Basic graph definitions

In a simple graph, we will write $e=u v$ to mean that e is the edge with endpoints u and v.

Basic graph definitions

In a simple graph, we will write $e=u v$ to mean that e is the edge with endpoints u and v.

We then say that u and v are adjacent, or that they are neighbors.

Basic graph definitions

In a simple graph, we will write $e=u v$ to mean that e is the edge with endpoints u and v.

We then say that u and v are adjacent, or that they are neighbors.

We also say that e is incident to u and v.

Basic graph definitions

In a simple graph, we will write $e=u v$ to mean that e is the edge with endpoints u and v.

We then say that u and v are adjacent, or that they are neighbors.

We also say that e is incident to u and v.
The order or a graph is the number of vertices, usually denoted by $n=|V(G)|$.

Basic graph definitions

In a simple graph, we will write $e=u v$ to mean that e is the edge with endpoints u and v.

We then say that u and v are adjacent, or that they are neighbors.

We also say that e is incident to u and v.
The order or a graph is the number of vertices, usually denoted by $n=|V(G)|$.
The size or a graph is the number of edges, usually denoted by $e=|E(G)|$.

More definitions

The complement of a simple graph G, denoted by \bar{G}, is the simple graph with the same vertex set as G, and with edges set $E(\bar{G})$ defined by

$$
u v \in E(\bar{G}) \Longleftrightarrow u v \notin E(G) .
$$

More definitions

The complement of a simple graph G, denoted by \bar{G}, is the simple graph with the same vertex set as G, and with edges set $E(\bar{G})$ defined by

$$
u v \in E(\bar{G}) \Longleftrightarrow u v \notin E(G) .
$$

A clique in a simple graph is a set of pairwise adjacent vertices.

More definitions

The complement of a simple graph G, denoted by \bar{G}, is the simple graph with the same vertex set as G, and with edges set $E(\bar{G})$ defined by

$$
u v \in E(\bar{G}) \Longleftrightarrow u v \notin E(G) .
$$

A clique in a simple graph is a set of pairwise adjacent vertices.
An independent set in a graph is a set of pairwise non-adjacent vertices.

More definitions

The complement of a simple graph G, denoted by \bar{G}, is the simple graph with the same vertex set as G, and with edges set $E(\bar{G})$ defined by

$$
u v \in E(\bar{G}) \Longleftrightarrow u v \notin E(G) .
$$

A clique in a simple graph is a set of pairwise adjacent vertices.
An independent set in a graph is a set of pairwise non-adjacent vertices.

A graph G is bipartite if $V(G)$ is the union of two disjoint (possibly empty) independent sets. In other words, we can partition $V(G)=V_{1} \sqcup V_{2}$ so that all edges go between V_{1} and V_{2}.

Coloring and planarity

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors needed to color the vertices so that adjacent vertices receive different colors.

Coloring and planarity

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors needed to color the vertices so that adjacent vertices receive different colors.

- Vertices in a clique must all receive different colors.

Coloring and planarity

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors needed to color the vertices so that adjacent vertices receive different colors.

- Vertices in a clique must all receive different colors.
- Vertices of the same color form an independent set.

Coloring and planarity

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors needed to color the vertices so that adjacent vertices receive different colors.

- Vertices in a clique must all receive different colors.
- Vertices of the same color form an independent set.
- $\chi(G)$ is the minimum number of independent sets needed to partition $V(G)$.

Coloring and planarity

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors needed to color the vertices so that adjacent vertices receive different colors.

- Vertices in a clique must all receive different colors.
- Vertices of the same color form an independent set.
- $\chi(G)$ is the minimum number of independent sets needed to partition $V(G)$.
In particular, G is bipartite if and only if $\chi(G) \leq 2$.

Coloring and planarity

Definition

The chromatic number of a graph G, denoted by $\chi(G)$, is the minimum number of colors needed to color the vertices so that adjacent vertices receive different colors.

- Vertices in a clique must all receive different colors.
- Vertices of the same color form an independent set.
- $\chi(G)$ is the minimum number of independent sets needed to partition $V(G)$.
In particular, G is bipartite if and only if $\chi(G) \leq 2$.

Definition

A graph is planar if it can be drawn on the plane without crossing edges.

A few special graphs

- P_{n} is the path on n vertices.

A few special graphs

- P_{n} is the path on n vertices.
- C_{n} is the cycle on n vertices.

A few special graphs

- P_{n} is the path on n vertices.
- C_{n} is the cycle on n vertices.
- K_{n} is the complete graph on n vertices.

