Let G, H be graphs and suppose that we know $\chi(G)$ and $\chi(H)$.

Let G, H be graphs and suppose that we know $\chi(G)$ and $\chi(H)$. Let G + H denote the disjoint union of G and H. Then

$$\chi(G+H) =$$

Let G, H be graphs and suppose that we know $\chi(G)$ and $\chi(H)$. Let G + H denote the disjoint union of G and H. Then

 $\chi(G+H) = \max\{\chi(G), \chi(H)\}.$

Let G, H be graphs and suppose that we know $\chi(G)$ and $\chi(H)$. Let G + H denote the disjoint union of G and H. Then

$$\chi(G+H) = \max\{\chi(G), \chi(H)\}.$$

Let $G \lor H$ be obtained from G + H by adding all the edges between a vertex of G and a vertex H. Then

$$\chi(G \lor H) =$$

Let G, H be graphs and suppose that we know $\chi(G)$ and $\chi(H)$. Let G + H denote the disjoint union of G and H. Then

$$\chi(G+H) = \max\{\chi(G), \chi(H)\}.$$

Let $G \lor H$ be obtained from G + H by adding all the edges between a vertex of G and a vertex H. Then

$$\chi(G \vee H) = \chi(G) + \chi(H).$$

Let G, H be graphs and suppose that we know $\chi(G)$ and $\chi(H)$. Let G + H denote the disjoint union of G and H. Then

$$\chi(G+H) = \max\{\chi(G),\chi(H)\}.$$

Let $G \lor H$ be obtained from G + H by adding all the edges between a vertex of G and a vertex H. Then

$$\chi(G \vee H) = \chi(G) + \chi(H).$$

Let $G \Box H$ denote the graph with vertex set $V(G) \times V(H)$, where (u, v) is adjacent to (u', v') if either

$$\left\{ egin{array}{ll} u=u' ext{ and } vv'\in E(H), ext{ or } v=v' ext{ and } uu'\in E(G). \end{array}
ight.$$

Examples: $P_m \Box P_n$ is a grid, $Q_{k-1} \Box P_2 = Q_k$.

Examples: $P_m \Box P_n$ is a grid, $Q_{k-1} \Box P_2 = Q_k$.

Proposition

$$\chi(G\Box H) = \max\{\chi(G), \chi(H)\}.$$

An upper bound on $\chi(G)$ can be found by giving a proper coloring.

An upper bound on $\chi(G)$ can be found by giving a proper coloring. Trivial bound: An upper bound on $\chi(G)$ can be found by giving a proper coloring. Trivial bound: $\chi(G) \le n(G)$. An upper bound on $\chi(G)$ can be found by giving a proper coloring. Trivial bound: $\chi(G) \leq n(G)$.

A better bound:

Proposition

 $\chi(G) \leq \Delta(G) + 1.$

An upper bound on $\chi(G)$ can be found by giving a proper coloring. Trivial bound: $\chi(G) \le n(G)$.

A better bound:

Proposition

 $\chi(G) \leq \Delta(G) + 1.$

Proof: Use a **greedy coloring:** order the vertices and then color them in that order, assigning to each vertex the smallest color not used by the neighbors colored so far.

Theorem (Brooks' Theorem)

If G is a connected graph other than a complete graph or an odd cycle, then

 $\chi(G) \leq \Delta(G).$

Theorem (Brooks' Theorem)

If G is a connected graph other than a complete graph or an odd cycle, then

 $\chi(G) \leq \Delta(G).$

Proposition

If G is an interval graph, then

 $\chi(G)=\omega(G).$

In addition to the chromatic number, sometimes we want to count the number of proper k-colorings of a graph.

In addition to the chromatic number, sometimes we want to count the number of proper k-colorings of a graph.

Definition

Let $\chi(G; k)$ be the number of proper colorings $f: V(G) \rightarrow [k]$.

In addition to the chromatic number, sometimes we want to count the number of proper k-colorings of a graph.

Definition

Let $\chi(G; k)$ be the number of proper colorings $f: V(G) \rightarrow [k]$.

Examples:

•
$$\chi(\overline{K_n};k) =$$

In addition to the chromatic number, sometimes we want to count the number of proper k-colorings of a graph.

Definition

Let $\chi(G; k)$ be the number of proper colorings $f: V(G) \rightarrow [k]$.

Examples:

•
$$\chi(\overline{K_n};k) = k^n$$

•
$$\chi(K_n; k) =$$

In addition to the chromatic number, sometimes we want to count the number of proper k-colorings of a graph.

Definition

Let $\chi(G; k)$ be the number of proper colorings $f: V(G) \rightarrow [k]$.

Examples:

•
$$\chi(\overline{K_n};k) = k^n$$

•
$$\chi(K_n; k) = k(k-1)...(k-n+1)$$

In addition to the chromatic number, sometimes we want to count the number of proper k-colorings of a graph.

Definition

Let $\chi(G; k)$ be the number of proper colorings $f: V(G) \rightarrow [k]$.

Examples:

•
$$\chi(\overline{K_n};k) = k^n$$

•
$$\chi(K_n; k) = k(k-1)...(k-n+1)$$

Proposition

If T is a tree with n vertices, then

$$\chi(T;k) =$$

In addition to the chromatic number, sometimes we want to count the number of proper k-colorings of a graph.

Definition

Let $\chi(G; k)$ be the number of proper colorings $f: V(G) \rightarrow [k]$.

Examples:

•
$$\chi(\overline{K_n};k) = k^n$$

•
$$\chi(K_n; k) = k(k-1)...(k-n+1)$$

Proposition

If T is a tree with n vertices, then

$$\chi(T;k)=k(k-1)^{n-1}.$$

Proposition

Let $p_r(G)$ be the number of partitions of V(G) into r non-empty independent sets.

Proposition

Let $p_r(G)$ be the number of partitions of V(G) into r non-empty independent sets.

Then

$$\chi(G; k) = \sum_{r=1}^{n(G)} p_r(G) k(k-1) \dots (k-r+1).$$

Proposition

Let $p_r(G)$ be the number of partitions of V(G) into r non-empty independent sets.

Then

$$\chi(G; k) = \sum_{r=1}^{n(G)} p_r(G) k(k-1) \dots (k-r+1).$$

In particular, $\chi(G; k)$ is a polynomial in k of degree n(G), called the chromatic polynomial.

Proposition

Let $p_r(G)$ be the number of partitions of V(G) into r non-empty independent sets.

Then

$$\chi(G; k) = \sum_{r=1}^{n(G)} p_r(G) k(k-1) \dots (k-r+1).$$

In particular, $\chi(G; k)$ is a polynomial in k of degree n(G), called the chromatic polynomial.

[Example for C_4]

Proposition

Let $p_r(G)$ be the number of partitions of V(G) into r non-empty independent sets.

Then

$$\chi(G; k) = \sum_{r=1}^{n(G)} p_r(G) k(k-1) \dots (k-r+1).$$

In particular, $\chi(G; k)$ is a polynomial in k of degree n(G), called the chromatic polynomial.

[Example for C_4]

This is not a very practical way to compute $\chi(G; k)$, since there are too many partitions to consider.