
Cut-edges and cut-vertices

De�nition

A cut-edge or cut-vertex of a graph is an edge or vertex,

respectively, whose deletion increases the number of components.

Notation:

G − e is the graph obtained by deleting the edge e from G .

Note that when we delete an edge we do not remove its

endpoints.

G − v is the graph obtained by deleting the vertex v from G .

Note that when we delete a vertex we delete all the edges

incident to it.

For M ⊆ E (G ), G −M is the graph obtained by deleting the

edges in the set M from G .

For S ⊆ V (G ), G − S is the graph obtained by deleting the

vertices in the set S from G .
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Induced subgraphs

De�nition

An induced subgraph is a subgraph obtained by deleting a set of

vertices.

If T ⊆ V (G ) is the set of vertices that are left, we denote the

corresponding induced subgraph by G [T ].

Note that G [T ] is the graph with vertex set T containing all the

edges in G with both endpoints in T .

Letting T = V (G ) \ T , we have that G [T ] = G − T .
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Characterization of cut-edges

Theorem

An edge is a cut-edge if and only if it belongs to no cycle.



Characterization of bipartite graphs

We will characterize bipartite graphs in terms of their cycles.

Lemma

Every closed odd walk contains an odd cycle.

Note that this is not true if we replace odd with even.

Theorem (König 1936)

A graph is bipartite if and only if it contains no odd cycle.
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Characterization of Eulerian graphs

Recall the Königsberg bridge problem.

De�nition

A graph is Eulerian if it has a closed walk that contains each edge

exactly once. Such a walk is called an Eulerian circuit.

Lemma

If every vertex of a graph has degree ≥ 2, then it contains a cycle.

Theorem (Characterization of Eulerian graphs)

A connected graph is Eulerian if and only if all its vertices have

even degree.
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