The Hadwiger-Nelson problem

What is the minimum number of colors required to color the plane such that no two points at distance 1 from each other have the same color?

The Hadwiger-Nelson problem

What is the minimum number of colors required to color the plane such that no two points at distance 1 from each other have the same color?
Let G be the infinite graph whose vertices are \mathbb{R}^{2} and whose edges are all pairs of points at distance 1 .

Theorem (Bonus homework problem)

$$
4 \leq \chi(G) \leq 7
$$

The Hadwiger-Nelson problem

What is the minimum number of colors required to color the plane such that no two points at distance 1 from each other have the same color?
Let G be the infinite graph whose vertices are \mathbb{R}^{2} and whose edges are all pairs of points at distance 1 .

Theorem (Bonus homework problem)

$$
4 \leq \chi(G) \leq 7
$$

Theorem (De Grey 2018)

$$
\chi(G) \geq 5
$$

He used a computer to find a subgraph graph of G with 1581 vertices which is not 4-colorable.

The Hadwiger-Nelson problem

What is the minimum number of colors required to color the plane such that no two points at distance 1 from each other have the same color?
Let G be the infinite graph whose vertices are \mathbb{R}^{2} and whose edges are all pairs of points at distance 1 .

Theorem (Bonus homework problem)

$$
4 \leq \chi(G) \leq 7
$$

Theorem (De Grey 2018)

$$
\chi(G) \geq 5
$$

He used a computer to find a subgraph graph of G with 1581 vertices which is not 4-colorable.
Since then, smaller examples have been found. The current smallest one has 509 vertices.

Edge coloring

Definition

An k-edge-coloring of G is a labeling $f: E(G) \rightarrow[k]$.

Edge coloring

Definition

An k-edge-coloring of G is a labeling $f: E(G) \rightarrow[k]$.
A k-edge-coloring is proper if any two edges incident to the same vertex receive different colors.

Edge coloring

Definition

An k-edge-coloring of G is a labeling $f: E(G) \rightarrow[k]$.
A k-edge-coloring is proper if any two edges incident to the same vertex receive different colors.

The edge chromatic number $\chi^{\prime}(G)$ is the minimum k such that G has a proper k-edge-coloring.

Edge coloring

Definition

An k-edge-coloring of G is a labeling $f: E(G) \rightarrow[k]$.
A k-edge-coloring is proper if any two edges incident to the same vertex receive different colors.

The edge chromatic number $\chi^{\prime}(G)$ is the minimum k such that G has a proper k-edge-coloring.

Theorem (Vizing 1964)

For any simple graph G,

$$
\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1
$$

An application of planar graphs: regular polyhedra

The vertices and edges of a regular polyhedron can be projected onto the sphere,

An application of planar graphs: regular polyhedra

The vertices and edges of a regular polyhedron can be projected onto the sphere, giving a plane graph where all the vertices have the same degree $k \geq 3$ and all the faces have the same length $\ell \geq 3$.

An application of planar graphs: regular polyhedra

The vertices and edges of a regular polyhedron can be projected onto the sphere, giving a plane graph where all the vertices have the same degree $k \geq 3$ and all the faces have the same length $\ell \geq 3$.

We have

$$
k n=2 e \quad \text { and } \quad \ell f=2 e
$$

An application of planar graphs: regular polyhedra

The vertices and edges of a regular polyhedron can be projected onto the sphere, giving a plane graph where all the vertices have the same degree $k \geq 3$ and all the faces have the same length $\ell \geq 3$.

We have

$$
k n=2 e \quad \text { and } \quad \ell f=2 e
$$

Substituting $n=\frac{2 e}{k}$ and $f=\frac{2 e}{\ell}$ into Euler's formula, we deduce, after some manipulations, that

$$
(k-2)(\ell-2)<4
$$

An application of planar graphs: regular polyhedra

The vertices and edges of a regular polyhedron can be projected onto the sphere, giving a plane graph where all the vertices have the same degree $k \geq 3$ and all the faces have the same length $\ell \geq 3$.

We have

$$
k n=2 e \quad \text { and } \quad \ell f=2 e
$$

Substituting $n=\frac{2 e}{k}$ and $f=\frac{2 e}{\ell}$ into Euler's formula, we deduce, after some manipulations, that

$$
(k-2)(\ell-2)<4
$$

Also,

$$
e=\frac{2 k \ell}{4-(k-2)(\ell-2)}
$$

An application of planar graphs: regular polyhedra

k	ℓ	$(k-2)(\ell-2)$	e	n	f	name of polyhedron
3	3	1	6	4	4	tetrahedron
3	4	2	12	8	6	cube
4	3	2	12	6	8	octahedron
3	5	3	30	20	12	dodecahedron
5	3	3	30	12	20	icosahedron

PLATONIC SOLIDS

Counting perfect matchings

Question: What's the number of perfect matchings of $P_{2} \square P_{n}$?

