
Graph Isomorphism

De�nition

An isomorphism from a simple graph G to a simple graph H is a

bijection

f : V (G ) → V (H)

such that uv ∈ E (G ) if and only if f (u)f (v) ∈ E (H).

We write G ∼= H to mean that G is isomorphic to H.

Intuitively, G and H are isomorphic if they are drawings of the

�same� graph, possibly with a di�erent labeling of the vertices.

Isomorphism is an equivalence relation on the set of all graphs.

We think of isomorphism classes as unlabeled graphs.

We can show that two graphs are isomorphic by constructing a

bijection as above.

But how do we show that two graphs are not isomorphic?
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Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can �nd a �structural

property� (preserved by isomorphisms) on which they di�er.

For example:

One is bipartite and the other is not.

They have distinct complements.

They have di�erent order or size.

One graph has a vertex of degree k and the other doesn't.

Their chromatic number is not the same.

One contains a cycle and the other does not.

They have di�erent girth.

De�nition

The girth of a graph is the length of its shortest cycle.
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The Petersen graph

De�nition

Let P be the simple graph whose vertex set consists of all the

two-element subsets of {1, 2, 3, 4, 5}. For any two vertices A and

B , let AB be an edge if and only if A ∩ B = ∅.

Some properties of the Petersen graph:

Each vertex has degree 3 (we say that P is 3-regular).

If two vertices are adjacent they do not have a common

neighbor.

Non-adjacent vertices have exactly one common neighbor.

The girth of P is 5.
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Graph decompositions

De�nition

A decomposition of a graph is a list of subgraphs such that each

edge appears in exactly one subgraph in the list.

De�nition

A simple graph is self-complementary if it is isomorphic to its

complement.

Equivalently, an n-vertex H is self-complementary if it is possible to

decompose Kn into two copies of H.
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1.2 Walks, paths and cycles

De�nition

A walk is an alternating list v0, e1, v1, e2, v2, . . . , ek , vk of vertices

and edges such that for 1 ≤ i ≤ k , the edge ei has endpoints vi−1

and vi .
An u, v-walk is a walk with �rst vertex u and last vertex v .

De�nition

A walk is closed if the �rst and the last vertex are the same.

De�nition

A path is a walk with no repeated vertex.

De�nition

A closed walk with no repeated vertex other than the �rst and the

last is called a cycle.
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Walks, paths and cycles

For simple graphs, it is not necessary to list the edges of a walk or

a path; it su�ces to list the vertices.

De�nition

The length of a walk, path, or cycle is its number of edges.

Lemma

Every u, v -walk contains a u, v -path.

Exercise: prove that if there is a path from u to v and a path from

v to w , then there must be a path from u to w .
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Components of a graph

De�nition

A graph is connected if for any two vertices u, v , it has a
u, v -path. Otherwise, it is disconnected.

De�nition

The components of a graph are its maximal connected subgraphs.

Proposition

Every graph with n vertices and k edges has at least n − k
components.

Deleting an edge can increase the number of components by at

most one. This is not the case when deleting a vertex.
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Cut-edges and cut-vertices

De�nition

A cut-edge or cut-vertex of a graph is an edge or vertex,

respectively, whose deletion increases the number of components.

Notation:

G − e is the graph obtained by deleting the edge e from G .

Note that when we delete an edge we do not remove its

endpoints.

G − v is the graph obtained by deleting the vertex v from G .

Note that when we delete a vertex we delete all the edges

incident to it.

For M ⊆ E (G ), G −M is the graph obtained by deleting the

edges in the set M from G .

For S ⊆ V (G ), G − S is the graph obtained by deleting the

vertices in the set S from G .
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