f-augmenting paths

If f is a feasible flow, an f-augmenting path is a path P from s
to t such that, for each e € E(P),

e if P follows e in the forward direction, then f(e) < c(e),



f-augmenting paths

If f is a feasible flow, an f-augmenting path is a path P from s
to t such that, for each e € E(P),

e if P follows e in the forward direction, then f(e) < c(e),

o if P follows e in the backward direction, then f(e) > 0.



f-augmenting paths

If f is a feasible flow, an f-augmenting path is a path P from s

to t such that, for each e € E(P),
e if P follows e in the forward direction, then f(e) < c(e),

(let e(e) = c(e) — f(e))
o if P follows e in the backward direction, then f(e) > 0.

(let e(e) = f(e))

The tolerance of P is

ecE(P) e(e).



f-augmenting paths

If f is a feasible flow, an f-augmenting path is a path P from s

to t such that, for each e € E(P),
e if P follows e in the forward direction, then f(e) < c(e),

(let e(e) = c(e) — f(e))
o if P follows e in the backward direction, then f(e) > 0.

(let e(e) = f(e))

The tolerance of P is

ecE(P) e(e).

An f-augmenting path leads to a feasible flow with larger value, by
changing f on the edges of P.



f-augmenting paths

If f is a feasible flow, an f-augmenting path is a path P from s
to t such that, for each e € E(P),

o if P follows e in the forward direction, then f(e) < c(e),
(let e(e) = c(e) — f(e))
o if P follows e in the backward direction, then f(e) > 0.

(let e(e) = f(e))

The tolerance of P is

ecE(P) e(e).

An f-augmenting path leads to a feasible flow with larger value, by
changing f on the edges of P.

How can we know when our flow is maximum?
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Source/sink cuts

Definition

A source/sink cut [S, T] consists of the edges from S to T (in
this direction), where S and T partition the set of nodes (i.e.,
T=S), withscSandtecT.

The capacity of [S, T], denoted by cap(S, T), is the sum of the
capacities of the edges in [S, T].

A minimum cut is a source/sink cut with minimum capacity.

Proposition

If f is a feasible flow and [S, T] is a source/sink cut, then
val(f) <cap(S, T).

Proof idea: denoting by f1(S) and £~ (S) the total flow on edges
leaving S and entering S, respectively, we have

FH(S)—f(S)= Z(f+(v) — 7 (v)) = ft(s) — f(s) = val(f).

veS
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As a consequence of the previous proposition:

value of a maximum flow < capacity of a minimum cut.

Theorem (Max-flow Min-cut Theorem)

In every network, the value of a maximum flow equals the capacity
of a minimum cut.

To prove this, we will give an algorithm that, for any given network,
finds a feasible flow and a source/sink cut with the property that
the value of the flow equals the capacity of the cut.
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Ford—Fulkerson Algorithm

Input: A feasible flow f.

Output: An f-augmenting path, or a source/sink cut with capacity
equal to val(f).

The idea is to find nodes reachable from s by paths with positive
tolerance, and see if we can get to t.

Initialization: R = {s} (reached nodes), S = () (searched notes).

Iteration: Choose v € R\ S.

@ For each exiting edge vw with f(vw) < c(vw) and w ¢ R,
add w to R.

e For each entering edge uv with f(uv) >0 and u ¢ R, add u
to R.

Add v to S. Consider three cases:
e If t € R, then the path reaching t is an f-augmenting path.
e If R =5, then [S,S] is a source/sink cut with capacity val(f).
@ Otherwise, iterate.
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Proof of Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut Theorem)

In every network, the value of a maximum flow equals the capacity
of a minimum cut.

Proof: Apply the Ford—Fulkerson algorithm repeatedly, starting
from the zero flow (f(e) = 0 for every e).

As long as the algorithm returns an f-augmenting path, use it to
increase the value of the flow, and apply the algorithm again.

Eventually, the algorithm returns a source/sink cut [S, T], which
satisfies
val(f) = f7(S) — F(S) = cap(S, T),

so we have found a maximum flow and a minimum cut.
Caveat: If the capacities are irrational, we could get augmenting

paths forever!
There is a way to fix the algorithm so that this never happens.



Integrality Theorem

Corollary

If all capacities are integers, then there exists a maximum flow
assigning integer values to all edges.