Counting perfect matchings

Question: What's the number of perfect matchings of $P_{2} \square P_{n}$?
Denote this number by a_{n}.

$$
\begin{array}{r|l|l|l|l|l|l}
n & 1 & 2 & 3 & 4 & 5 & \ldots \\
\hline a_{n} & 1 & 2 & 3 & &
\end{array}
$$

Counting perfect matchings

Question: What's the number of perfect matchings of $P_{2} \square P_{n}$?
Denote this number by a_{n}.

n	1	2	3	4	5	\ldots
a_{n}	1	2	3	5		

Counting perfect matchings

Question: What's the number of perfect matchings of $P_{2} \square P_{n}$?
Denote this number by a_{n}.

n	1	2	3	4	5	\ldots
a_{n}	1	2	3	5	8	\ldots

Counting perfect matchings

Question: What's the number of perfect matchings of $P_{2} \square P_{n}$?
Denote this number by a_{n}.

n	1	2	3	4	5	\ldots
a_{n}	1	2	3	5	8	\ldots

In general,

$$
a_{n}=a_{n-1}+a_{n-2} .
$$

These are the Fibonacci numbers.

Counting perfect matchings

Question: What's the number of perfect matchings of $P_{2} \square P_{n}$?
Denote this number by a_{n}.

n	1	2	3	4	5	\ldots
a_{n}	1	2	3	5	8	\ldots

In general,

$$
a_{n}=a_{n-1}+a_{n-2}
$$

These are the Fibonacci numbers.
One can interpret perfect matchings of $P_{2} \square P_{n}$ as domino tilings of a $2 \times n$ rectangle.

Domino tilings of rectangles

In how many ways can we tile an 3×3 rectangle with dominoes?

Domino tilings of rectangles

In how many ways can we tile an 3×3 rectangle with dominoes?

Answer: 0, because the number of unit squares that need to be covered is odd.

Domino tilings of rectangles

In how many ways can we tile an 8×8 rectangle with dominoes?

Domino tilings of rectangles

In how many ways can we tile an 8×8 rectangle with dominoes?

Answer: 12, 988, 816.

Domino tilings of rectangles

In how many ways can we tile an 8×8 rectangle with dominoes?

Answer: 12, 988, 816.
In general, a complicated formula is known for the number of domino tilings of an $m \times n$ rectangle, for any given m and n.

Domino tilings of rectangles

Theorem (Fisher, Temperley, Kasteleyn, 1961)

The number of tilings of a $2 m \times 2 n$ rectangle with dominoes is

$$
4^{m n} \prod_{j=1}^{m} \prod_{k=1}^{n}\left(\cos ^{2} \frac{j \pi}{2 m+1}+\cos ^{2} \frac{k \pi}{2 n+1}\right)
$$

Domino tilings of rectangles

Theorem (Fisher, Temperley, Kasteleyn, 1961)

The number of tilings of a $2 m \times 2 n$ rectangle with dominoes is

$$
4^{m n} \prod_{j=1}^{m} \prod_{k=1}^{n}\left(\cos ^{2} \frac{j \pi}{2 m+1}+\cos ^{2} \frac{k \pi}{2 n+1}\right)
$$

For example, for a chessboard with $m=n=4$, and we get

$$
4^{16} \prod_{j=1}^{4} \prod_{k=1}^{4}\left(\cos ^{2} \frac{j \pi}{9}+\cos ^{2} \frac{k \pi}{9}\right)
$$

Note that $\cos ^{2} \frac{\pi}{9}=0.8830222216 \ldots$

A small variation

If we remove two opposite corners of the 8×8 board, in how many ways can we tile it now with dominoes?

A small variation

If we remove two opposite corners of the 8×8 board, in how many ways can we tile it now with dominoes?

Answer: 0.

A small variation

If we remove two opposite corners of the 8×8 board, in how many ways can we tile it now with dominoes?

Answer: 0.
Coloring it as in a chessboard, each domino covers one unit square of each color, but there are more white squares in total.

Domino tilings of an Aztec diamond

In how many ways can we tile the following figure using dominoes?

Domino tilings of an Aztec diamond

In how many ways can we tile the following figure using dominoes?

Answer: $1024=2^{10}$.

Domino tilings of an Aztec diamond

In how many ways can we tile the following figure using dominoes?

Answer: $1024=2^{10}$.
In general, for a similar diamond having n corners on each side, the number of tilings is

$$
2^{n(n+1) / 2}
$$

Tilings of an Aztec diamond

This is how a typical tiling of a large Aztec diamond looks like:

Tilings of an Aztec diamond

Here's an even larger one:

Polyominoes

Instead of dominoes, we can consider larger tiles. For example, trominoes are tiles consisting of 3 little squares:

Polyominoes

Instead of dominoes, we can consider larger tiles. For example, trominoes are tiles consisting of 3 little squares:

Tetrominoes are tiles consisting of 4 squares:

Polyominoes

How many different polynominoes can we form with n squares?

$$
\begin{array}{r|l|l|l|l|c|c|c|c|c}
\text { \# of squares } & 1 & 2 & 3 & 4 & 5 & 6 & \ldots & n & \ldots \\
\hline \text { \# of polyominoes } & 1 & 1 & 2 & 5 & 12 & 35 & \ldots & & \ldots
\end{array}
$$

Polyominoes

How many different polynominoes can we form with n squares?

$$
\begin{array}{r|l|l|l|l|c|c|c|c|c}
\text { \# of squares } & 1 & 2 & 3 & 4 & 5 & 6 & \ldots & n & \ldots \\
\hline \text { \# of polyominoes } & 1 & 1 & 2 & 5 & 12 & 35 & \ldots & ? ? & \ldots
\end{array}
$$

No formula is known!

