Why is $\chi(G ; k)$ always a polynomial in k ?

Proposition

Let $p_{r}(G)$ be the number of partitions of $V(G)$ into r non-empty independent sets.

Why is $\chi(G ; k)$ always a polynomial in k ?

Proposition

Let $p_{r}(G)$ be the number of partitions of $V(G)$ into r non-empty independent sets.
Then

$$
\chi(G ; k)=\sum_{r=1}^{n(G)} p_{r}(G) k(k-1) \ldots(k-r+1)
$$

Why is $\chi(G ; k)$ always a polynomial in k ?

Proposition

Let $p_{r}(G)$ be the number of partitions of $V(G)$ into r non-empty independent sets.
Then

$$
\chi(G ; k)=\sum_{r=1}^{n(G)} p_{r}(G) k(k-1) \ldots(k-r+1)
$$

In particular, $\chi(G ; k)$ is a polynomial in k of degree $n(G)$, called the chromatic polynomial.

Why is $\chi(G ; k)$ always a polynomial in k ?

Proposition

Let $p_{r}(G)$ be the number of partitions of $V(G)$ into r non-empty independent sets.
Then

$$
\chi(G ; k)=\sum_{r=1}^{n(G)} p_{r}(G) k(k-1) \ldots(k-r+1)
$$

In particular, $\chi(G ; k)$ is a polynomial in k of degree $n(G)$, called the chromatic polynomial.
[Example for C_{4}]

Why is $\chi(G ; k)$ always a polynomial in k ?

Proposition

Let $p_{r}(G)$ be the number of partitions of $V(G)$ into r non-empty independent sets.
Then

$$
\chi(G ; k)=\sum_{r=1}^{n(G)} p_{r}(G) k(k-1) \ldots(k-r+1)
$$

In particular, $\chi(G ; k)$ is a polynomial in k of degree $n(G)$, called the chromatic polynomial.
[Example for C_{4}]
This is not a very practical way to compute $\chi(G ; k)$, since there are too many partitions to consider.

Chromatic recurrence

Note: We can disregard multiple copies of the same edge, since they don't affect the number of colorings.

Chromatic recurrence

Note: We can disregard multiple copies of the same edge, since they don't affect the number of colorings.

Theorem

Let G be a simple graph, let $e \in E(G)$, and let $G-e$ and $G \cdot e$ be the graphs obtained by deleting e and contracting e, respectively.

Chromatic recurrence

Note: We can disregard multiple copies of the same edge, since they don't affect the number of colorings.

Theorem

Let G be a simple graph, let $e \in E(G)$, and let $G-e$ and $G \cdot e$ be the graphs obtained by deleting e and contracting e, respectively. Then

$$
\chi(G ; k)=\chi(G-e ; k)-\chi(G \cdot e ; k) .
$$

Chromatic recurrence

Note: We can disregard multiple copies of the same edge, since they don't affect the number of colorings.

Theorem

Let G be a simple graph, let $e \in E(G)$, and let $G-e$ and $G \cdot e$ be the graphs obtained by deleting e and contracting e, respectively. Then

$$
\chi(G ; k)=\chi(G-e ; k)-\chi(G \cdot e ; k) .
$$

[Example for C_{4}]

Chromatic recurrence

Note: We can disregard multiple copies of the same edge, since they don't affect the number of colorings.

Theorem

Let G be a simple graph, let $e \in E(G)$, and let $G-e$ and $G \cdot e$ be the graphs obtained by deleting e and contracting e, respectively. Then

$$
\chi(G ; k)=\chi(G-e ; k)-\chi(G \cdot e ; k) .
$$

[Example for C_{4}]
The chromatic recurrence can be used to compute $\chi(G ; k)$ for any graph, since both $G-e$ and $G \cdot e$ have fewer edges than G, and we know how to compute it for graphs with no edges: $\chi\left(\overline{K_{n}} ; k\right)=k^{n}$.

Chromatic recurrence

Note: We can disregard multiple copies of the same edge, since they don't affect the number of colorings.

