
f -augmenting paths

De�nition

If f is a feasible �ow, an f -augmenting path is a path P from s
to t such that, for each e ∈ E (P),

if P follows e in the forward direction, then f (e) < c(e),

(let ϵ(e) = c(e)− f (e))

if P follows e in the backward direction, then f (e) > 0.

(let ϵ(e) = f (e))

The tolerance of P is
min

e∈E(P)
ϵ(e).

An f -augmenting path leads to a feasible �ow with larger value, by
changing f on the edges of P .

How can we know when our �ow is maximum?



f -augmenting paths

De�nition

If f is a feasible �ow, an f -augmenting path is a path P from s
to t such that, for each e ∈ E (P),

if P follows e in the forward direction, then f (e) < c(e),

(let ϵ(e) = c(e)− f (e))

if P follows e in the backward direction, then f (e) > 0.

(let ϵ(e) = f (e))

The tolerance of P is
min

e∈E(P)
ϵ(e).

An f -augmenting path leads to a feasible �ow with larger value, by
changing f on the edges of P .

How can we know when our �ow is maximum?



f -augmenting paths

De�nition

If f is a feasible �ow, an f -augmenting path is a path P from s
to t such that, for each e ∈ E (P),

if P follows e in the forward direction, then f (e) < c(e),
(let ϵ(e) = c(e)− f (e))

if P follows e in the backward direction, then f (e) > 0.
(let ϵ(e) = f (e))

The tolerance of P is
min

e∈E(P)
ϵ(e).

An f -augmenting path leads to a feasible �ow with larger value, by
changing f on the edges of P .

How can we know when our �ow is maximum?



f -augmenting paths

De�nition

If f is a feasible �ow, an f -augmenting path is a path P from s
to t such that, for each e ∈ E (P),

if P follows e in the forward direction, then f (e) < c(e),
(let ϵ(e) = c(e)− f (e))

if P follows e in the backward direction, then f (e) > 0.
(let ϵ(e) = f (e))

The tolerance of P is
min

e∈E(P)
ϵ(e).

An f -augmenting path leads to a feasible �ow with larger value, by
changing f on the edges of P .

How can we know when our �ow is maximum?



f -augmenting paths

De�nition

If f is a feasible �ow, an f -augmenting path is a path P from s
to t such that, for each e ∈ E (P),

if P follows e in the forward direction, then f (e) < c(e),
(let ϵ(e) = c(e)− f (e))

if P follows e in the backward direction, then f (e) > 0.
(let ϵ(e) = f (e))

The tolerance of P is
min

e∈E(P)
ϵ(e).

An f -augmenting path leads to a feasible �ow with larger value, by
changing f on the edges of P .

How can we know when our �ow is maximum?



Source/sink cuts

De�nition

A source/sink cut [S ,T ] consists of the edges from S to T (in
this direction), where S and T partition the set of nodes (i.e.,
T = S), with s ∈ S and t ∈ T .

The capacity of [S ,T ], denoted by cap(S ,T ), is the sum of the
capacities of the edges in [S ,T ].
A minimum cut is a source/sink cut with minimum capacity.

Proposition

If f is a feasible �ow and [S ,T ] is a source/sink cut, then

val(f ) ≤ cap(S ,T ).

Proof idea: denoting by f +(S) and f −(S) the total �ow on edges
leaving S and entering S , respectively, we have

f +(S)− f −(S) =
∑
v∈S

(f +(v)− f −(v)) = f +(s)− f −(s) = val(f ).



Source/sink cuts

De�nition

A source/sink cut [S ,T ] consists of the edges from S to T (in
this direction), where S and T partition the set of nodes (i.e.,
T = S), with s ∈ S and t ∈ T .
The capacity of [S ,T ], denoted by cap(S ,T ), is the sum of the
capacities of the edges in [S ,T ].

A minimum cut is a source/sink cut with minimum capacity.

Proposition

If f is a feasible �ow and [S ,T ] is a source/sink cut, then

val(f ) ≤ cap(S ,T ).

Proof idea: denoting by f +(S) and f −(S) the total �ow on edges
leaving S and entering S , respectively, we have

f +(S)− f −(S) =
∑
v∈S

(f +(v)− f −(v)) = f +(s)− f −(s) = val(f ).



Source/sink cuts

De�nition

A source/sink cut [S ,T ] consists of the edges from S to T (in
this direction), where S and T partition the set of nodes (i.e.,
T = S), with s ∈ S and t ∈ T .
The capacity of [S ,T ], denoted by cap(S ,T ), is the sum of the
capacities of the edges in [S ,T ].
A minimum cut is a source/sink cut with minimum capacity.

