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Proposition
The minimum number of edges in a connected graph of order n is
n—1.

Theorem

Let G be a simple graph of order n. If d(v) + d(u) > n—1 for
every pair of vertices u,v € V/(G), then G is connected.

Corollary

If G is a simple graph of order n with §(G) > "5, then G is
connected.

This bound on §(G) is best possible, in the sense that there are
simple graphs with 5(G) = 7 — 1 that are not connected.

Definition

The sum of two graphs G and H is the graph obtained by taking
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Finding a large bipartite subgraph

Theorem
Every simple graph G has a bipartite subgraph with at least e(G)/2
edges.

Definition
G is H-free if G has no induced subgraph isomorphic to H.

Question: What is the maximum number of edges in a triangle-free
simple graph with n vertices?

Theorem (Mantel 1907)

The maximum number of edges in a triangle-free simple graph with
n vertices is |n?/4].



