
Some graph operations

Let G ,H be graphs and suppose that we know χ(G ) and χ(H).

Let G + H denote the disjoint union of G and H.
Then

χ(G + H) = max{χ(G ), χ(H)}.

Let G ∨ H be obtained from G + H by adding all the edges
between a vertex of G and a vertex H.
Then

χ(G ∨ H) = χ(G ) + χ(H).

Let G□H denote the graph with vertex set V (G )× V (H), where
(u, v) is adjacent to (u′, v ′) if either{

u = u′ and vv ′ ∈ E (H), or

or v = v ′ and uu′ ∈ E (G ).
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Some graph operations

Examples: Pm□Pn is a grid, Qk−1□P2 = Qk .

Proposition

χ(G□H) = max{χ(G ), χ(H)}.
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Upper bounds

An upper bound on χ(G ) can be found by giving a proper coloring.

Trivial bound: χ(G ) ≤ n(G ).

A better bound:

Proposition

χ(G ) ≤ ∆(G ) + 1.

Proof: Use a greedy coloring: order the vertices and then color
them in that order, assigning to each vertex the smallest color not
used by the neighbors colored so far.
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Upper bounds

Theorem (Brooks' Theorem)

If G is a connected graph other than a complete graph or an odd

cycle, then

χ(G ) ≤ ∆(G ).

Proposition

If G is an interval graph, then

χ(G ) = ω(G ).
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5.3 Enumerative aspects

In addition to the chromatic number, sometimes we want to count
the number of proper k-colorings of a graph.

De�nition

Let χ(G ; k) be the number of proper colorings f : V (G ) → [k].

Examples:

χ(Kn; k) = kn

χ(Kn; k) = k(k − 1) . . . (k − n + 1)

Proposition

If T is a tree with n vertices, then

χ(T ; k) = k(k − 1)n−1.
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Why is χ(G ; k) always a polynomial in k?

Proposition

Let pr (G ) be the number of partitions of V (G ) into r non-empty

independent sets.

Then

χ(G ; k) =

n(G)∑
r=1

pr (G ) k(k − 1) . . . (k − r + 1).

In particular, χ(G ; k) is a polynomial in k of degree n(G ), called
the chromatic polynomial.

[Example for C4]

This is not a very practical way to compute χ(G ; k), since there are
too many partitions to consider.
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