Graph Isomorphism

Definition

An isomorphism from a simple graph G to a simple graph H is a bijection

$$
f: V(G) \rightarrow V(H)
$$

such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.
We write $G \cong H$ to mean that G is isomorphic to H.

Graph Isomorphism

Definition

An isomorphism from a simple graph G to a simple graph H is a bijection

$$
f: V(G) \rightarrow V(H)
$$

such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.
We write $G \cong H$ to mean that G is isomorphic to H.
Intuitively, G and H are isomorphic if they are drawings of the "same" graph, possibly with a different labeling of the vertices.

Graph Isomorphism

Definition

An isomorphism from a simple graph G to a simple graph H is a bijection

$$
f: V(G) \rightarrow V(H)
$$

such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.
We write $G \cong H$ to mean that G is isomorphic to H.
Intuitively, G and H are isomorphic if they are drawings of the "same" graph, possibly with a different labeling of the vertices. Isomorphism is an equivalence relation on the set of all graphs. We think of isomorphism classes as unlabeled graphs.

Graph Isomorphism

Definition

An isomorphism from a simple graph G to a simple graph H is a bijection

$$
f: V(G) \rightarrow V(H)
$$

such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.
We write $G \cong H$ to mean that G is isomorphic to H.
Intuitively, G and H are isomorphic if they are drawings of the "same" graph, possibly with a different labeling of the vertices. Isomorphism is an equivalence relation on the set of all graphs. We think of isomorphism classes as unlabeled graphs.

We can show that two graphs are isomorphic by constructing a bijection as above.

Graph Isomorphism

Definition

An isomorphism from a simple graph G to a simple graph H is a bijection

$$
f: V(G) \rightarrow V(H)
$$

such that $u v \in E(G)$ if and only if $f(u) f(v) \in E(H)$.
We write $G \cong H$ to mean that G is isomorphic to H.
Intuitively, G and H are isomorphic if they are drawings of the "same" graph, possibly with a different labeling of the vertices. Isomorphism is an equivalence relation on the set of all graphs. We think of isomorphism classes as unlabeled graphs.

We can show that two graphs are isomorphic by constructing a bijection as above.
But how do we show that two graphs are not isomorphic?

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.
- Their chromatic number is not the same.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.
- Their chromatic number is not the same.
- One contains a cycle and the other does not.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.
- Their chromatic number is not the same.
- One contains a cycle and the other does not.
- They have different girth.

Showing that two graphs are not isomorphic

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.
- Their chromatic number is not the same.
- One contains a cycle and the other does not.
- They have different girth.

Definition

The girth of a graph is the length of its shortest cycle.

The Petersen graph

Definition

Let P be the simple graph whose vertex set consists of all the two-element subsets of $\{1,2,3,4,5\}$. For any two vertices A and B, let $A B$ be an edge if and only if $A \cap B=\emptyset$.

The Petersen graph

Definition

Let P be the simple graph whose vertex set consists of all the two-element subsets of $\{1,2,3,4,5\}$. For any two vertices A and B, let $A B$ be an edge if and only if $A \cap B=\emptyset$.

Some properties of the Petersen graph:

The Petersen graph

Definition

Let P be the simple graph whose vertex set consists of all the two-element subsets of $\{1,2,3,4,5\}$. For any two vertices A and B, let $A B$ be an edge if and only if $A \cap B=\emptyset$.

Some properties of the Petersen graph:

- Each vertex has degree 3 (we say that P is 3 -regular).

The Petersen graph

Definition

Let P be the simple graph whose vertex set consists of all the two-element subsets of $\{1,2,3,4,5\}$. For any two vertices A and B, let $A B$ be an edge if and only if $A \cap B=\emptyset$.

Some properties of the Petersen graph:

- Each vertex has degree 3 (we say that P is 3 -regular).
- If two vertices are adjacent they do not have a common neighbor.

The Petersen graph

Definition

Let P be the simple graph whose vertex set consists of all the two-element subsets of $\{1,2,3,4,5\}$. For any two vertices A and B, let $A B$ be an edge if and only if $A \cap B=\emptyset$.

Some properties of the Petersen graph:

- Each vertex has degree 3 (we say that P is 3 -regular).
- If two vertices are adjacent they do not have a common neighbor.
- Non-adjacent vertices have exactly one common neighbor.

The Petersen graph

Definition

Let P be the simple graph whose vertex set consists of all the two-element subsets of $\{1,2,3,4,5\}$. For any two vertices A and B, let $A B$ be an edge if and only if $A \cap B=\emptyset$.

Some properties of the Petersen graph:

- Each vertex has degree 3 (we say that P is 3 -regular).
- If two vertices are adjacent they do not have a common neighbor.
- Non-adjacent vertices have exactly one common neighbor.
- The girth of P is 5 .

Graph decompositions

Definition

A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

Graph decompositions

Definition

A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

Definition

A simple graph is self-complementary if it is isomorphic to its complement.

Graph decompositions

Definition

A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

Definition

A simple graph is self-complementary if it is isomorphic to its complement.

Equivalently, an n-vertex H is self-complementary if it is possible to decompose K_{n} into two copies of H.

