
Proof of Max-flow Min-cut Theorem

Theorem (Max-flow Min-cut Theorem)

In every network, the value of a maximum flow equals the capacity
of a minimum cut.

Proof: Apply the Ford–Fulkerson algorithm repeatedly, starting
from the zero flow (f (e) = 0 for every e).

As long as the algorithm returns an f -augmenting path, use it to
increase the value of the flow, and apply the algorithm again.

Eventually, the algorithm returns a source/sink cut [S ,T ], which
satisfies

val(f ) = f +(S)− f −(S) = cap(S ,T ),

so we have found a maximum flow and a minimum cut.

Caveat: If the capacities are irrational, we could get augmenting
paths forever!
There is a way to fix the algorithm so that this never happens.
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Integrality Theorem

Corollary
If all capacities are integers, then there exists a maximum flow
assigning integer values to all edges.



Chapter 5
Coloring of Graphs



5.1 Vertex coloring

Consider the following scheduling problem:

The math department at Dartmouth wants to schedule the
following courses next fall:
Graph Theory (GT), Combinatorics (C), Linear Algebra (LA),
Analysis (A), Geometry (G), and Topology (T).

Ten students have indicated in their major card the courses they
plan to take:

Martin: LA, C Ethan: T, LA, G Abby: T, G, LA
Jillian: G, LA, A Jessie: A, LA, C Albert: G, A
Justine: GT, T, LA Aidan: LA, GT, C Mikey: A, C, LA
Jonas: GT, C

Use graph theory to determine the minimum number of class
periods needed to offer these courses so that no student has a
conflict with their courses.
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Chromatic number

Definition
A k-coloring of a graph G is a labeling f : V (G ) → [k]. The labels
are called colors.

A k-coloring is proper if adjacent vertices receive different colors.

A graph is k-colorable if it has a proper k-coloring.

The chromatic number χ(G ) is the minimum k such that G is
k-colorable.

Examples:
χ(P7) = 2
χ(C5) = 3
χ(Petersen graph) = 3
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Properties of the chromatic number

Vertices of the same color in a proper coloring form an
independent set.

χ(G ) = 1 ⇐⇒ G = Kn for some n.

χ(G ) ≤ 2 ⇐⇒ G is bipartite.

G is k-colorable ⇐⇒ χ(G ) ≤ k ⇐⇒ G is k-partite
(its vertices can be partitioned into k independent sets).

The only graph G with n vertices and χ(G ) = n is G = Kn.

If H is a subgraph of G , then χ(H) ≤ χ(G ).

To prove that χ(G ) = k , we can find a proper k-coloring and show
that there is no proper (k − 1)-coloring.

Computing χ(G ) for a general graph G is a hard problem.
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Lower bounds on χ(G )

Recall: A clique is a set of pairwise adjacent vertices.

Definition
The clique number of G , denoted by ω(G ), is the maximum size
of a clique in G .

Theorem
For any G ,

χ(G ) ≥ ω(G ) and χ(G ) ≥ n(G )

α(G )
.

Note: These bounds are tight for G = Kn.

Exercise: Find a graph G for which χ(G ) > ω(G ).
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Some graph operations

Let G ,H be graphs and suppose that we know χ(G ) and χ(H).

Let G + H denote the disjoint union of G and H.
Then

χ(G + H) = max{χ(G ), χ(H)}.

Let G ∨ H be obtained from G + H by adding all the edges
between a vertex of G and a vertex H.
Then

χ(G ∨ H) = χ(G ) + χ(H).

Let G□H denote the graph with vertex set V (G )× V (H), where
(u, v) is adjacent to (u′, v ′) if either{

u = u′ and vv ′ ∈ E (H), or
or v = v ′ and uu′ ∈ E (G ).
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Some graph operations

Examples: Pm□Pn is a grid, Qk−1□P2 = Qk .

Proposition

χ(G□H) = max{χ(G ), χ(H)}.
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