
Characterization of Eulerian graphs

Recall the Königsberg bridge problem.

De�nition

A graph is Eulerian if it has a closed walk that contains each edge
exactly once. Such a walk is called an Eulerian circuit.

Lemma

If every vertex of a graph has degree ≥ 2, then it contains a cycle.

Theorem (Characterization of Eulerian graphs)

A connected graph is Eulerian if and only if all its vertices have

even degree.
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1.3 Vertex degrees

The degree of a vertex v is the number of edges incident to v .

Notation:

d(v) = degree of vertex v
(we write dG (v) is we want to specify the graph G )

∆(G ) = maximum degree of G

δ(G ) = minimum degree of G

De�nition

A graph G is regular if ∆(G ) = δ(G ).
It is k-regular if ∆(G ) = δ(G ) = k .

De�nition

The neighborhood of v , denoted by NG (v) or N(v), is the set of
vertices that are adjacent to v .
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The Handshaking Lemma

Proposition (Degree-sum formula)∑
v∈V (G)

d(v) =

2e(G ),

where e(G ) denotes the number of edges of G .

Some consequences:

δ(G ) ≤ 2e(G )

n(G )
≤ ∆(G )

(this fraction is the average vertex degree)

Every graph has an even number of odd-degree vertices.

A k-regular graph with n vertices has nk
2

edges.
In particular, if n is odd, then k must be even.
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Example: the hypercube

The hypercube of dimension k , Qk , is the graph whose vertices are
all k-tuples of 0s and 1s, and whose edges are pairs that di�er in
exactly one position.

In the homework, you showed that Qk is bipartite.

Exercise:

n(Qk) = 2k

e(Qk) = k2k−1

(using the handshaking lemma and the fact that Qk is k-regular)

Proposition

A k-regular bipartite graph has the same number of vertices in each

partite set.
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The Reconstruction Conjecture

Conjecture (The Reconstruction Conjecture)

If G is a simple graph with at least 3 vertices, then G is uniquely

determined by the list of unlabeled subgraphs obtained from G by

deleting one vertex.

[Example]
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