
Why is χ(G ; k) always a polynomial in k?

Proposition

Let pr (G ) be the number of partitions of V (G ) into r non-empty

independent sets.

Then

χ(G ; k) =

n(G)∑
r=1

pr (G ) k(k − 1) . . . (k − r + 1).

In particular, χ(G ; k) is a polynomial in k of degree n(G ), called
the chromatic polynomial.

[Example for C4]

This is not a very practical way to compute χ(G ; k), since there are
too many partitions to consider.
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Chromatic recurrence

Note: We can disregard multiple copies of the same edge, since
they don't a�ect the number of colorings.

Theorem

Let G be a simple graph, let e ∈ E (G ), and let G − e and G · e be

the graphs obtained by deleting e and contracting e, respectively.
Then

χ(G ; k) = χ(G − e; k)− χ(G · e; k).

[Example for C4]

The chromatic recurrence can be used to compute χ(G ; k) for any
graph, since both G − e and G · e have fewer edges than G , and we
know how to compute it for graphs with no edges: χ(Kn; k) = kn.

This also gives another proof of the fact that χ(G ; k) is always a
polynomial.
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More properties of the chromatic polynomial

Theorem

χ(G ; k) = kn − e(G )kn−1 + . . .− . . . · · · ,

where the coe�cients alternate in sign.

[Proof]

Exercise: Compute χ(Kn − e; k).
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Simplicial elimination orderings

De�nition

A vertex of G is simplicial if its neighbors form a clique.

De�nition

An ordering vn, vn−1, . . . , v1 of the vertices of G is a simplicial

elimination ordering if vi is simplicial in G [v1, v2, . . . , vi ] for all i .

If G has a simplicial elimination ordering, then

χ(G ; k) = (k − a1)(k − a2) · · · (k − an),

where ai = |N(vi ) ∩ {v1, . . . , vi−1}|.
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Chordal graphs

De�nition

A chordless cycle in G is a cycle of length at least 4 which is an
induced subgraph of G .

A graph G is chordal is it is simple and has no chordless cycle
(that is, no induced subgraph Ck for any k ≥ 4).

Theorem

A simple graph has a simplicial elimination ordering if and only if it

is a chordal graph.
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Acyclic orientations

Does it make any sense to compute χ(G ;−1)?

De�nition

An acyclic orientation of G is an orientation (i.e. an assignment
of a direction to each edge) that has no directed cycle.

Theorem (Stanley '73)

(−1)n(G)χ(G ;−1) equals the number of acyclic orientations of G .

Example: χ(C4; k) = k(k − 1)(k2 − 3k + 3), so

(−1)4χ(C4;−1) = 14.
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