Let \mathcal{C} be some class of graphs.

(For example: simple graphs, planar graphs with *n* vertices...)

Let $\mathcal C$ be some class of graphs.

(For example: simple graphs, planar graphs with *n* vertices...)

Let $f : C \to \{0, 1, 2, ...\}$ be some function. (For example: the number of edges, the size of the largest independent set, the chromatic number...)

Let $\mathcal C$ be some class of graphs.

(For example: simple graphs, planar graphs with *n* vertices...)

Let $f : C \to \{0, 1, 2, ...\}$ be some function. (For example: the number of edges, the size of the largest independent set, the chromatic number...)

An extremal problem asks for the maximum or minimum value of the function f over the graphs in C.

Let $\mathcal C$ be some class of graphs.

(For example: simple graphs, planar graphs with *n* vertices...)

Let $f : C \to \{0, 1, 2, ...\}$ be some function. (For example: the number of edges, the size of the largest independent set, the chromatic number...)

An extremal problem asks for the maximum or minimum value of the function f over the graphs in C.

To find the maximum value we have to:

- Find a bound β .
- Show that every graph G in C satisfies $f(G) \leq \beta$.
- Find a graph G in C such that $f(G) = \beta$.

Let $\mathcal C$ be some class of graphs.

(For example: simple graphs, planar graphs with *n* vertices...)

Let $f : C \to \{0, 1, 2, ...\}$ be some function. (For example: the number of edges, the size of the largest independent set, the chromatic number...)

An extremal problem asks for the maximum or minimum value of the function f over the graphs in C.

To find the maximum value we have to:

- Find a bound β .
- Show that every graph G in C satisfies $f(G) \leq \beta$.
- Find a graph G in C such that $f(G) = \beta$.

Example: The maximum number of edges in a simple graph of order n is

Let $\mathcal C$ be some class of graphs.

(For example: simple graphs, planar graphs with *n* vertices...)

Let $f : C \to \{0, 1, 2, ...\}$ be some function. (For example: the number of edges, the size of the largest independent set, the chromatic number...)

An extremal problem asks for the maximum or minimum value of the function f over the graphs in C.

To find the maximum value we have to:

- Find a bound β .
- Show that every graph G in C satisfies $f(G) \leq \beta$.
- Find a graph G in C such that $f(G) = \beta$.

Example: The maximum number of edges in a simple graph of order *n* is $\binom{n}{2}$.

Proposition

The minimum number of edges in a connected graph of order n is

Proposition

The minimum number of edges in a connected graph of order n is n-1.

Proposition

The minimum number of edges in a connected graph of order n is n-1.

Theorem

Let G be a simple graph of order n. If $d(v) + d(u) \ge n - 1$ for every pair of vertices $u, v \in V(G)$, then G is connected.

Proposition

The minimum number of edges in a connected graph of order n is n-1.

Theorem

Let G be a simple graph of order n. If $d(v) + d(u) \ge n - 1$ for every pair of vertices $u, v \in V(G)$, then G is connected.

Corollary

If G is a simple graph of order n with $\delta(G) \ge \frac{n-1}{2}$, then G is connected.

Proposition

The minimum number of edges in a connected graph of order n is n-1.

Theorem

Let G be a simple graph of order n. If $d(v) + d(u) \ge n - 1$ for every pair of vertices $u, v \in V(G)$, then G is connected.

Corollary

If G is a simple graph of order n with $\delta(G) \ge \frac{n-1}{2}$, then G is connected.

This bound on $\delta(G)$ is best possible, in the sense that there are simple graphs with $\delta(G) = \frac{n}{2} - 1$ that are **not** connected.

Proposition

The minimum number of edges in a connected graph of order n is n-1.

Theorem

Let G be a simple graph of order n. If $d(v) + d(u) \ge n - 1$ for every pair of vertices $u, v \in V(G)$, then G is connected.

Corollary

If G is a simple graph of order n with $\delta(G) \ge \frac{n-1}{2}$, then G is connected.

This bound on $\delta(G)$ is best possible, in the sense that there are simple graphs with $\delta(G) = \frac{n}{2} - 1$ that are **not** connected.

Definition

The sum of two graphs G and H is the graph obtained by taking the union of disjoint copies of G and H

Finding a large bipartite subgraph

Theorem

Every simple graph G has a bipartite subgraph with at least e(G)/2 edges.

Theorem

Every simple graph G has a bipartite subgraph with at least e(G)/2 edges.

Definition

G is H-free if G has no induced subgraph isomorphic to H.

Theorem

Every simple graph G has a bipartite subgraph with at least e(G)/2 edges.

Definition

G is H-free if G has no induced subgraph isomorphic to H.

Question: What is the maximum number of edges in a triangle-free simple graph with n vertices?

Theorem

Every simple graph G has a bipartite subgraph with at least e(G)/2 edges.

Definition

G is H-free if G has no induced subgraph isomorphic to H.

Question: What is the maximum number of edges in a triangle-free simple graph with n vertices?

Theorem (Mantel 1907)

The maximum number of edges in a triangle-free simple graph with n vertices is $\lfloor n^2/4 \rfloor$.