �ow, an f -augmenting path is a path P from s
to t such that, for each e ∈ E (P),

if P follows e in the forward direction, then f (e) < c(e),

(let ϵ(e) = c(e)− f (e))

if P follows e in the backward direction, then f (e) > 0.

(let ϵ(e) = f (e))

The tolerance of P is

min
e∈E(P)

ϵ(e).

An f -augmenting path leads to a feasible �ow with larger value, by

changing f on the edges of P .

How can we know when our �ow is maximum?
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