Chordal graphs

Definition

A chordless cycle in G is a cycle of length at least 4 which is an induced subgraph of G.

Chordal graphs

Definition

A chordless cycle in G is a cycle of length at least 4 which is an induced subgraph of G.

A graph G is chordal is it is simple and has no chordless cycle (that is, no induced subgraph C_{k} for any $k \geq 4$).

Chordal graphs

Definition

A chordless cycle in G is a cycle of length at least 4 which is an induced subgraph of G.

A graph G is chordal is it is simple and has no chordless cycle (that is, no induced subgraph C_{k} for any $k \geq 4$).

Theorem

A simple graph has a simplicial elimination ordering if and only if it is a chordal graph.

Acyclic orientations

Does it make any sense to compute $\chi(G ;-1)$?

Acyclic orientations

Does it make any sense to compute $\chi(G ;-1)$?

Definition

An acyclic orientation of G is an orientation (i.e. an assignment of a direction to each edge) that has no directed cycle.

Acyclic orientations

Does it make any sense to compute $\chi(G ;-1)$?

Definition

An acyclic orientation of G is an orientation (i.e. an assignment of a direction to each edge) that has no directed cycle.

Theorem (Stanley '73)

$(-1)^{n(G)} \chi(G ;-1)$ equals the number of acyclic orientations of G.

Acyclic orientations

Does it make any sense to compute $\chi(G ;-1)$?

Definition

An acyclic orientation of G is an orientation (i.e. an assignment of a direction to each edge) that has no directed cycle.

Theorem (Stanley '73)

$(-1)^{n(G)} \chi(G ;-1)$ equals the number of acyclic orientations of G.
Example: $\chi\left(C_{4} ; k\right)=k(k-1)\left(k^{2}-3 k+3\right)$, so

$$
(-1)^{4} \chi\left(C_{4} ;-1\right)=14
$$

Chapter 6 Planar Graphs

Planar graphs

Definition

A planar graph is a graph that can be drawn on the plane without crossings.

Planar graphs

Definition

A planar graph is a graph that can be drawn on the plane without crossings.

A particular such drawing is called a planar embedding of G, or a plane graph.

Planar graphs

Definition

A planar graph is a graph that can be drawn on the plane without crossings.

A particular such drawing is called a planar embedding of G, or a plane graph.

Motivation:

- Planar graphs encode the information about which regions in a map share a border.
- When laying out a circuit on a silicon chip, we may want to avoid crossings.

Planar graphs

Definition

A planar graph is a graph that can be drawn on the plane without crossings.

A particular such drawing is called a planar embedding of G, or a plane graph.

Motivation:

- Planar graphs encode the information about which regions in a map share a border.
- When laying out a circuit on a silicon chip, we may want to avoid crossings.

Example: Three enemies living in different houses want to have access to three utilities (gas, water and electricity). Can we build paths from each house to each utility so that the paths don't cross?

Planar graphs?

The previous question is equivalent to whether $K_{3,3}$ is planar.

Planar graphs?

The previous question is equivalent to whether $K_{3,3}$ is planar.
Proposition
$K_{3,3}$ and K_{5} are not planar.

Planar graphs?

The previous question is equivalent to whether $K_{3,3}$ is planar.
Proposition
$K_{3,3}$ and K_{5} are not planar.
A plane graph divides the plane into connected pieces called regions or faces.

The dual of a plane graph

Definition

The dual graph G^{*} of a plane graph G is a plane graph whose vertices correspond to the faces of G. Edges of G^{*} correspond to edges of G, so that if $e \in E(G)$ bounds two faces, then the endpoints of the corresponding edge $e^{*} \in E\left(G^{*}\right)$ are the vertices that correspond to those two faces.

The dual of a plane graph

Definition

The dual graph G^{*} of a plane graph G is a plane graph whose vertices correspond to the faces of G. Edges of G^{*} correspond to edges of G, so that if $e \in E(G)$ bounds two faces, then the endpoints of the corresponding edge $e^{*} \in E\left(G^{*}\right)$ are the vertices that correspond to those two faces.

If G is connected, then $\left(G^{*}\right)^{*}$ is isomorphic to G.

