Extremal problems

Let \mathcal{C} be some class of graphs.
(For example: simple graphs, planar graphs with n vertices...)

Extremal problems

Let \mathcal{C} be some class of graphs.
(For example: simple graphs, planar graphs with n vertices...)
Let $f: \mathcal{C} \rightarrow\{0,1,2, \ldots\}$ be some function.
(For example: the number of edges, the size of the largest independent set, the chromatic number...)

Extremal problems

Let \mathcal{C} be some class of graphs.
(For example: simple graphs, planar graphs with n vertices...)
Let $f: \mathcal{C} \rightarrow\{0,1,2, \ldots\}$ be some function.
(For example: the number of edges, the size of the largest independent set, the chromatic number...)

An extremal problem asks for the maximum or minimum value of the function f over the graphs in \mathcal{C}.

Extremal problems

Let \mathcal{C} be some class of graphs.
(For example: simple graphs, planar graphs with n vertices...)
Let $f: \mathcal{C} \rightarrow\{0,1,2, \ldots\}$ be some function.
(For example: the number of edges, the size of the largest independent set, the chromatic number...)

An extremal problem asks for the maximum or minimum value of the function f over the graphs in \mathcal{C}.

To find the maximum value we have to:

- Find a bound β.
- Show that every graph G in \mathcal{C} satisfies $f(G) \leq \beta$.
- Find a graph G in \mathcal{C} such that $f(G)=\beta$.

Extremal problems

Let \mathcal{C} be some class of graphs.
(For example: simple graphs, planar graphs with n vertices...)
Let $f: \mathcal{C} \rightarrow\{0,1,2, \ldots\}$ be some function.
(For example: the number of edges, the size of the largest independent set, the chromatic number...)

An extremal problem asks for the maximum or minimum value of the function f over the graphs in \mathcal{C}.

To find the maximum value we have to:

- Find a bound β.
- Show that every graph G in \mathcal{C} satisfies $f(G) \leq \beta$.
- Find a graph G in \mathcal{C} such that $f(G)=\beta$.

Example: The maximum number of edges in a simple graph of order n is

Extremal problems

Let \mathcal{C} be some class of graphs.
(For example: simple graphs, planar graphs with n vertices...)
Let $f: \mathcal{C} \rightarrow\{0,1,2, \ldots\}$ be some function.
(For example: the number of edges, the size of the largest independent set, the chromatic number...)

An extremal problem asks for the maximum or minimum value of the function f over the graphs in \mathcal{C}.

To find the maximum value we have to:

- Find a bound β.
- Show that every graph G in \mathcal{C} satisfies $f(G) \leq \beta$.
- Find a graph G in \mathcal{C} such that $f(G)=\beta$.

Example: The maximum number of edges in a simple graph of order n is $\binom{n}{2}$.

Example: edges and minimum degrees in connected graphs

Proposition

The minimum number of edges in a connected graph of order n is

Example: edges and minimum degrees in connected graphs

Proposition

The minimum number of edges in a connected graph of order n is $n-1$.

Example: edges and minimum degrees in connected graphs

Proposition

The minimum number of edges in a connected graph of order n is $n-1$.

Theorem

Let G be a simple graph of order n. If $d(v)+d(u) \geq n-1$ for every pair of vertices $u, v \in V(G)$, then G is connected.

Example: edges and minimum degrees in connected graphs

Proposition

The minimum number of edges in a connected graph of order n is $n-1$.

Theorem

Let G be a simple graph of order n. If $d(v)+d(u) \geq n-1$ for every pair of vertices $u, v \in V(G)$, then G is connected.

Corollary

If G is a simple graph of order n with $\delta(G) \geq \frac{n-1}{2}$, then G is connected.

Example: edges and minimum degrees in connected graphs

Proposition

The minimum number of edges in a connected graph of order n is $n-1$.

Theorem

Let G be a simple graph of order n. If $d(v)+d(u) \geq n-1$ for every pair of vertices $u, v \in V(G)$, then G is connected.

Corollary

If G is a simple graph of order n with $\delta(G) \geq \frac{n-1}{2}$, then G is connected.

This bound on $\delta(G)$ is best possible, in the sense that there are simple graphs with $\delta(G)=\frac{n}{2}-1$ that are not connected.

Example: edges and minimum degrees in connected graphs

Proposition

The minimum number of edges in a connected graph of order n is $n-1$.

Theorem

Let G be a simple graph of order n. If $d(v)+d(u) \geq n-1$ for every pair of vertices $u, v \in V(G)$, then G is connected.

Corollary

If G is a simple graph of order n with $\delta(G) \geq \frac{n-1}{2}$, then G is connected.

This bound on $\delta(G)$ is best possible, in the sense that there are simple graphs with $\delta(G)=\frac{n}{2}-1$ that are not connected.

Definition

The sum of two graphs G and H is the graph obtained by taking tho union of dicinint innioc of G and H

Finding a large bipartite subgraph

Theorem

Every simple graph G has a bipartite subgraph with at least e $(G) / 2$ edges.

Finding a large bipartite subgraph

Theorem

Every simple graph G has a bipartite subgraph with at least $e(G) / 2$ edges.

Definition

G is H-free if G has no induced subgraph isomorphic to H.

Finding a large bipartite subgraph

Theorem

Every simple graph G has a bipartite subgraph with at least $e(G) / 2$ edges.

Definition

G is H-free if G has no induced subgraph isomorphic to H.
Question: What is the maximum number of edges in a triangle-free simple graph with n vertices?

Finding a large bipartite subgraph

Theorem

Every simple graph G has a bipartite subgraph with at least $e(G) / 2$ edges.

Definition

G is H-free if G has no induced subgraph isomorphic to H.
Question: What is the maximum number of edges in a triangle-free simple graph with n vertices?

Theorem (Mantel 1907)

The maximum number of edges in a triangle-free simple graph with n vertices is $\left\lfloor n^{2} / 4\right\rfloor$.

