Finding a large bipartite subgraph

Theorem

Every simple graph G has a bipartite subgraph with at least e(G)/2 edges.

Theorem

Every simple graph G has a bipartite subgraph with at least e(G)/2 edges.

Definition

G is H-free if G has no induced subgraph isomorphic to H.

Theorem

Every simple graph G has a bipartite subgraph with at least e(G)/2 edges.

Definition

G is H-free if G has no induced subgraph isomorphic to H.

Question: What is the maximum number of edges in a triangle-free simple graph with n vertices?

Theorem

Every simple graph G has a bipartite subgraph with at least e(G)/2 edges.

Definition

G is H-free if G has no induced subgraph isomorphic to H.

Question: What is the maximum number of edges in a triangle-free simple graph with n vertices?

Theorem (Mantel 1907)

The maximum number of edges in a triangle-free simple graph with n vertices is $\lfloor n^2/4 \rfloor$.

Definition

The degree sequence of a graph is the list of its vertex degrees written in weakly decreasing order, namely (d_1, d_2, \ldots, d_n) where $d_1 \ge d_2 \ge \cdots \ge d_n$.

Definition

The degree sequence of a graph is the list of its vertex degrees written in weakly decreasing order, namely (d_1, d_2, \ldots, d_n) where $d_1 \ge d_2 \ge \cdots \ge d_n$.

Question: Given a weakly decreasing sequence (a_1, a_2, \ldots, a_n) , is this the degree sequence of some graph?

Definition

The degree sequence of a graph is the list of its vertex degrees written in weakly decreasing order, namely (d_1, d_2, \ldots, d_n) where $d_1 \ge d_2 \ge \cdots \ge d_n$.

Question: Given a weakly decreasing sequence (a_1, a_2, \ldots, a_n) , is this the degree sequence of some graph?

Proposition

A weakly decreasing sequence $(a_1, a_2, ..., a_n)$ of non-negative integers is the degree sequence of some graph if and only if $a_1 + a_2 + \cdots + a_n$ is even.

Definition

A graphic sequence is a degree sequence of some simple graph.

Definition

A graphic sequence is a degree sequence of some simple graph.

Examples:

• Is (2, 2, 1, 1) graphic?

Definition

A graphic sequence is a degree sequence of some simple graph.

Examples:

- Is (2, 2, 1, 1) graphic?
- Is (3,3,3,3,3,2,2,1) graphic?

Definition

A graphic sequence is a degree sequence of some simple graph.

Examples:

- Is (2, 2, 1, 1) graphic?
- Is (3,3,3,3,3,2,2,1) graphic?

Theorem (Havel'55, Hakimi'62)

A weakly decreasing sequence (d_1, d_2, \ldots, d_n) is graphic if and only if the sequence

$$(d_2 - 1, d_3 - 1, \dots, d_{d_1} - 1, d_{d_1+1} - 1, d_{d_1+2}, \dots, d_n)$$

is graphic.

Note that this sequence is obtained by deleting the largest element d_1 and subtracting 1 from the next d_1 largest elements.

Definition

A directed graph or digraph, D, consists of a set of vertices, V(D), and a set of edges, E(D). Each edge is an ordered pair of vertices.

Definition

A directed graph or digraph, D, consists of a set of vertices, V(D), and a set of edges, E(D). Each edge is an ordered pair of vertices.

If e = (u, v), we call u the tail and v the head of the edge u.

Definition

A directed graph or digraph, D, consists of a set of vertices, V(D), and a set of edges, E(D). Each edge is an ordered pair of vertices.

If e = (u, v), we call u the tail and v the head of the edge u.

Digraphs are used to model finite automata and Markov chains, and also to represent functions from a finite set to itself.

Definition

A directed graph or digraph, D, consists of a set of vertices, V(D), and a set of edges, E(D). Each edge is an ordered pair of vertices.

If e = (u, v), we call u the tail and v the head of the edge u.

Digraphs are used to model finite automata and Markov chains, and also to represent functions from a finite set to itself.

Definition

A digraph is **simple** if each ordered pair is the head and the tail of at most one edge. One loop may be present at each vertex.

Definition

A directed graph or digraph, D, consists of a set of vertices, V(D), and a set of edges, E(D). Each edge is an ordered pair of vertices.

If e = (u, v), we call u the tail and v the head of the edge u.

Digraphs are used to model finite automata and Markov chains, and also to represent functions from a finite set to itself.

Definition

A digraph is **simple** if each ordered pair is the head and the tail of at most one edge. One loop may be present at each vertex.

Definition

The underlying graph of a digraph D is the graph obtained by treating the edges of D as unordered pairs.