Proof of Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut Theorem)
In every network, the value of a maximum flow equals the capacity of a minimum cut.

Proof of Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut Theorem)

In every network, the value of a maximum flow equals the capacity of a minimum cut.

Proof: Apply the Ford-Fulkerson algorithm repeatedly, starting from the zero flow ($f(e)=0$ for every e).

Proof of Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut Theorem)

In every network, the value of a maximum flow equals the capacity of a minimum cut.

Proof: Apply the Ford-Fulkerson algorithm repeatedly, starting from the zero flow ($f(e)=0$ for every e).

As long as the algorithm returns an f-augmenting path, use it to increase the value of the flow, and apply the algorithm again.

Proof of Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut Theorem)

In every network, the value of a maximum flow equals the capacity of a minimum cut.

Proof: Apply the Ford-Fulkerson algorithm repeatedly, starting from the zero flow ($f(e)=0$ for every e).

As long as the algorithm returns an f-augmenting path, use it to increase the value of the flow, and apply the algorithm again.

Eventually, the algorithm returns a source/sink cut $[S, T]$, which satisfies

$$
\operatorname{val}(f)=f^{+}(S)-f^{-}(S)=\operatorname{cap}(S, T)
$$

so we have found a maximum flow and a minimum cut.

Proof of Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut Theorem)

In every network, the value of a maximum flow equals the capacity of a minimum cut.

Proof: Apply the Ford-Fulkerson algorithm repeatedly, starting from the zero flow ($f(e)=0$ for every e).

As long as the algorithm returns an f-augmenting path, use it to increase the value of the flow, and apply the algorithm again.

Eventually, the algorithm returns a source/sink cut [S, T], which satisfies

$$
\operatorname{val}(f)=f^{+}(S)-f^{-}(S)=\operatorname{cap}(S, T)
$$

so we have found a maximum flow and a minimum cut.
Caveat: If the capacities are irrational, we could get augmenting paths forever!

Proof of Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut Theorem)

In every network, the value of a maximum flow equals the capacity of a minimum cut.

Proof: Apply the Ford-Fulkerson algorithm repeatedly, starting from the zero flow ($f(e)=0$ for every e).

As long as the algorithm returns an f-augmenting path, use it to increase the value of the flow, and apply the algorithm again.

Eventually, the algorithm returns a source/sink cut $[S, T]$, which satisfies

$$
\operatorname{val}(f)=f^{+}(S)-f^{-}(S)=\operatorname{cap}(S, T)
$$

so we have found a maximum flow and a minimum cut.
Caveat: If the capacities are irrational, we could get augmenting paths forever!
There is a way to fix the algorithm so that this never happens.

Integrality Theorem

Corollary

If all capacities are integers, then there exists a maximum flow assigning integer values to all edges.

Chapter 5
Coloring of Graphs

5.1 Vertex coloring

Consider the following scheduling problem:
The math department at Dartmouth wants to schedule the following courses next fall:
Graph Theory (GT), Combinatorics (C), Linear Algebra (LA), Analysis (A), Geometry (G), and Topology (T).

5.1 Vertex coloring

Consider the following scheduling problem:
The math department at Dartmouth wants to schedule the following courses next fall:
Graph Theory (GT), Combinatorics (C), Linear Algebra (LA), Analysis (A), Geometry (G), and Topology (T).
Ten students have indicated in their major card the courses they plan to take:

Martin:	LA, C	Ethan:	T, LA, G	Abby:	T, G, LA
Jillian:	G, LA, A	Jessie:	A, LA, C	Albert:	G, A
Justine:	GT, T, LA	Aidan:	LA, GT, C	Mikey:	A, C, LA
Jonas:	GT, C				

5.1 Vertex coloring

Consider the following scheduling problem:
The math department at Dartmouth wants to schedule the following courses next fall:
Graph Theory (GT), Combinatorics (C), Linear Algebra (LA), Analysis (A), Geometry (G), and Topology (T).

Ten students have indicated in their major card the courses they plan to take:

Martin:	LA, C	Ethan:	T, LA, G	Abby:	T, G, LA
Jillian:	G, LA, A	Jessie:	A, LA, C	Albert:	G, A
Justine:	GT, T, LA	Aidan:	LA, GT, C	Mikey:	A, C, LA
Jonas:	GT, C				

Use graph theory to determine the minimum number of class periods needed to offer these courses so that no student has a conflict with their courses.

Chromatic number

Definition

A k-coloring of a graph G is a labeling $f: V(G) \rightarrow[k]$. The labels are called colors.

Chromatic number

Definition

A k-coloring of a graph G is a labeling $f: V(G) \rightarrow[k]$. The labels are called colors.

A k-coloring is proper if adjacent vertices receive different colors.

Chromatic number

Definition

A k-coloring of a graph G is a labeling $f: V(G) \rightarrow[k]$. The labels are called colors.

A k-coloring is proper if adjacent vertices receive different colors.
A graph is k-colorable if it has a proper k-coloring.

