Graph Isomorphism

Definition

An isomorphism from a simple graph G to a simple graph H is a bijection

$$f:V(G)\to V(H)$$

such that $uv \in E(G)$ if and only if $f(u)f(v) \in E(H)$.

We write $G \cong H$ to mean that G is isomorphic to H.

An isomorphism from a simple graph G to a simple graph H is a bijection

$$f:V(G)\to V(H)$$

such that $uv \in E(G)$ if and only if $f(u)f(v) \in E(H)$.

We write $G \cong H$ to mean that G is isomorphic to H.

Intuitively, G and H are isomorphic if they are drawings of the "same" graph, possibly with a different labeling of the vertices.

An isomorphism from a simple graph G to a simple graph H is a bijection

$$f:V(G)\to V(H)$$

such that $uv \in E(G)$ if and only if $f(u)f(v) \in E(H)$.

We write $G \cong H$ to mean that G is isomorphic to H.

Intuitively, G and H are isomorphic if they are drawings of the "same" graph, possibly with a different labeling of the vertices.

lsomorphism is an equivalence relation on the set of all graphs. We think of isomorphism classes as *unlabeled graphs*.

An isomorphism from a simple graph G to a simple graph H is a bijection

$$f:V(G)\to V(H)$$

such that $uv \in E(G)$ if and only if $f(u)f(v) \in E(H)$.

We write $G \cong H$ to mean that G is isomorphic to H.

Intuitively, G and H are isomorphic if they are drawings of the "same" graph, possibly with a different labeling of the vertices.

lsomorphism is an equivalence relation on the set of all graphs. We think of isomorphism classes as *unlabeled graphs*.

We can show that two graphs are isomorphic by constructing a bijection as above.

An isomorphism from a simple graph G to a simple graph H is a bijection

$$f:V(G)\to V(H)$$

such that $uv \in E(G)$ if and only if $f(u)f(v) \in E(H)$.

We write $G \cong H$ to mean that G is isomorphic to H.

Intuitively, G and H are isomorphic if they are drawings of the "same" graph, possibly with a different labeling of the vertices.

lsomorphism is an equivalence relation on the set of all graphs. We think of isomorphism classes as *unlabeled graphs*.

We can show that two graphs are isomorphic by constructing a bijection as above.

But how do we show that two graphs are not isomorphic?

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

• One is bipartite and the other is not.

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

- One is bipartite and the other is not.
- They have distinct complements.

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.
- Their chromatic number is not the same.

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.
- Their chromatic number is not the same.
- One contains a cycle and the other does not.

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.
- Their chromatic number is not the same.
- One contains a cycle and the other does not.
- They have different girth.

To show two graphs are not isomorphic, we can find a "structural property" (preserved by isomorphisms) on which they differ.

For example:

- One is bipartite and the other is not.
- They have distinct complements.
- They have different order or size.
- One graph has a vertex of degree k and the other doesn't.
- Their chromatic number is not the same.
- One contains a cycle and the other does not.
- They have different girth.

Definition

The girth of a graph is the length of its shortest cycle.

Let P be the simple graph whose vertex set consists of all the two-element subsets of $\{1, 2, 3, 4, 5\}$. For any two vertices A and B, let AB be an edge if and only if $A \cap B = \emptyset$.

Let P be the simple graph whose vertex set consists of all the two-element subsets of $\{1, 2, 3, 4, 5\}$. For any two vertices A and B, let AB be an edge if and only if $A \cap B = \emptyset$.

Let P be the simple graph whose vertex set consists of all the two-element subsets of $\{1, 2, 3, 4, 5\}$. For any two vertices A and B, let AB be an edge if and only if $A \cap B = \emptyset$.

Some properties of the Petersen graph:

• Each vertex has degree 3 (we say that *P* is 3-regular).

Let P be the simple graph whose vertex set consists of all the two-element subsets of $\{1, 2, 3, 4, 5\}$. For any two vertices A and B, let AB be an edge if and only if $A \cap B = \emptyset$.

- Each vertex has degree 3 (we say that *P* is 3-regular).
- If two vertices are adjacent they do not have a common neighbor.

Let P be the simple graph whose vertex set consists of all the two-element subsets of $\{1, 2, 3, 4, 5\}$. For any two vertices A and B, let AB be an edge if and only if $A \cap B = \emptyset$.

- Each vertex has degree 3 (we say that *P* is 3-regular).
- If two vertices are adjacent they do not have a common neighbor.
- Non-adjacent vertices have exactly one common neighbor.

Let P be the simple graph whose vertex set consists of all the two-element subsets of $\{1, 2, 3, 4, 5\}$. For any two vertices A and B, let AB be an edge if and only if $A \cap B = \emptyset$.

- Each vertex has degree 3 (we say that *P* is 3-regular).
- If two vertices are adjacent they do not have a common neighbor.
- Non-adjacent vertices have exactly one common neighbor.
- The girth of *P* is 5.

