The dual of a plane graph

Definition

The dual graph G^{*} of a plane graph G is a plane graph whose vertices correspond to the faces of G. Edges of G^{*} correspond to edges of G, so that if $e \in E(G)$ bounds two faces, then the endpoints of the corresponding edge $e^{*} \in E\left(G^{*}\right)$ are the vertices that correspond to those two faces.

The dual of a plane graph

Definition

The dual graph G^{*} of a plane graph G is a plane graph whose vertices correspond to the faces of G. Edges of G^{*} correspond to edges of G, so that if $e \in E(G)$ bounds two faces, then the endpoints of the corresponding edge $e^{*} \in E\left(G^{*}\right)$ are the vertices that correspond to those two faces.

If G is connected, then $\left(G^{*}\right)^{*}$ is isomorphic to G.

The dual of a plane graph

Definition

The dual graph G^{*} of a plane graph G is a plane graph whose vertices correspond to the faces of G. Edges of G^{*} correspond to edges of G, so that if $e \in E(G)$ bounds two faces, then the endpoints of the corresponding edge $e^{*} \in E\left(G^{*}\right)$ are the vertices that correspond to those two faces.

If G is connected, then $\left(G^{*}\right)^{*}$ is isomorphic to G.
Note: Different embeddings of the same graph can yield different dual graphs.

The length of a face

Definition
A length of a face in a plane graph is the length of the closed walk bounding the face.

The length of a face

Definition

A length of a face in a plane graph is the length of the closed walk bounding the face.

Denote by $\ell(F)$ the length of face F. It equals the degree of the corresponding vertex in the dual graph.

The length of a face

Definition

A length of a face in a plane graph is the length of the closed walk bounding the face.

Denote by $\ell(F)$ the length of face F. It equals the degree of the corresponding vertex in the dual graph.

Proposition

In every plane graph G,

$$
\sum_{F \text { face of } G} \ell(F)=
$$

The length of a face

Definition

A length of a face in a plane graph is the length of the closed walk bounding the face.

Denote by $\ell(F)$ the length of face F. It equals the degree of the corresponding vertex in the dual graph.

Proposition

In every plane graph G,

$$
\sum_{F \text { face of } G} \ell(F)=2 e(G)
$$

The length of a face

Definition

A length of a face in a plane graph is the length of the closed walk bounding the face.

Denote by $\ell(F)$ the length of face F. It equals the degree of the corresponding vertex in the dual graph.

Proposition

In every plane graph G,

$$
\sum_{F \text { face of } G} \ell(F)=2 e(G) .
$$

Proof: Apply the handshaking lemma to the dual graph.

Translating between a graph and its dual

Translating between a graph and its dual

faces

Translating between a graph and its dual

$$
\begin{array}{r}
G \\
\text { faces } \\
\text { edges }
\end{array} ~ \longleftrightarrow ~ \begin{gathered}
G^{*} \\
\text { vertices }
\end{gathered}
$$

Translating between a graph and its dual

G	\longleftrightarrow	G^{*}
faces edges vertices		edges edges

Translating between a graph and its dual

$$
\begin{array}{rll}
G & \longleftrightarrow & G^{*} \\
\text { faces } & & \text { ver } \\
\text { edges } & & \text { edg } \\
\text { vertices } & & \text { fac } \\
\text { length of a face } & &
\end{array}
$$

Translating between a graph and its dual

$\left.\begin{array}{rl}G & \longleftrightarrow \\ \begin{array}{rl}G^{*} \\ \text { faces } \\ \text { edges } \\ \text { vertices }\end{array} & \\ \text { vertices } \\ \text { edges }\end{array}\right]$ faces \quad degree of a vertex

Translating between a graph and its dual

G	G*
faces	vertices
edges	edges
vertices	faces
length of a face	degree of a vertex
cycles	minimal edge cuts
cut-edge	