Chromatic number

Definition

A k-coloring of a graph G is a labeling $f: V(G) \rightarrow[k]$. The labels are called colors.

A k-coloring is proper if adjacent vertices receive different colors.
A graph is k-colorable if it has a proper k-coloring.
The chromatic number $\chi(G)$ is the minimum k such that G is k-colorable.

Chromatic number

Definition

A k-coloring of a graph G is a labeling $f: V(G) \rightarrow[k]$. The labels are called colors.

A k-coloring is proper if adjacent vertices receive different colors.
A graph is k-colorable if it has a proper k-coloring.
The chromatic number $\chi(G)$ is the minimum k such that G is k-colorable.

Examples:
$\chi\left(P_{7}\right)=$

Chromatic number

Definition

A k-coloring of a graph G is a labeling $f: V(G) \rightarrow[k]$. The labels are called colors.

A k-coloring is proper if adjacent vertices receive different colors.
A graph is k-colorable if it has a proper k-coloring.
The chromatic number $\chi(G)$ is the minimum k such that G is k-colorable.

Examples:
$\chi\left(P_{7}\right)=2$
$\chi\left(C_{5}\right)=$

Chromatic number

Definition

A k-coloring of a graph G is a labeling $f: V(G) \rightarrow[k]$. The labels are called colors.

A k-coloring is proper if adjacent vertices receive different colors.
A graph is k-colorable if it has a proper k-coloring.
The chromatic number $\chi(G)$ is the minimum k such that G is k-colorable.

Examples:
$\chi\left(P_{7}\right)=2$
$\chi\left(C_{5}\right)=3$
$\chi($ Petersen graph $)=$

Chromatic number

Definition

A k-coloring of a graph G is a labeling $f: V(G) \rightarrow[k]$. The labels are called colors.

A k-coloring is proper if adjacent vertices receive different colors.
A graph is k-colorable if it has a proper k-coloring.
The chromatic number $\chi(G)$ is the minimum k such that G is k-colorable.

Examples:
$\chi\left(P_{7}\right)=2$
$\chi\left(C_{5}\right)=3$
$\chi($ Petersen graph $)=3$

Properties of the chromatic number

- Vertices of the same color in a proper coloring form an independent set.

Properties of the chromatic number

- Vertices of the same color in a proper coloring form an independent set.
- $\chi(G)=1 \Longleftrightarrow G=\overline{K_{n}}$ for some n.

Properties of the chromatic number

- Vertices of the same color in a proper coloring form an independent set.
- $\chi(G)=1 \Longleftrightarrow G=\overline{K_{n}}$ for some n.
- $\chi(G) \leq 2 \Longleftrightarrow G$ is bipartite.

Properties of the chromatic number

- Vertices of the same color in a proper coloring form an independent set.
- $\chi(G)=1 \Longleftrightarrow G=\overline{K_{n}}$ for some n.
- $\chi(G) \leq 2 \Longleftrightarrow G$ is bipartite.
- G is k-colorable $\Longleftrightarrow \chi(G) \leq k \Longleftrightarrow G$ is k-partite (its vertices can be partitioned into k independent sets).

Properties of the chromatic number

- Vertices of the same color in a proper coloring form an independent set.
- $\chi(G)=1 \Longleftrightarrow G=\overline{K_{n}}$ for some n.
- $\chi(G) \leq 2 \Longleftrightarrow G$ is bipartite.
- G is k-colorable $\Longleftrightarrow \chi(G) \leq k \Longleftrightarrow G$ is k-partite (its vertices can be partitioned into k independent sets).
- The only graph G with n vertices and $\chi(G)=n$ is $G=K_{n}$.

Properties of the chromatic number

- Vertices of the same color in a proper coloring form an independent set.
- $\chi(G)=1 \Longleftrightarrow G=\overline{K_{n}}$ for some n.
- $\chi(G) \leq 2 \Longleftrightarrow G$ is bipartite.
- G is k-colorable $\Longleftrightarrow \chi(G) \leq k \Longleftrightarrow G$ is k-partite (its vertices can be partitioned into k independent sets).
- The only graph G with n vertices and $\chi(G)=n$ is $G=K_{n}$.
- If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

Properties of the chromatic number

- Vertices of the same color in a proper coloring form an independent set.
- $\chi(G)=1 \Longleftrightarrow G=\overline{K_{n}}$ for some n.
- $\chi(G) \leq 2 \Longleftrightarrow G$ is bipartite.
- G is k-colorable $\Longleftrightarrow \chi(G) \leq k \Longleftrightarrow G$ is k-partite (its vertices can be partitioned into k independent sets).
- The only graph G with n vertices and $\chi(G)=n$ is $G=K_{n}$.
- If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

To prove that $\chi(G)=k$, we can find a proper k-coloring and show that there is no proper $(k-1)$-coloring.

