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Why is x(G; k) always a polynomial in k7

Proposition

Let p,(G) be the number of partitions of V(G) into r non-empty

independent sets.

Then
n(G)

X(Gi k)= pr(G)k(k—1)...(k—r+1).
r=1

In particular, x(G; k) is a polynomial in k of degree n(G), called
the chromatic polynomial.

[Example for C4]

This is not a very practical way to compute x(G; k), since there are
too many partitions to consider.
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Chromatic recurrence

Note: We can disregard multiple copies of the same edge, since
they don't affect the number of colorings.

Theorem

Let G be a simple graph, let e € E(G), and let G — e and G - e be
the graphs obtained by deleting e and contracting e, respectively.
Then

X(Gi k) = x(G — e k) = x(G - e k).

[Example for C4]

The chromatic recurrence can be used to compute x(G; k) for any
graph, since both G — e and G - e have fewer edges thﬂ G, and we
know how to compute it for graphs with no edges: x(K,; k) = k".

This also gives another proof of the fact that x(G; k) is always a
polynomial.
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More properties of the chromatic polynomial

Theorem
X(Gik)=k"'—e(G)K" ... —...-

where the coefficients alternate in sign.
[Proof]

Exercise: Compute x(K, — e; k).
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A vertex of G is simplicial if its neighbors form a clique.

Definition

An ordering v, Vp—1,...,v1 of the vertices of G is a simplicial
elimination ordering if v; is simplicial in G[vi, va, ..., v;] for all i.
If G has a simplicial elimination ordering, then

X(G; k) = (k —a1)(k — a2) -~ (k — an),

where a; = |N(V,') N {Vl,. ce V,'_1}|.
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Chordal graphs

Definition

A chordless cycle in G is a cycle of length at least 4 which is an
induced subgraph of G.

A graph G is chordal is it is simple and has no chordless cycle
(that is, no induced subgraph Cy for any k > 4).

Theorem
A simple graph has a simplicial elimination ordering if and only if it
is a chordal graph.
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Does it make any sense to compute x(G; —1)7

An acyclic orientation of G is an orientation (i.e. an assignment
of a direction to each edge) that has no directed cycle.

Theorem (Stanley '73)

(—1)"(©)x(G; —1) equals the number of acyclic orientations of G.
Example: x(Ca; k) = k(k — 1)(k? — 3k + 3), so

(—1)*x(Cy; —1) = 14.



