Finding a large bipartite subgraph

Theorem

Every simple graph G has a bipartite subgraph with at least e $(G) / 2$ edges.

Finding a large bipartite subgraph

Theorem

Every simple graph G has a bipartite subgraph with at least $e(G) / 2$ edges.

Definition

G is H-free if G has no induced subgraph isomorphic to H.

Finding a large bipartite subgraph

Theorem

Every simple graph G has a bipartite subgraph with at least $e(G) / 2$ edges.

Definition

G is H-free if G has no induced subgraph isomorphic to H.
Question: What is the maximum number of edges in a triangle-free simple graph with n vertices?

Finding a large bipartite subgraph

Theorem

Every simple graph G has a bipartite subgraph with at least $e(G) / 2$ edges.

Definition

G is H-free if G has no induced subgraph isomorphic to H.
Question: What is the maximum number of edges in a triangle-free simple graph with n vertices?

Theorem (Mantel 1907)

The maximum number of edges in a triangle-free simple graph with n vertices is $\left\lfloor n^{2} / 4\right\rfloor$.

Degree sequences

Definition

The degree sequence of a graph is the list of its vertex degrees written in weakly decreasing order, namely $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ where $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$.

Degree sequences

Definition

The degree sequence of a graph is the list of its vertex degrees written in weakly decreasing order, namely $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ where $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$.

Question: Given a weakly decreasing sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, is this the degree sequence of some graph?

Degree sequences

Definition

The degree sequence of a graph is the list of its vertex degrees written in weakly decreasing order, namely $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ where $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$.

Question: Given a weakly decreasing sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, is this the degree sequence of some graph?

Proposition

A weakly decreasing sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of non-negative integers is the degree sequence of some graph if and only if $a_{1}+a_{2}+\cdots+a_{n}$ is even.

Graphic sequences

Definition
A graphic sequence is a degree sequence of some simple graph.

Graphic sequences

Definition

A graphic sequence is a degree sequence of some simple graph.
Examples:

- Is $(2,2,1,1)$ graphic?

Graphic sequences

Definition

A graphic sequence is a degree sequence of some simple graph.
Examples:

- Is $(2,2,1,1)$ graphic?
- Is $(3,3,3,3,3,2,2,1)$ graphic?

Graphic sequences

Definition

A graphic sequence is a degree sequence of some simple graph.
Examples:

- Is $(2,2,1,1)$ graphic?
- Is $(3,3,3,3,3,2,2,1)$ graphic?

Theorem (Havel'55, Hakimi'62)

A weakly decreasing sequence $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is graphic if and only if the sequence

$$
\left(d_{2}-1, d_{3}-1, \ldots, d_{d_{1}}-1, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}\right)
$$

is graphic.
Note that this sequence is obtained by deleting the largest element d_{1} and subtracting 1 from the next d_{1} largest elements.

1.4 Directed graphs

Definition

A directed graph or digraph, D, consists of a set of vertices, $V(D)$, and a set of edges, $E(D)$. Each edge is an ordered pair of vertices.

1.4 Directed graphs

Definition

A directed graph or digraph, D, consists of a set of vertices, $V(D)$, and a set of edges, $E(D)$. Each edge is an ordered pair of vertices.

If $e=(u, v)$, we call u the tail and v the head of the edge u.

1.4 Directed graphs

Definition

A directed graph or digraph, D, consists of a set of vertices, $V(D)$, and a set of edges, $E(D)$. Each edge is an ordered pair of vertices.

If $e=(u, v)$, we call u the tail and v the head of the edge u. Digraphs are used to model finite automata and Markov chains, and also to represent functions from a finite set to itself.

1.4 Directed graphs

Definition

A directed graph or digraph, D, consists of a set of vertices, $V(D)$, and a set of edges, $E(D)$. Each edge is an ordered pair of vertices.

If $e=(u, v)$, we call u the tail and v the head of the edge u. Digraphs are used to model finite automata and Markov chains, and also to represent functions from a finite set to itself.

Definition

A digraph is simple if each ordered pair is the head and the tail of at most one edge. One loop may be present at each vertex.

1.4 Directed graphs

Definition

A directed graph or digraph, D, consists of a set of vertices, $V(D)$, and a set of edges, $E(D)$. Each edge is an ordered pair of vertices.

If $e=(u, v)$, we call u the tail and v the head of the edge u. Digraphs are used to model finite automata and Markov chains, and also to represent functions from a finite set to itself.

Definition

A digraph is simple if each ordered pair is the head and the tail of at most one edge. One loop may be present at each vertex.

Definition

The underlying graph of a digraph D is the graph obtained by treating the edges of D as unordered pairs.