A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

Definition

A simple graph is **self-complementary** if it is isomorphic to its complement.

A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

Definition

A simple graph is **self-complementary** if it is isomorphic to its complement.

Equivalently, an *n*-vertex H is self-complementary if it is possible to decompose K_n into two copies of H.

A walk is an alternating list $v_0, e_1, v_1, e_2, v_2, \ldots, e_k, v_k$ of vertices and edges such that for $1 \le i \le k$, the edge e_i has endpoints v_{i-1} and v_i .

An u, v-walk is a walk with first vertex u and last vertex v.

A walk is an alternating list $v_0, e_1, v_1, e_2, v_2, \ldots, e_k, v_k$ of vertices and edges such that for $1 \le i \le k$, the edge e_i has endpoints v_{i-1} and v_i .

An u, v-walk is a walk with first vertex u and last vertex v.

Definition

A walk is **closed** if the first and the last vertex are the same.

A walk is an alternating list $v_0, e_1, v_1, e_2, v_2, \ldots, e_k, v_k$ of vertices and edges such that for $1 \le i \le k$, the edge e_i has endpoints v_{i-1} and v_i .

An u, v-walk is a walk with first vertex u and last vertex v.

Definition

A walk is **closed** if the first and the last vertex are the same.

Definition

A **path** is a walk with no repeated vertex.

A walk is an alternating list $v_0, e_1, v_1, e_2, v_2, \ldots, e_k, v_k$ of vertices and edges such that for $1 \le i \le k$, the edge e_i has endpoints v_{i-1} and v_i .

An u, v-walk is a walk with first vertex u and last vertex v.

Definition

A walk is **closed** if the first and the last vertex are the same.

Definition

A **path** is a walk with no repeated vertex.

Definition

A closed walk with no repeated vertex other than the first and the last is called a **cycle**.

Definition

The length of a walk, path, or cycle is its number of edges.

Definition

The length of a walk, path, or cycle is its number of edges.

Lemma

Every u, v-walk contains a u, v-path.

Definition

The length of a walk, path, or cycle is its number of edges.

Lemma

Every u, v-walk contains a u, v-path.

Exercise: prove that if there is a path from u to v and a path from v to w, then there must be a path from u to w.

Components of a graph

Definition

A graph is **connected** if for any two vertices u, v, it has a u, v-path. Otherwise, it is **disconnected**.

A graph is **connected** if for any two vertices u, v, it has a u, v-path. Otherwise, it is **disconnected**.

Definition

The components of a graph are its maximal connected subgraphs.

A graph is **connected** if for any two vertices u, v, it has a u, v-path. Otherwise, it is **disconnected**.

Definition

The components of a graph are its maximal connected subgraphs.

Proposition

Every graph with n vertices and k edges has at least n - k components.

A graph is **connected** if for any two vertices u, v, it has a u, v-path. Otherwise, it is **disconnected**.

Definition

The components of a graph are its maximal connected subgraphs.

Proposition

Every graph with n vertices and k edges has at least n - k components.

Deleting an edge can increase the number of components by at most one. This is not the case when deleting a vertex.

Cut-edges and cut-vertices

Definition

A **cut-edge** or **cut-vertex** of a graph is an edge or vertex, respectively, whose deletion increases the number of components.

Cut-edges and cut-vertices

Definition

A **cut-edge** or **cut-vertex** of a graph is an edge or vertex, respectively, whose deletion increases the number of components.

Notation:

G - e is the graph obtained by deleting the edge e from G.
 Note that when we delete an edge we do not remove its endpoints.

Cut-edges and cut-vertices

Definition

A **cut-edge** or **cut-vertex** of a graph is an edge or vertex, respectively, whose deletion increases the number of components.

Notation:

- *G e* is the graph obtained by deleting the edge *e* from *G*. Note that when we delete an edge we do not remove its endpoints.
- G v is the graph obtained by deleting the vertex v from G.
 Note that when we delete a vertex we delete all the edges incident to it.

A **cut-edge** or **cut-vertex** of a graph is an edge or vertex, respectively, whose deletion increases the number of components.

Notation:

- G e is the graph obtained by deleting the edge e from G.
 Note that when we delete an edge we do not remove its endpoints.
- G v is the graph obtained by deleting the vertex v from G.
 Note that when we delete a vertex we delete all the edges incident to it.
- For M ⊆ E(G), G − M is the graph obtained by deleting the edges in the set M from G.

A **cut-edge** or **cut-vertex** of a graph is an edge or vertex, respectively, whose deletion increases the number of components.

Notation:

- G e is the graph obtained by deleting the edge e from G.
 Note that when we delete an edge we do not remove its endpoints.
- G v is the graph obtained by deleting the vertex v from G.
 Note that when we delete a vertex we delete all the edges incident to it.
- For M ⊆ E(G), G − M is the graph obtained by deleting the edges in the set M from G.
- For S ⊆ V(G), G − S is the graph obtained by deleting the vertices in the set S from G.