1.2 Walks, paths and cycles

Definition

A walk is an alternating list $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{k}, v_{k}$ of vertices and edges such that for $1 \leq i \leq k$, the edge e_{i} has endpoints v_{i-1} and v_{i}.
An u, v-walk is a walk with first vertex u and last vertex v.

1.2 Walks, paths and cycles

Definition

A walk is an alternating list $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{k}, v_{k}$ of vertices and edges such that for $1 \leq i \leq k$, the edge e_{i} has endpoints v_{i-1} and v_{i}.
An u, v-walk is a walk with first vertex u and last vertex v.

Definition

A walk is closed if the first and the last vertex are the same.

1.2 Walks, paths and cycles

Definition

A walk is an alternating list $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{k}, v_{k}$ of vertices and edges such that for $1 \leq i \leq k$, the edge e_{i} has endpoints v_{i-1} and v_{i}.
An u, v-walk is a walk with first vertex u and last vertex v.

Definition

A walk is closed if the first and the last vertex are the same.

Definition

A path is a walk with no repeated vertex.

1.2 Walks, paths and cycles

Definition

A walk is an alternating list $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{k}, v_{k}$ of vertices and edges such that for $1 \leq i \leq k$, the edge e_{i} has endpoints v_{i-1} and v_{i}.
An u, v-walk is a walk with first vertex u and last vertex v.

Definition

A walk is closed if the first and the last vertex are the same.

Definition

A path is a walk with no repeated vertex.

Definition

A closed walk with no repeated vertex other than the first and the last is called a cycle.

Walks, paths and cycles

For simple graphs, it is not necessary to list the edges of a walk or a path; it suffices to list the vertices.

Walks, paths and cycles

For simple graphs, it is not necessary to list the edges of a walk or a path; it suffices to list the vertices.

Definition

The length of a walk, path, or cycle is its number of edges.

Walks, paths and cycles

For simple graphs, it is not necessary to list the edges of a walk or a path; it suffices to list the vertices.

Definition

The length of a walk, path, or cycle is its number of edges.

Lemma

Every u, v-walk contains a u, v-path.

Walks, paths and cycles

For simple graphs, it is not necessary to list the edges of a walk or a path; it suffices to list the vertices.

Definition

The length of a walk, path, or cycle is its number of edges.

Lemma

Every u, v-walk contains a u, v-path.

Exercise: prove that if there is a path from u to v and a path from v to w, then there must be a path from u to w.

Components of a graph

Definition

A graph is connected if for any two vertices u, v, it has a u, v-path. Otherwise, it is disconnected.

Components of a graph

Definition

A graph is connected if for any two vertices u, v, it has a u, v-path. Otherwise, it is disconnected.

Definition

The components of a graph are its maximal connected subgraphs.

Components of a graph

Definition

A graph is connected if for any two vertices u, v, it has a u, v-path. Otherwise, it is disconnected.

Definition

The components of a graph are its maximal connected subgraphs.

Proposition
Every graph with n vertices and k edges has at least $n-k$ components.

Components of a graph

Definition

A graph is connected if for any two vertices u, v, it has a u, v-path. Otherwise, it is disconnected.

Definition

The components of a graph are its maximal connected subgraphs.

Proposition

Every graph with n vertices and k edges has at least $n-k$ components.

Deleting an edge can increase the number of components by at most one. This is not the case when deleting a vertex.

Cut-edges and cut-vertices

Definition

A cut-edge or cut-vertex of a graph is an edge or vertex, respectively, whose deletion increases the number of components.

Cut-edges and cut-vertices

Definition

A cut-edge or cut-vertex of a graph is an edge or vertex, respectively, whose deletion increases the number of components.

Notation:

- $G-e$ is the graph obtained by deleting the edge e from G. Note that when we delete an edge we do not remove its endpoints.

Cut-edges and cut-vertices

Definition

A cut-edge or cut-vertex of a graph is an edge or vertex, respectively, whose deletion increases the number of components.

Notation:

- $G-e$ is the graph obtained by deleting the edge e from G. Note that when we delete an edge we do not remove its endpoints.
- $G-v$ is the graph obtained by deleting the vertex v from G. Note that when we delete a vertex we delete all the edges incident to it.

Cut-edges and cut-vertices

Definition

A cut-edge or cut-vertex of a graph is an edge or vertex, respectively, whose deletion increases the number of components.

Notation:

- $G-e$ is the graph obtained by deleting the edge e from G. Note that when we delete an edge we do not remove its endpoints.
- $G-v$ is the graph obtained by deleting the vertex v from G. Note that when we delete a vertex we delete all the edges incident to it.
- For $M \subseteq E(G), G-M$ is the graph obtained by deleting the edges in the set M from G.

Cut-edges and cut-vertices

Definition

A cut-edge or cut-vertex of a graph is an edge or vertex, respectively, whose deletion increases the number of components.

Notation:

- $G-e$ is the graph obtained by deleting the edge e from G. Note that when we delete an edge we do not remove its endpoints.
- $G-v$ is the graph obtained by deleting the vertex v from G. Note that when we delete a vertex we delete all the edges incident to it.
- For $M \subseteq E(G), G-M$ is the graph obtained by deleting the edges in the set M from G.
- For $S \subseteq V(G), G-S$ is the graph obtained by deleting the vertices in the set S from G.