The dual of a plane graph

Definition

The dual graph G^{*} of a plane graph G is a plane graph whose vertices correspond to the faces of G. Edges of G^{*} correspond to edges of G, so that if $e \in E(G)$ bounds two faces, then the endpoints of the corresponding edge $e^{*} \in E\left(G^{*}\right)$ are the vertices that correspond to those two faces.

If G is connected, then $\left(G^{*}\right)^{*}$ is isomorphic to G.
Note: Different embeddings of the same graph can yield different dual graphs.

The length of a face

Definition

A length of a face in a plane graph is the length of the closed walk bounding the face.

The length of a face

Definition

A length of a face in a plane graph is the length of the closed walk bounding the face.

Denote by $\ell(F)$ the length of face F. It equals the degree of the corresponding vertex in the dual graph.

The length of a face

Definition

A length of a face in a plane graph is the length of the closed walk bounding the face.

Denote by $\ell(F)$ the length of face F. It equals the degree of the corresponding vertex in the dual graph.

Proposition

In every plane graph G,

$$
\sum_{F \text { face of } G} \ell(F)=
$$

The length of a face

Definition

A length of a face in a plane graph is the length of the closed walk bounding the face.

Denote by $\ell(F)$ the length of face F. It equals the degree of the corresponding vertex in the dual graph.

Proposition

In every plane graph G,

$$
\sum_{F \text { face of } G} \ell(F)=2 e(G)
$$

The length of a face

Definition

A length of a face in a plane graph is the length of the closed walk bounding the face.

Denote by $\ell(F)$ the length of face F. It equals the degree of the corresponding vertex in the dual graph.

Proposition

In every plane graph G,

$$
\sum_{F \text { face of } G} \ell(F)=2 e(G) .
$$

Proof: Apply the handshaking lemma to the dual graph.

Translating between a graph and its dual

Translating between a graph and its dual

faces

Translating between a graph and its dual

$$
\begin{array}{r}
G \\
\text { faces } \\
\text { edges }
\end{array} ~ \longleftrightarrow ~ \begin{gathered}
G^{*} \\
\text { vertices }
\end{gathered}
$$

Translating between a graph and its dual

G	\longleftrightarrow	G^{*}
faces edges vertices		vertges edges

Translating between a graph and its dual

Translating between a graph and its dual

$\left.\begin{array}{rl}G & \longleftrightarrow \\ \begin{array}{rl}G^{*} \\ \text { faces } \\ \text { edges } \\ \text { vertices }\end{array} & \\ \text { vertices } \\ \text { edges }\end{array}\right]$ faces \quad degree of a vertex

Translating between a graph and its dual

Translating between a graph and its dual

$$
\begin{array}{rll}
G & \longleftrightarrow & G^{*} \\
\text { faces } & & \text { vert } \\
\text { edges } & & \text { edg } \\
\text { vertices } & & \text { face } \\
\text { length of a face } & & \text { deg } \\
\text { cycles } & & \text { bon } \\
\text { cut-edge } & & \text { loo } \\
\text { (if e not a cut-edge) } G-e &
\end{array}
$$

Translating between a graph and its dual

Translating between a graph and its dual

Translating between a graph and its dual

Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f faces, then

Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f faces, then

$$
n-e+f=2
$$

Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f faces, then

$$
n-e+f=2
$$

Theorem

If G is a simple planar graph with $n \geq 3$ vertices and e edges, then

$$
e \leq 3 n-6
$$

Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f faces, then

$$
n-e+f=2
$$

Theorem

If G is a simple planar graph with $n \geq 3$ vertices and e edges, then

$$
e \leq 3 n-6
$$

If, additionally, G has no triangles, then

$$
e \leq 2 n-4
$$

Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f faces, then

$$
n-e+f=2
$$

Theorem

If G is a simple planar graph with $n \geq 3$ vertices and e edges, then

$$
e \leq 3 n-6
$$

If, additionally, G has no triangles, then

$$
e \leq 2 n-4
$$

Corollary

- K_{5} is not planar.

Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f faces, then

$$
n-e+f=2
$$

Theorem

If G is a simple planar graph with $n \geq 3$ vertices and e edges, then

$$
e \leq 3 n-6
$$

If, additionally, G has no triangles, then

$$
e \leq 2 n-4
$$

Corollary

- K_{5} is not planar.
- $K_{3,3}$ is not planar.