A few special graphs

- P_{n} is the path on n vertices.
- C_{n} is the cycle on n vertices.
- K_{n} is the complete graph on n vertices.
- $K_{m, n}$ is the complete bipartite graph with partite sets of sizes m and n.

Subgraphs

Definition

A subgraph of G is a graph H that can be obtained from G by deleting vertices and/or edges. We write $H \subseteq G$.

Adjacency and Incidence matrices

Let G be a graph with n vertices and m edges.
Definition
The adjacency matrix $A(G)$ is the $n \times n$ matrix in which $a_{i j}=\#$ edges in G with endpoints v_{i} and v_{j}.

Adjacency and Incidence matrices

Let G be a graph with n vertices and m edges.

Definition

The adjacency matrix $A(G)$ is the $n \times n$ matrix in which $a_{i j}=\#$ edges in G with endpoints v_{i} and v_{j}.

Question: if G is a simple graph, what can the entries of $A(G)$ be?

Adjacency and Incidence matrices

Let G be a graph with n vertices and m edges.

Definition

The adjacency matrix $A(G)$ is the $n \times n$ matrix in which

$$
a_{i j}=\# \text { edges in } G \text { with endpoints } v_{i} \text { and } v_{j} .
$$

Question: if G is a simple graph, what can the entries of $A(G)$ be?

Definition

The incidence matrix $M(G)$ is the $n \times m$ matrix in which

$$
m_{i j}= \begin{cases}1 & \text { if } v_{i} \text { is an endpoint of } e_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Adjacency and Incidence matrices

Let G be a graph with n vertices and m edges.

Definition

The adjacency matrix $A(G)$ is the $n \times n$ matrix in which

$$
a_{i j}=\# \text { edges in } G \text { with endpoints } v_{i} \text { and } v_{j} \text {. }
$$

Question: if G is a simple graph, what can the entries of $A(G)$ be?

Definition

The incidence matrix $M(G)$ is the $n \times m$ matrix in which

$$
m_{i j}= \begin{cases}1 & \text { if } v_{i} \text { is an endpoint of } e_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Definition

The degree of a vertex is the number of edges incident to it.

Graph Isomorphism

Definition

An isomorphism from a simple graph G to a simple graph H is a bijection

$$
f: V(G) \rightarrow V(H)
$$

such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.
We write $G \cong H$ to mean that G is isomorphic to H.

Graph Isomorphism

Definition

An isomorphism from a simple graph G to a simple graph H is a bijection

$$
f: V(G) \rightarrow V(H)
$$

such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.
We write $G \cong H$ to mean that G is isomorphic to H.
Intuitively, G and H are isomorphic if they are drawings of the "same" graph, possibly with a different labeling of the vertices.

Graph Isomorphism

Definition

An isomorphism from a simple graph G to a simple graph H is a bijection

$$
f: V(G) \rightarrow V(H)
$$

such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.
We write $G \cong H$ to mean that G is isomorphic to H.
Intuitively, G and H are isomorphic if they are drawings of the "same" graph, possibly with a different labeling of the vertices. Isomorphism is an equivalence relation on the set of all graphs. We think of isomorphism classes as unlabeled graphs.

Graph Isomorphism

Definition

An isomorphism from a simple graph G to a simple graph H is a bijection

$$
f: V(G) \rightarrow V(H)
$$

such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.
We write $G \cong H$ to mean that G is isomorphic to H.
Intuitively, G and H are isomorphic if they are drawings of the "same" graph, possibly with a different labeling of the vertices. Isomorphism is an equivalence relation on the set of all graphs. We think of isomorphism classes as unlabeled graphs.

We can show that two graphs are isomorphic by constructing a bijection as above.

Graph Isomorphism

Definition

An isomorphism from a simple graph G to a simple graph H is a bijection

$$
f: V(G) \rightarrow V(H)
$$

such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.
We write $G \cong H$ to mean that G is isomorphic to H.
Intuitively, G and H are isomorphic if they are drawings of the "same" graph, possibly with a different labeling of the vertices. Isomorphism is an equivalence relation on the set of all graphs. We think of isomorphism classes as unlabeled graphs.

We can show that two graphs are isomorphic by constructing a bijection as above.
But how do we show that two graphs are not isomorphic?

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.
- Their chromatic number is not the same.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.
- Their chromatic number is not the same.
- One contains a cycle and the other does not.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.
- Their chromatic number is not the same.
- One contains a cycle and the other does not.
- They have different girth.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.
- Their chromatic number is not the same.
- One contains a cycle and the other does not.
- They have different girth.

Definition

The girth of a graph is the length of its shortest cycle.

