Characterization of Eulerian graphs

Recall the Königsberg bridge problem.

Characterization of Eulerian graphs

Recall the Königsberg bridge problem.

Definition

A graph is Eulerian if it has a closed walk that contains each edge exactly once. Such a walk is called an Eulerian circuit.

Characterization of Eulerian graphs

Recall the Königsberg bridge problem.

Definition

A graph is Eulerian if it has a closed walk that contains each edge exactly once. Such a walk is called an Eulerian circuit.

Lemma

If every vertex of a graph has degree ≥ 2, then it contains a cycle.

Characterization of Eulerian graphs

Recall the Königsberg bridge problem.

Definition

A graph is Eulerian if it has a closed walk that contains each edge exactly once. Such a walk is called an Eulerian circuit.

Lemma

If every vertex of a graph has degree ≥ 2, then it contains a cycle.

Theorem (Characterization of Eulerian graphs)

A connected graph is Eulerian if and only if all its vertices have even degree.

1.3 Vertex degrees

The degree of a vertex v is the number of edges incident to v.

1.3 Vertex degrees

The degree of a vertex v is the number of edges incident to v.
Notation:

- $d(v)=$ degree of vertex v (we write $d_{G}(v)$ is we want to specify the graph G)

1.3 Vertex degrees

The degree of a vertex v is the number of edges incident to v.
Notation:

- $d(v)=$ degree of vertex v (we write $d_{G}(v)$ is we want to specify the graph G)
- $\Delta(G)=$ maximum degree of G

1.3 Vertex degrees

The degree of a vertex v is the number of edges incident to v.
Notation:

- $d(v)=$ degree of vertex v (we write $d_{G}(v)$ is we want to specify the graph G)
- $\Delta(G)=$ maximum degree of G
- $\delta(G)=$ minimum degree of G

1.3 Vertex degrees

The degree of a vertex v is the number of edges incident to v.
Notation:

- $d(v)=$ degree of vertex v (we write $d_{G}(v)$ is we want to specify the graph G)
- $\Delta(G)=$ maximum degree of G
- $\delta(G)=$ minimum degree of G

Definition

A graph G is regular if $\Delta(G)=\delta(G)$.
It is k-regular if $\Delta(G)=\delta(G)=k$.

1.3 Vertex degrees

The degree of a vertex v is the number of edges incident to v.
Notation:

- $d(v)=$ degree of vertex v (we write $d_{G}(v)$ is we want to specify the graph G)
- $\Delta(G)=$ maximum degree of G
- $\delta(G)=$ minimum degree of G

Definition

A graph G is regular if $\Delta(G)=\delta(G)$.
It is k-regular if $\Delta(G)=\delta(G)=k$.

Definition

The neighborhood of v, denoted by $N_{G}(v)$ or $N(v)$, is the set of vertices that are adjacent to v.

The Handshaking Lemma

Proposition (Degree-sum formula)

$$
\sum_{v \in V(G)} d(v)=
$$

The Handshaking Lemma

Proposition (Degree-sum formula)

$$
\sum_{v \in V(G)} d(v)=2 e(G)
$$

where $e(G)$ denotes the number of edges of G.

The Handshaking Lemma

Proposition (Degree-sum formula)

$$
\sum_{v \in V(G)} d(v)=2 e(G)
$$

where $e(G)$ denotes the number of edges of G.

Some consequences:
-

$$
\delta(G) \leq \frac{2 e(G)}{n(G)} \leq \Delta(G)
$$

The Handshaking Lemma

Proposition (Degree-sum formula)

$$
\sum_{v \in V(G)} d(v)=2 e(G)
$$

where $e(G)$ denotes the number of edges of G.

Some consequences:

-

$$
\delta(G) \leq \frac{2 e(G)}{n(G)} \leq \Delta(G)
$$

(this fraction is the average vertex degree)

The Handshaking Lemma

Proposition (Degree-sum formula)

$$
\sum_{v \in V(G)} d(v)=2 e(G)
$$

where $e(G)$ denotes the number of edges of G.

