
Chordal graphs

De�nition

A chordless cycle in G is a cycle of length at least 4 which is an

induced subgraph of G .

A graph G is chordal is it is simple and has no chordless cycle

(that is, no induced subgraph Ck for any k ≥ 4).

Theorem

A simple graph has a simplicial elimination ordering if and only if it

is a chordal graph.
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Acyclic orientations

Does it make any sense to compute χ(G ;−1)?

De�nition

An acyclic orientation of G is an orientation (i.e. an assignment

of a direction to each edge) that has no directed cycle.

Theorem (Stanley '73)

(−1)n(G)χ(G ;−1) equals the number of acyclic orientations of G .

Example: χ(C4; k) = k(k − 1)(k2 − 3k + 3), so

(−1)4χ(C4;−1) = 14.
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Chapter 6

Planar Graphs



Planar graphs

De�nition

A planar graph is a graph that can be drawn on the plane without

crossings.

A particular such drawing is called a planar embedding of G , or a

plane graph.

Motivation:

Planar graphs encode the information about which regions in a

map share a border.

When laying out a circuit on a silicon chip, we may want to

avoid crossings.

Example: Three enemies living in di�erent houses want to have

access to three utilities (gas, water and electricity). Can we build

paths from each house to each utility so that the paths don't cross?
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Planar graphs?

The previous question is equivalent to whether K3,3 is planar.

Proposition

K3,3 and K5 are not planar.

A plane graph divides the plane into connected pieces called

regions or faces.
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The dual of a plane graph

De�nition

The dual graph G ∗ of a plane graph G is a plane graph whose

vertices correspond to the faces of G . Edges of G ∗ correspond to

edges of G , so that if e ∈ E (G ) bounds two faces, then the

endpoints of the corresponding edge e∗ ∈ E (G ∗) are the vertices

that correspond to those two faces.

If G is connected, then (G ∗)∗ is isomorphic to G .

Note: Di�erent embeddings of the same graph can yield di�erent

dual graphs.
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The length of a face

De�nition

A length of a face in a plane graph is the length of the closed walk

bounding the face.

Denote by ℓ(F ) the length of face F . It equals the degree of the

corresponding vertex in the dual graph.

Proposition

In every plane graph G , ∑
F face of G

ℓ(F ) = 2e(G ).

Proof: Apply the handshaking lemma to the dual graph.
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Translating between a graph and its dual

G ←→ G ∗

faces vertices

edges edges

vertices faces

length of a face degree of a vertex

cycles bonds (minimal edge cuts)

cut-edge loop

(if e not a cut-edge) G − e G ∗ · e∗
(if e not a loop) G · e G ∗ − e∗

G bipartite G ∗ Eulerian
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Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f
faces, then

n − e + f = 2.

Theorem

If G is a simple planar graph with n ≥ 3 vertices and e edges, then

e ≤ 3n − 6.

If, additionally, G has no triangles, then

e ≤ 2n − 4.

Corollary

K5 is not planar.

K3,3 is not planar.
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