Proposition

If f is a feasible �ow and [S ,T ] is a source/sink cut, then

val(f ) ≤ cap(S ,T ).

Proof idea: denoting by f +(S) and f −(S) the total �ow on edges
leaving S and entering S , respectively, we have

f +(S)− f −(S) =
∑
v∈S

(f +(v)− f −(v)) = f +(s)− f −(s) = val(f ).



Source/sink cuts

De�nition

A source/sink cut [S ,T ] consists of the edges from S to T (in
this direction), where S and T partition the set of nodes (i.e.,
T = S), with s ∈ S and t ∈ T .
The capacity of [S ,T ], denoted by cap(S ,T ), is the sum of the
capacities of the edges in [S ,T ].
A minimum cut is a source/sink cut with minimum capacity.

Proposition

If f is a feasible �ow and [S ,T ] is a source/sink cut, then

val(f ) ≤ cap(S ,T ).

Proof idea: denoting by f +(S) and f −(S) the total �ow on edges
leaving S and entering S , respectively, we have

f +(S)− f −(S) =
∑
v∈S

(f +(v)− f −(v)) = f +(s)− f −(s) = val(f ).



Source/sink cuts

De�nition

A source/sink cut [S ,T ] consists of the edges from S to T (in
this direction), where S and T partition the set of nodes (i.e.,
T = S), with s ∈ S and t ∈ T .
The capacity of [S ,T ], denoted by cap(S ,T ), is the sum of the
capacities of the edges in [S ,T ].
A minimum cut is a source/sink cut with minimum capacity.

Proposition

If f is a feasible �ow and [S ,T ] is a source/sink cut, then

val(f ) ≤ cap(S ,T ).

Proof idea: denoting by f +(S) and f −(S) the total �ow on edges
leaving S and entering S , respectively, we have

f +(S)− f −(S) =
∑
v∈S

(f +(v)− f −(v)) = f +(s)− f −(s) = val(f ).



Max-�ow Min-cut Theorem

As a consequence of the previous proposition:

value of a maximum �ow ≤ capacity of a minimum cut.

Theorem (Max-�ow Min-cut Theorem)

In every network, the value of a maximum �ow equals the capacity
of a minimum cut.

To prove this, we will give an algorithm that, for any given network,
�nds a feasible �ow and a source/sink cut with the property that
the value of the �ow equals the capacity of the cut.



Max-�ow Min-cut Theorem

As a consequence of the previous proposition:

value of a maximum �ow ≤ capacity of a minimum cut.

Theorem (Max-�ow Min-cut Theorem)

In every network, the value of a maximum �ow equals the capacity
of a minimum cut.

To prove this, we will give an algorithm that, for any given network,
�nds a feasible �ow and a source/sink cut with the property that
the value of the �ow equals the capacity of the cut.



Max-�ow Min-cut Theorem

As a consequence of the previous proposition:

value of a maximum �ow ≤ capacity of a minimum cut.

Theorem (Max-�ow Min-cut Theorem)

In every network, the value of a maximum �ow equals the capacity
of a minimum cut.

To prove this, we will give an algorithm that, for any given network,
�nds a feasible �ow and a source/sink cut with the property that
the value of the �ow equals the capacity of the cut.



Ford�Fulkerson Algorithm

Input: A feasible �ow f .

Output: An f -augmenting path, or a source/sink cut with capacity
equal to val(f ).

The idea is to �nd nodes reachable from s by paths with positive
tolerance, and see if we can get to t.

Initialization: R = {s} (reached nodes), S = ∅ (searched notes).

Iteration: Choose v ∈ R \ S .
For each exiting edge vw with f (vw) < c(vw) and w /∈ R ,
add w to R .

For each entering edge uv with f (uv) > 0 and u /∈ R , add u
to R .

Add v to S . Consider three cases:

If t ∈ R , then the path reaching t is an f -augmenting path.

If R = S , then [S ,S ] is a source/sink cut with capacity val(f ).

Otherwise, iterate.



Ford�Fulkerson Algorithm

Input: A feasible �ow f .

Output: An f -augmenting path, or a source/sink cut with capacity
equal to val(f ).

The idea is to �nd nodes reachable from s by paths with positive
tolerance, and see if we can get to t.