Some consequences:

-

$$
\delta(G) \leq \frac{2 e(G)}{n(G)} \leq \Delta(G)
$$

(this fraction is the average vertex degree)

- Every graph has an even number of odd-degree vertices.

The Handshaking Lemma

Proposition (Degree-sum formula)

$$
\sum_{v \in V(G)} d(v)=2 e(G)
$$

where $e(G)$ denotes the number of edges of G.

Some consequences:

-

$$
\delta(G) \leq \frac{2 e(G)}{n(G)} \leq \Delta(G)
$$

(this fraction is the average vertex degree)

- Every graph has an even number of odd-degree vertices.
- A k-regular graph with n vertices has $\frac{n k}{2}$ edges.

The Handshaking Lemma

Proposition (Degree-sum formula)

$$
\sum_{v \in V(G)} d(v)=2 e(G)
$$

where $e(G)$ denotes the number of edges of G.

Some consequences:

-

$$
\delta(G) \leq \frac{2 e(G)}{n(G)} \leq \Delta(G)
$$

(this fraction is the average vertex degree)

- Every graph has an even number of odd-degree vertices.
- A k-regular graph with n vertices has $\frac{n k}{2}$ edges. In particular, if n is odd, then k must be even.

Example: the hypercube

The hypercube of dimension k, Q_{k}, is the graph whose vertices are all k-tuples of 0 s and 1 s , and whose edges are pairs that differ in exactly one position.

Example: the hypercube

The hypercube of dimension k, Q_{k}, is the graph whose vertices are all k-tuples of 0 s and 1 s , and whose edges are pairs that differ in exactly one position.
In the homework, you showed that Q_{k} is bipartite.

Example: the hypercube

The hypercube of dimension k, Q_{k}, is the graph whose vertices are all k-tuples of 0 s and 1 s , and whose edges are pairs that differ in exactly one position.

In the homework, you showed that Q_{k} is bipartite.
Exercise:
$n\left(Q_{k}\right)=$

Example: the hypercube

The hypercube of dimension k, Q_{k}, is the graph whose vertices are all k-tuples of 0 s and 1 s , and whose edges are pairs that differ in exactly one position.

In the homework, you showed that Q_{k} is bipartite.
Exercise:

$$
\begin{aligned}
& n\left(Q_{k}\right)=2^{k} \\
& e\left(Q_{k}\right)=
\end{aligned}
$$

Example: the hypercube

The hypercube of dimension k, Q_{k}, is the graph whose vertices are all k-tuples of 0 s and 1 s , and whose edges are pairs that differ in exactly one position.

In the homework, you showed that Q_{k} is bipartite.
Exercise:

$$
\begin{aligned}
& n\left(Q_{k}\right)=2^{k} \\
& e\left(Q_{k}\right)=k 2^{k-1}
\end{aligned}
$$

(using the handshaking lemma and the fact that Q_{k} is k-regular)

Example: the hypercube

The hypercube of dimension k, Q_{k}, is the graph whose vertices are all k-tuples of 0 s and 1 s , and whose edges are pairs that differ in exactly one position.

In the homework, you showed that Q_{k} is bipartite.
Exercise:
$n\left(Q_{k}\right)=2^{k}$
$e\left(Q_{k}\right)=k 2^{k-1}$
(using the handshaking lemma and the fact that Q_{k} is k-regular)

Proposition

A k-regular bipartite graph has the same number of vertices in each partite set.

The Reconstruction Conjecture

Conjecture (The Reconstruction Conjecture)

If G is a simple graph with at least 3 vertices, then G is uniquely determined by the list of unlabeled subgraphs obtained from G by deleting one vertex.

The Reconstruction Conjecture

Conjecture (The Reconstruction Conjecture)

If G is a simple graph with at least 3 vertices, then G is uniquely determined by the list of unlabeled subgraphs obtained from G by deleting one vertex.
[Example]