Translating between a graph and its dual

$$
\begin{array}{rlc}
G & \longleftrightarrow & G^{*} \\
\text { faces } & & \text { ver } \\
\text { edges } & & \text { edg } \\
\text { vertices } & & \text { face } \\
\text { length of a face } & & \text { deg } \\
\text { cycles } & & \text { min } \\
\text { cut-edge } & & \text { loo }
\end{array}
$$

$$
\text { (if e not a cut-edge) } G-e
$$

Translating between a graph and its dual

$$
\begin{array}{rlc}
G & \longleftrightarrow & G^{*} \\
\text { faces } & & \text { vert } \\
\text { edges } & & \text { edg } \\
\text { vertices } & & \text { face } \\
\text { length of a face } & & \text { deg } \\
\text { cycles } & & \text { min } \\
\text { cut-edge } & & \text { lool } \\
\text { (if e not a cut-edge) } G-e & G^{*} \\
\text { (if } e \text { not a loop) } G \cdot e &
\end{array}
$$

Translating between a graph and its dual

$$
\begin{array}{rlc}
G & \longleftrightarrow & G^{*} \\
\text { faces } & & \text { vert } \\
\text { edges } & & \text { edg } \\
\text { vertices } & & \text { face } \\
\text { length of a face } & & \text { deg } \\
\text { cycles } & & \text { min } \\
\text { cut-edge } & \text { lool } \\
\text { (if e not a cut-edge) } G-e & G^{*} \\
\text { (if e not a loop) } G \cdot e & G^{*} \\
G \text { bipartite } &
\end{array}
$$

Translating between a graph and its dual

$$
\begin{aligned}
& G \longleftrightarrow \\
& \text { faces } G^{*} \\
& \text { edges } \\
& \text { vertices } \\
& \text { edges } \\
& \text { faces } \\
& \text { length of a face } \\
& \text { cycles } \text { degree of a vertex } \\
& \text { cut-edge } \text { loop } \\
& \text { (if e not a cut-edge) } G-e G^{*} \cdot e^{*} \\
& \text { (if e not a loop) } G \cdot e G^{*}-e^{*} \\
& G \text { bipartite } G^{*} \text { Eulerian }
\end{aligned}
$$

Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f faces, then

Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f faces, then

$$
n-e+f=2
$$

Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f faces, then

$$
n-e+f=2
$$

Theorem

If G is a simple planar graph with $n \geq 3$ vertices and e edges, then

$$
e \leq 3 n-6
$$

Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f faces, then

$$
n-e+f=2
$$

Theorem

If G is a simple planar graph with $n \geq 3$ vertices and e edges, then

$$
e \leq 3 n-6
$$

If, additionally, G has no triangles, then

$$
e \leq 2 n-4
$$

Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f faces, then

$$
n-e+f=2
$$

Theorem

If G is a simple planar graph with $n \geq 3$ vertices and e edges, then

$$
e \leq 3 n-6
$$

If, additionally, G has no triangles, then

$$
e \leq 2 n-4
$$

Corollary

- K_{5} is not planar.

Euler's formula

Theorem (Euler's formula)

If G is a connected planar graph with n vertices, e edges and f faces, then

$$
n-e+f=2
$$

Theorem

If G is a simple planar graph with $n \geq 3$ vertices and e edges, then

$$
e \leq 3 n-6
$$

If, additionally, G has no triangles, then

$$
e \leq 2 n-4
$$

Corollary

- K_{5} is not planar.
- $K_{3,3}$ is not planar.

A characterization of planar graphs

Definition

A subdivision of a graph is obtained from it by replacing edges with pairwise internally disjoint paths.
(Equivalently, by inserting some vertices into edges of the graph.)

A characterization of planar graphs

Definition

A subdivision of a graph is obtained from it by replacing edges with pairwise internally disjoint paths.
(Equivalently, by inserting some vertices into edges of the graph.)

Theorem (Kuratowski's Theorem)
A graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$ as a subgraph.

A characterization of planar graphs

Definition

A subdivision of a graph is obtained from it by replacing edges with pairwise internally disjoint paths.
(Equivalently, by inserting some vertices into edges of the graph.)

Theorem (Kuratowski's Theorem)

A graph is planar if and only if it does not contain a subdivision of K_{5} or $K_{3,3}$ as a subgraph.

Easy direction: if G contains a subdivision of K_{5} or $K_{3,3}$, then G is not planar.

Another similar characterization

Definition

A minor of a graph G is a graph that can be obtained from G by deleting and/or contracting edges of G.

Another similar characterization

Definition

A minor of a graph G is a graph that can be obtained from G by deleting and/or contracting edges of G.

Theorem (Wagner '37)

A graph is planar if and only if it does not contain K_{5} nor $K_{3,3}$ as a minor.