Initialization: R = {s} (reached nodes), S = ∅ (searched notes).

Iteration: Choose v ∈ R \ S .
For each exiting edge vw with f (vw) < c(vw) and w /∈ R ,
add w to R .

For each entering edge uv with f (uv) > 0 and u /∈ R , add u
to R .

Add v to S . Consider three cases:

If t ∈ R , then the path reaching t is an f -augmenting path.

If R = S , then [S ,S ] is a source/sink cut with capacity val(f ).

Otherwise, iterate.



Ford�Fulkerson Algorithm

Input: A feasible �ow f .

Output: An f -augmenting path, or a source/sink cut with capacity
equal to val(f ).

The idea is to �nd nodes reachable from s by paths with positive
tolerance, and see if we can get to t.

Initialization: R = {s} (reached nodes), S = ∅ (searched notes).

Iteration: Choose v ∈ R \ S .
For each exiting edge vw with f (vw) < c(vw) and w /∈ R ,
add w to R .

For each entering edge uv with f (uv) > 0 and u /∈ R , add u
to R .

Add v to S . Consider three cases:

If t ∈ R , then the path reaching t is an f -augmenting path.

If R = S , then [S ,S ] is a source/sink cut with capacity val(f ).

Otherwise, iterate.



Ford�Fulkerson Algorithm

Input: A feasible �ow f .

Output: An f -augmenting path, or a source/sink cut with capacity
equal to val(f ).

The idea is to �nd nodes reachable from s by paths with positive
tolerance, and see if we can get to t.

Initialization: R = {s} (reached nodes), S = ∅ (searched notes).

Iteration: Choose v ∈ R \ S .
For each exiting edge vw with f (vw) < c(vw) and w /∈ R ,
add w to R .

For each entering edge uv with f (uv) > 0 and u /∈ R , add u
to R .

Add v to S .

Consider three cases:

If t ∈ R , then the path reaching t is an f -augmenting path.

If R = S , then [S ,S ] is a source/sink cut with capacity val(f ).

Otherwise, iterate.



Ford�Fulkerson Algorithm

Input: A feasible �ow f .

Output: An f -augmenting path, or a source/sink cut with capacity
equal to val(f ).

The idea is to �nd nodes reachable from s by paths with positive
tolerance, and see if we can get to t.

Initialization: R = {s} (reached nodes), S = ∅ (searched notes).

Iteration: Choose v ∈ R \ S .
For each exiting edge vw with f (vw) < c(vw) and w /∈ R ,
add w to R .

For each entering edge uv with f (uv) > 0 and u /∈ R , add u
to R .

Add v to S . Consider three cases:

If t ∈ R , then the path reaching t is an f -augmenting path.

If R = S , then [S ,S ] is a source/sink cut with capacity val(f ).

Otherwise, iterate.



Ford�Fulkerson Algorithm

Input: A feasible �ow f .

Output: An f -augmenting path, or a source/sink cut with capacity
equal to val(f ).

The idea is to �nd nodes reachable from s by paths with positive
tolerance, and see if we can get to t.

Initialization: R = {s} (reached nodes), S = ∅ (searched notes).

Iteration: Choose v ∈ R \ S .
For each exiting edge vw with f (vw) < c(vw) and w /∈ R ,
add w to R .

For each entering edge uv with f (uv) > 0 and u /∈ R , add u
to R .

Add v to S . Consider three cases:

If t ∈ R , then the path reaching t is an f -augmenting path.

If R = S , then [S ,S ] is a source/sink cut with capacity val(f ).

Otherwise, iterate.



Ford�Fulkerson Algorithm

Input: A feasible �ow f .

Output: An f -augmenting path, or a source/sink cut with capacity
equal to val(f ).

The idea is to �nd nodes reachable from s by paths with positive
tolerance, and see if we can get to t.

Initialization: R = {s} (reached nodes), S = ∅ (searched notes).

Iteration: Choose v ∈ R \ S .
For each exiting edge vw with f (vw) < c(vw) and w /∈ R ,
add w to R .

For each entering edge uv with f (uv) > 0 and u /∈ R , add u
to R .

Add v to S . Consider three cases:

If t ∈ R , then the path reaching t is an f -augmenting path.

If R = S , then [S ,S ] is a source/sink cut with capacity val(f ).

Otherwise, iterate.



Proof of Max-�ow Min-cut Theorem

Theorem (Max-�ow Min-cut Theorem)

In every network, the value of a maximum �ow equals the capacity
of a minimum cut.