Theorem

Let G be a simple graph, let $e \in E(G)$, and let $G-e$ and $G \cdot e$ be the graphs obtained by deleting e and contracting e, respectively. Then

$$
\chi(G ; k)=\chi(G-e ; k)-\chi(G \cdot e ; k) .
$$

[Example for C_{4}]
The chromatic recurrence can be used to compute $\chi(G ; k)$ for any graph, since both $G-e$ and $G \cdot e$ have fewer edges than G, and we know how to compute it for graphs with no edges: $\chi\left(\overline{K_{n}} ; k\right)=k^{n}$.
This also gives another proof of the fact that $\chi(G ; k)$ is always a polynomial.

More properties of the chromatic polynomial

Theorem

$$
\chi(G ; k)=k^{n}-e(G) k^{n-1}+\ldots-\ldots \cdots,
$$

where the coefficients alternate in sign.

More properties of the chromatic polynomial

Theorem

$$
\chi(G ; k)=k^{n}-e(G) k^{n-1}+\ldots-\ldots \cdots,
$$

where the coefficients alternate in sign.
[Proof]

More properties of the chromatic polynomial

Theorem

$$
\chi(G ; k)=k^{n}-e(G) k^{n-1}+\ldots-\ldots \cdots,
$$

where the coefficients alternate in sign.
[Proof]
Exercise: Compute $\chi\left(K_{n}-e ; k\right)$.

Simplicial elimination orderings

Definition

A vertex of G is simplicial if its neighbors form a clique.

Simplicial elimination orderings

Definition

A vertex of G is simplicial if its neighbors form a clique.

Definition

An ordering $v_{n}, v_{n-1}, \ldots, v_{1}$ of the vertices of G is a simplicial elimination ordering if v_{i} is simplicial in $G\left[v_{1}, v_{2}, \ldots, v_{i}\right]$ for all i.

Simplicial elimination orderings

Definition

A vertex of G is simplicial if its neighbors form a clique.

Definition

An ordering $v_{n}, v_{n-1}, \ldots, v_{1}$ of the vertices of G is a simplicial elimination ordering if v_{i} is simplicial in $G\left[v_{1}, v_{2}, \ldots, v_{i}\right]$ for all i.

If G has a simplicial elimination ordering, then

$$
\chi(G ; k)=\left(k-a_{1}\right)\left(k-a_{2}\right) \cdots\left(k-a_{n}\right),
$$

where $a_{i}=\left|N\left(v_{i}\right) \cap\left\{v_{1}, \ldots, v_{i-1}\right\}\right|$.

Chordal graphs

Definition

A chordless cycle in G is a cycle of length at least 4 which is an induced subgraph of G.

Chordal graphs

Definition

A chordless cycle in G is a cycle of length at least 4 which is an induced subgraph of G.

A graph G is chordal is it is simple and has no chordless cycle (that is, no induced subgraph C_{k} for any $k \geq 4$).

Chordal graphs

Definition

A chordless cycle in G is a cycle of length at least 4 which is an induced subgraph of G.

A graph G is chordal is it is simple and has no chordless cycle (that is, no induced subgraph C_{k} for any $k \geq 4$).

Theorem

A simple graph has a simplicial elimination ordering if and only if it is a chordal graph.

Acyclic orientations

Does it make any sense to compute $\chi(G ;-1)$?

Acyclic orientations

Does it make any sense to compute $\chi(G ;-1)$?

Definition

An acyclic orientation of G is an orientation (i.e. an assignment of a direction to each edge) that has no directed cycle.

Acyclic orientations

Does it make any sense to compute $\chi(G ;-1)$?

Definition

An acyclic orientation of G is an orientation (i.e. an assignment of a direction to each edge) that has no directed cycle.

Theorem (Stanley '73)

$(-1)^{n(G)} \chi(G ;-1)$ equals the number of acyclic orientations of G.

Acyclic orientations

Does it make any sense to compute $\chi(G ;-1)$?

Definition

An acyclic orientation of G is an orientation (i.e. an assignment of a direction to each edge) that has no directed cycle.

Theorem (Stanley '73)

$(-1)^{n(G)} \chi(G ;-1)$ equals the number of acyclic orientations of G.
Example: $\chi\left(C_{4} ; k\right)=k(k-1)\left(k^{2}-3 k+3\right)$, so

$$
(-1)^{4} \chi\left(C_{4} ;-1\right)=14
$$

