
6.3 Coloring of planar graphs

The chromatic number of a graph can be arbitrary large. But what
if we require the graph to be planar?

Theorem (The Four Color Theorem (Appel, Haken, Koch ’77))

Every planar graph is 4-colorable.
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History of the Four Color Theorem

1852: The problem is first posed by Francis Guthrie.

Francis’ brother, Frederick, shows the problem to De Morgan,
who shares the problem with several other mathematicians
including Hamilton.
1878: At a meeting of the London Math Society, Cayley asks if
the problem has been solved. In attendance is amateur
mathematician Alfred Kempe.
1879: Alfred Kempe announces a proof of the 4-color theorem.
1890: Percy Heawood publishes the paper Map colouring
theorem, in which he points out a problem with Kempe’s
proof, and produces a counter-example to Kempe’s technique.
However, he shows that one can use Kempe’s ideas to prove a
“5-color theorem”.
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History of the Four-Color Theorem

1913: Birkhoff introduces the idea of reducibility.

With the idea of reducibility, one can construct unavoidable
sets of configurations, meaning that any minimal
counterexample to the 4-color theorem would have to contain
one of these configurations.
1976: Appel, Haken and Koch announce that they have
constructed an unavoidable set of 1936 configurations, which
they verified using 1200 hours of computer time.
1997: A simpler solution using an unavoidable set of 633
configurations is announced by Robertson, Sanders, Seymour
and Thomas (http://people.math.gatech.edu/~thomas/
FC/fourcolor.html). It requires a relatively short
computation.

http://people.math.gatech.edu/~thomas/FC/fourcolor.html
http://people.math.gatech.edu/~thomas/FC/fourcolor.html
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Six- and Five-Color Theorems

Recall:

Theorem
If G is a simple planar graph with n ≥ 3 vertices and e edges, then

e ≤ 3n − 6.

Corollary
Every simple planar graph has a vertex of degree at most 5.

Corollary (Six-color Theorem)

Every planar graph is 6-colorable.

Theorem (Five-color Theorem)

Every planar graph is 5-colorable.
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Embedding graphs on surfaces

An embedding of a graph on a surface is a drawing on that surface
without crossings.

Planar graphs are those that can be embedded on the plane, or
equivalently on the sphere.

One can also consider other surfaces, like the torus.

The genus of a surface is the number of “holes” (or “handles”):
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Generalized Euler’s Formula

Theorem
If G is a connected graph embedded in a surface of genus g with n
vertices, e edges and f faces, then

n − e + f = 2 − 2g .

Examples:

For graphs embedded in a sphere, n − e + f = 2.

For graphs embedded in a torus, n − e + f = 0.
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Minimal obstructions

Can one characterize graphs that can be embedded in a torus in
terms of “forbidden” subgraphs?

Theorem (Robertson–Seymour ’85)

In any infinite list of graphs, one is a minor of another.

Corollary
Every surface has a finite list of minimal obstructions to
embeddability.

For the sphere, they are K5 and K3,3.

For the torus, there are more than 17,000 minimal obstructions
known, and the list is probably not complete.
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