Proof: Apply the Ford�Fulkerson algorithm repeatedly, starting
from the zero �ow (f (e) = 0 for every e).

As long as the algorithm returns an f -augmenting path, use it to
increase the value of the �ow, and apply the algorithm again.

Eventually, the algorithm returns a source/sink cut [S ,T ], which
satis�es

val(f ) = f +(S)− f −(S) = cap(S ,T ),

so we have found a maximum �ow and a minimum cut.

Caveat: If the capacities are irrational, we could get augmenting
paths forever!
There is a way to �x the algorithm so that this never happens.



Proof of Max-�ow Min-cut Theorem

Theorem (Max-�ow Min-cut Theorem)

In every network, the value of a maximum �ow equals the capacity
of a minimum cut.

Proof: Apply the Ford�Fulkerson algorithm repeatedly, starting
from the zero �ow (f (e) = 0 for every e).

As long as the algorithm returns an f -augmenting path, use it to
increase the value of the �ow, and apply the algorithm again.

Eventually, the algorithm returns a source/sink cut [S ,T ], which
satis�es

val(f ) = f +(S)− f −(S) = cap(S ,T ),

so we have found a maximum �ow and a minimum cut.

Caveat: If the capacities are irrational, we could get augmenting
paths forever!
There is a way to �x the algorithm so that this never happens.



Proof of Max-�ow Min-cut Theorem

Theorem (Max-�ow Min-cut Theorem)

In every network, the value of a maximum �ow equals the capacity
of a minimum cut.

Proof: Apply the Ford�Fulkerson algorithm repeatedly, starting
from the zero �ow (f (e) = 0 for every e).

As long as the algorithm returns an f -augmenting path, use it to
increase the value of the �ow, and apply the algorithm again.

Eventually, the algorithm returns a source/sink cut [S ,T ], which
satis�es

val(f ) = f +(S)− f −(S) = cap(S ,T ),

so we have found a maximum �ow and a minimum cut.

Caveat: If the capacities are irrational, we could get augmenting
paths forever!
There is a way to �x the algorithm so that this never happens.



Proof of Max-�ow Min-cut Theorem

Theorem (Max-�ow Min-cut Theorem)

In every network, the value of a maximum �ow equals the capacity
of a minimum cut.

Proof: Apply the Ford�Fulkerson algorithm repeatedly, starting
from the zero �ow (f (e) = 0 for every e).

As long as the algorithm returns an f -augmenting path, use it to
increase the value of the �ow, and apply the algorithm again.

Eventually, the algorithm returns a source/sink cut [S ,T ], which
satis�es

val(f ) = f +(S)− f −(S) = cap(S ,T ),

so we have found a maximum �ow and a minimum cut.

Caveat: If the capacities are irrational, we could get augmenting
paths forever!
There is a way to �x the algorithm so that this never happens.



Proof of Max-�ow Min-cut Theorem

Theorem (Max-�ow Min-cut Theorem)

In every network, the value of a maximum �ow equals the capacity
of a minimum cut.

Proof: Apply the Ford�Fulkerson algorithm repeatedly, starting
from the zero �ow (f (e) = 0 for every e).

As long as the algorithm returns an f -augmenting path, use it to
increase the value of the �ow, and apply the algorithm again.

Eventually, the algorithm returns a source/sink cut [S ,T ], which
satis�es

val(f ) = f +(S)− f −(S) = cap(S ,T ),

so we have found a maximum �ow and a minimum cut.

Caveat: If the capacities are irrational, we could get augmenting
paths forever!

There is a way to �x the algorithm so that this never happens.



Proof of Max-�ow Min-cut Theorem

Theorem (Max-�ow Min-cut Theorem)

In every network, the value of a maximum �ow equals the capacity
of a minimum cut.

Proof: Apply the Ford�Fulkerson algorithm repeatedly, starting
from the zero �ow (f (e) = 0 for every e).

As long as the algorithm returns an f -augmenting path, use it to
increase the value of the �ow, and apply the algorithm again.

Eventually, the algorithm returns a source/sink cut [S ,T ], which
satis�es

val(f ) = f +(S)− f −(S) = cap(S ,T ),

so we have found a maximum �ow and a minimum cut.

Caveat: If the capacities are irrational, we could get augmenting
paths forever!
There is a way to �x the algorithm so that this never happens.



Integrality Theorem

Corollary

If all capacities are integers, then there exists a maximum �ow
assigning integer values to all edges.


