
The dual of a plane graph

Definition
The dual graph G ∗ of a plane graph G is a plane graph whose
vertices correspond to the faces of G . Edges of G ∗ correspond to
edges of G , so that if e ∈ E (G ) bounds two faces, then the
endpoints of the corresponding edge e∗ ∈ E (G ∗) are the vertices
that correspond to those two faces.

If G is connected, then (G ∗)∗ is isomorphic to G .

Note: Different embeddings of the same graph can yield different
dual graphs.
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The length of a face

Definition
A length of a face in a plane graph is the length of the closed walk
bounding the face.

Denote by ℓ(F ) the length of face F . It equals the degree of the
corresponding vertex in the dual graph.

Proposition
In every plane graph G , ∑

F face of G

ℓ(F ) = 2e(G ).

Proof: Apply the handshaking lemma to the dual graph.
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Translating between a graph and its dual

G ←→ G ∗

faces vertices
edges edges

vertices faces
length of a face degree of a vertex

cycles minimal edge cuts
cut-edge loop

(if e not a cut-edge) G − e G ∗ · e∗
(if e not a loop) G · e G ∗ − e∗

G bipartite G ∗ Eulerian
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Euler’s formula

Theorem (Euler’s formula)

If G is a connected planar graph with n vertices, e edges and f
faces, then

n − e + f = 2.

Theorem
If G is a simple planar graph with n ≥ 3 vertices and e edges, then

e ≤ 3n − 6.

If, additionally, G has no triangles, then

e ≤ 2n − 4.

Corollary
K5 is not planar.
K3,3 is not planar.
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A characterization of planar graphs

Definition
A subdivision of a graph is obtained from it by replacing edges
with pairwise internally disjoint paths.
(Equivalently, by inserting some vertices into edges of the graph.)

Theorem (Kuratowski’s Theorem)

A graph is planar if and only if it does not contain a subdivision of
K5 or K3,3 as a subgraph.

Easy direction: if G contains a subdivision of K5 or K3,3, then G is
not planar.
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Another similar characterization

Definition
A minor of a graph G is a graph that can be obtained from G by
deleting and/or contracting edges of G .

Theorem (Wagner ’37)

A graph is planar if and only if it does not contain K5 nor K3,3 as a
minor.
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