
The Hadwiger�Nelson problem

What is the minimum number of colors required to color the plane

such that no two points at distance 1 from each other have the

same color?

Let G be the in�nite graph whose vertices are R2 and whose edges

are all pairs of points at distance 1.

Theorem (Bonus homework problem)

4 ≤ χ(G ) ≤ 7.

Theorem (De Grey 2018)

χ(G ) ≥ 5.

He used a computer to �nd a subgraph graph of G with 1581

vertices which is not 4-colorable.

Since then, smaller examples have been found. The current

smallest one has 509 vertices.
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Edge coloring

De�nition

An k-edge-coloring of G is a labeling f : E (G ) → [k].

A k-edge-coloring is proper if any two edges incident to the same

vertex receive di�erent colors.

The edge chromatic number χ′(G ) is the minimum k such that

G has a proper k-edge-coloring.

Theorem (Vizing 1964)

For any simple graph G ,

∆(G ) ≤ χ′(G ) ≤ ∆(G ) + 1.
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An application of planar graphs: regular polyhedra

The vertices and edges of a regular polyhedron can be projected

onto the sphere,

giving a plane graph where all the vertices have the

same degree k ≥ 3 and all the faces have the same length ℓ ≥ 3.

We have

kn = 2e and ℓf = 2e.

Substituting n = 2e
k and f = 2e

ℓ into Euler's formula, we deduce,

after some manipulations, that

(k − 2)(ℓ− 2) < 4.

Also,

e =
2kℓ

4− (k − 2)(ℓ− 2)
.
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An application of planar graphs: regular polyhedra

k ℓ (k − 2)(ℓ− 2) e n f name of polyhedron

3 3 1 6 4 4 tetrahedron

3 4 2 12 8 6 cube

4 3 2 12 6 8 octahedron

3 5 3 30 20 12 dodecahedron

5 3 3 30 12 20 icosahedron



Counting perfect matchings

Question: What's the number of perfect matchings of P2□Pn?

Denote this number by an.

n 1 2 3 4 5 . . .

an 1 2 3 5 8 . . .

In general,

an = an−1 + an−2.

These are the Fibonacci numbers.

One can interpret perfect matchings of P2□Pn as domino tilings of

a 2× n rectangle.
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Domino tilings of rectangles

In how many ways can we tile an 3× 3 rectangle with dominoes?

Answer: 0, because the number of unit squares that need to be

covered is odd.
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In how many ways can we tile an 8× 8 rectangle with dominoes?

Answer: 12, 988, 816.

In general, a complicated formula is known for the number of

domino tilings of an m × n rectangle, for any given m and n.
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Domino tilings of rectangles

Theorem (Fisher, Temperley, Kasteleyn, 1961)

The number of tilings of a 2m × 2n rectangle with dominoes is

4mn
m∏
j=1

n∏
k=1

(
cos2

jπ

2m + 1
+ cos2

kπ

2n + 1

)
.

For example, for a chessboard with m = n = 4, and we get

416
4∏

j=1

4∏
k=1

(
cos2

jπ

9
+ cos2

kπ

9

)
.

Note that cos2 π
9
= 0.8830222216 . . . .



Domino tilings of rectangles

Theorem (Fisher, Temperley, Kasteleyn, 1961)

The number of tilings of a 2m × 2n rectangle with dominoes is

4mn
m∏
j=1

n∏
k=1

(
cos2

jπ

2m + 1
+ cos2

kπ

2n + 1

)
.

For example, for a chessboard with m = n = 4, and we get

416
4∏

j=1

4∏
k=1

(
cos2

jπ

9
+ cos2

kπ

9

)
.

Note that cos2 π
9
= 0.8830222216 . . . .



A small variation

If we remove two opposite corners of the 8× 8 board, in how many

ways can we tile it now with dominoes?

Answer: 0.

Coloring it as in a chessboard, each domino covers one unit square

of each color, but there are more white squares in total.
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Domino tilings of an Aztec diamond

In how many ways can we tile the following �gure using dominoes?

Answer: 1024 = 210.

In general, for a similar diamond having n corners on each side, the

number of tilings is

2n(n+1)/2.
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Tilings of an Aztec diamond

This is how a typical tiling of a large Aztec diamond looks like:



Tilings of an Aztec diamond

Here's an even larger one:



Polyominoes

Instead of dominoes, we can consider larger tiles. For example,

trominoes are tiles consisting of 3 little squares:

Tetrominoes are tiles consisting of 4 squares:
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Polyominoes

How many di�erent polynominoes can we form with n squares?

# of squares 1 2 3 4 5 6 . . . n . . .

# of polyominoes 1 1 2 5 12 35 . . .

??

. . .

No formula is known!
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