Properties of the chromatic number

- Vertices of the same color in a proper coloring form an independent set.
- $\chi(G)=1 \Longleftrightarrow G=\overline{K_{n}}$ for some n.
- $\chi(G) \leq 2 \Longleftrightarrow G$ is bipartite.
- G is k-colorable $\Longleftrightarrow \chi(G) \leq k \Longleftrightarrow G$ is k-partite (its vertices can be partitioned into k independent sets).
- The only graph G with n vertices and $\chi(G)=n$ is $G=K_{n}$.
- If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.

To prove that $\chi(G)=k$, we can find a proper k-coloring and show that there is no proper $(k-1)$-coloring.

Computing $\chi(G)$ for a general graph G is a hard problem.

Lower bounds on $\chi(G)$

Recall: A clique is a set of pairwise adjacent vertices.

Lower bounds on $\chi(G)$

Recall: A clique is a set of pairwise adjacent vertices.

Definition

The clique number of G, denoted by $\omega(G)$, is the maximum size of a clique in G.

Lower bounds on $\chi(G)$

Recall: A clique is a set of pairwise adjacent vertices.

Definition

The clique number of G, denoted by $\omega(G)$, is the maximum size of a clique in G.

Theorem

For any G,

$$
\chi(G) \geq \omega(G) \quad \text { and } \quad \chi(G) \geq \frac{n(G)}{\alpha(G)}
$$

Lower bounds on $\chi(G)$

Recall: A clique is a set of pairwise adjacent vertices.

Definition

The clique number of G, denoted by $\omega(G)$, is the maximum size of a clique in G.

Theorem

For any G,

$$
\chi(G) \geq \omega(G) \quad \text { and } \quad \chi(G) \geq \frac{n(G)}{\alpha(G)}
$$

Note: These bounds are tight for $G=K_{n}$.

Lower bounds on $\chi(G)$

Recall: A clique is a set of pairwise adjacent vertices.

Definition

The clique number of G, denoted by $\omega(G)$, is the maximum size of a clique in G.

Theorem

For any G,

$$
\chi(G) \geq \omega(G) \quad \text { and } \quad \chi(G) \geq \frac{n(G)}{\alpha(G)}
$$

Note: These bounds are tight for $G=K_{n}$.
Exercise: Find a graph G for which $\chi(G)>\omega(G)$.

Some graph operations

Let G, H be graphs and suppose that we know $\chi(G)$ and $\chi(H)$.

Some graph operations

Let G, H be graphs and suppose that we know $\chi(G)$ and $\chi(H)$.
Let $G+H$ denote the disjoint union of G and H. Then

$$
\chi(G+H)=
$$

Some graph operations

Let G, H be graphs and suppose that we know $\chi(G)$ and $\chi(H)$.
Let $G+H$ denote the disjoint union of G and H. Then

$$
\chi(G+H)=\max \{\chi(G), \chi(H)\} .
$$

Some graph operations

Let G, H be graphs and suppose that we know $\chi(G)$ and $\chi(H)$.
Let $G+H$ denote the disjoint union of G and H. Then

$$
\chi(G+H)=\max \{\chi(G), \chi(H)\} .
$$

Let $G \vee H$ be obtained from $G+H$ by adding all the edges between a vertex of G and a vertex H.
Then

$$
\chi(G \vee H)=
$$

Some graph operations

Let G, H be graphs and suppose that we know $\chi(G)$ and $\chi(H)$.
Let $G+H$ denote the disjoint union of G and H. Then

$$
\chi(G+H)=\max \{\chi(G), \chi(H)\} .
$$

Let $G \vee H$ be obtained from $G+H$ by adding all the edges between a vertex of G and a vertex H.
Then

$$
\chi(G \vee H)=\chi(G)+\chi(H)
$$

Some graph operations

Let G, H be graphs and suppose that we know $\chi(G)$ and $\chi(H)$.
Let $G+H$ denote the disjoint union of G and H.
Then

$$
\chi(G+H)=\max \{\chi(G), \chi(H)\} .
$$

Let $G \vee H$ be obtained from $G+H$ by adding all the edges between a vertex of G and a vertex H.
Then

$$
\chi(G \vee H)=\chi(G)+\chi(H)
$$

Let $G \square H$ denote the graph with vertex set $V(G) \times V(H)$, where (u, v) is adjacent to $\left(u^{\prime}, v^{\prime}\right)$ if either

$$
\left\{\begin{array}{l}
u=u^{\prime} \text { and } v v^{\prime} \in E(H), \text { or } \\
\text { or } v=v^{\prime} \text { and } u u^{\prime} \in E(G) .
\end{array}\right.
$$

Some graph operations

Examples: $\quad P_{m} \square P_{n}$ is a grid, $\quad Q_{k-1} \square P_{2}=Q_{k}$.

Some graph operations

Examples: $\quad P_{m} \square P_{n}$ is a grid, $\quad Q_{k-1} \square P_{2}=Q_{k}$.
Proposition

$$
\chi(G \square H)=\max \{\chi(G), \chi(H)\} .
$$

