1.4 Directed graphs

Definition

A directed graph or digraph, D, consists of a set of vertices, $V(D)$, and a set of edges, $E(D)$. Each edge is an ordered pair of vertices.

1.4 Directed graphs

Definition

A directed graph or digraph, D, consists of a set of vertices, $V(D)$, and a set of edges, $E(D)$. Each edge is an ordered pair of vertices.

If $e=(u, v)$, we call u the tail and v the head of the edge u.

1.4 Directed graphs

Definition

A directed graph or digraph, D, consists of a set of vertices, $V(D)$, and a set of edges, $E(D)$. Each edge is an ordered pair of vertices.

If $e=(u, v)$, we call u the tail and v the head of the edge u. Digraphs are used to model finite automata and Markov chains, and also to represent functions from a finite set to itself.

1.4 Directed graphs

Definition

A directed graph or digraph, D, consists of a set of vertices, $V(D)$, and a set of edges, $E(D)$. Each edge is an ordered pair of vertices.

If $e=(u, v)$, we call u the tail and v the head of the edge u. Digraphs are used to model finite automata and Markov chains, and also to represent functions from a finite set to itself.

Definition

A digraph is simple if each ordered pair is the head and the tail of at most one edge. One loop may be present at each vertex.

1.4 Directed graphs

Definition

A directed graph or digraph, D, consists of a set of vertices, $V(D)$, and a set of edges, $E(D)$. Each edge is an ordered pair of vertices.

If $e=(u, v)$, we call u the tail and v the head of the edge u. Digraphs are used to model finite automata and Markov chains, and also to represent functions from a finite set to itself.

Definition

A digraph is simple if each ordered pair is the head and the tail of at most one edge. One loop may be present at each vertex.

Definition

The underlying graph of a digraph D is the graph obtained by treating the edges of D as unordered pairs.

Adjacency and Incidence matrices

Definition

The adjacency matrix of a diagraph D of order n is the $n \times n$ matrix where the entry $a_{i j}$ is the number of edges from v_{i} to v_{j}.

Adjacency and Incidence matrices

Definition

The adjacency matrix of a diagraph D of order n is the $n \times n$ matrix where the entry $a_{i j}$ is the number of edges from v_{i} to v_{j}.

Definition

The incidence matrix of a diagraph D of order n and size e is the $n \times e$ matrix with entries

$$
m_{i j}= \begin{cases}1 & \text { if } v_{i} \text { is the tail of } e_{j} \\ -1 & \text { if } v_{i} \text { is the head of } e_{j} \\ 0 & \text { otherwise }\end{cases}
$$

Connectedness

Definition

A diagraph is weakly connected if its underlying graph is connected.

Connectedness

Definition

A diagraph is weakly connected if its underlying graph is connected.
A diagraph is strongly connected if for every ordered pair of vertices u and v there is a path from u to v.

Vertex degrees

Notation:

- $d^{+}(v)$ denotes the outdegree of v, which is the number of edges with tail v.

Vertex degrees

Notation:

- $d^{+}(v)$ denotes the outdegree of v, which is the number of edges with tail v.
- $d^{-}(v)$ denotes the indegree of v, which is the number of edges with head v.

Vertex degrees

Notation:

- $d^{+}(v)$ denotes the outdegree of v, which is the number of edges with tail v.
- $d^{-}(v)$ denotes the indegree of v, which is the number of edges with head v.
- $\delta^{+}(D)$ and $\delta^{-}(D)$ denote the minimum outdegree and indegree of D, respectively.

Vertex degrees

Notation:

- $d^{+}(v)$ denotes the outdegree of v, which is the number of edges with tail v.
- $d^{-}(v)$ denotes the indegree of v, which is the number of edges with head v.
- $\delta^{+}(D)$ and $\delta^{-}(D)$ denote the minimum outdegree and indegree of D, respectively.
- $\Delta^{+}(D)$ and $\Delta^{-}(D)$ denote the maximum outdegree and indegree of D, respectively.

Vertex degrees

Notation:

- $d^{+}(v)$ denotes the outdegree of v, which is the number of edges with tail v.
- $d^{-}(v)$ denotes the indegree of v, which is the number of edges with head v.
- $\delta^{+}(D)$ and $\delta^{-}(D)$ denote the minimum outdegree and indegree of D, respectively.
- $\Delta^{+}(D)$ and $\Delta^{-}(D)$ denote the maximum outdegree and indegree of D, respectively.

Proposition

In a diagraph D,

$$
\sum_{v \in V(D)} d^{+}(v)=\sum_{v \in V(D)} d^{-}(v)=e(D)
$$

Eulerian digraphs

Theorem

A weakly connected digraph is Eulerian if and only if $d^{+}(v)=d^{-}(v)$ for each vertex v.

De Bruijn cycles

Is there a cyclic arrangement of 2^{n} binary digits such that the 2^{n} strings of n consecutive digits are all distinct?

De Bruijn cycles

Is there a cyclic arrangement of 2^{n} binary digits such that the 2^{n} strings of n consecutive digits are all distinct?

An cyclic arrangement with this property is called a de Bruijn sequence.

De Bruijn cycles

Is there a cyclic arrangement of 2^{n} binary digits such that the 2^{n} strings of n consecutive digits are all distinct?

An cyclic arrangement with this property is called a de Bruijn sequence.

To construct such sequences, define a digraph D_{n}, called a de Bruijn graph, as follows:

- $V\left(D_{n}\right)$ is the set of binary words of length $n-1$.

De Bruijn cycles

Is there a cyclic arrangement of 2^{n} binary digits such that the 2^{n} strings of n consecutive digits are all distinct?

An cyclic arrangement with this property is called a de Bruijn sequence.

To construct such sequences, define a digraph D_{n}, called a de Bruijn graph, as follows:

- $V\left(D_{n}\right)$ is the set of binary words of length $n-1$.
- There is an edge from $a_{1} a_{2} \ldots a_{n-1}$ to $b_{1} b_{2} \ldots b_{n-1}$ if $a_{2} \ldots a_{n-1}=b_{1} b_{2} \ldots b_{n-2}$.

De Bruijn cycles

Is there a cyclic arrangement of 2^{n} binary digits such that the 2^{n} strings of n consecutive digits are all distinct?

An cyclic arrangement with this property is called a de Bruijn sequence.

To construct such sequences, define a digraph D_{n}, called a de Bruijn graph, as follows:

- $V\left(D_{n}\right)$ is the set of binary words of length $n-1$.
- There is an edge from $a_{1} a_{2} \ldots a_{n-1}$ to $b_{1} b_{2} \ldots b_{n-1}$ if $a_{2} \ldots a_{n-1}=b_{1} b_{2} \ldots b_{n-2}$. We label this edge with b_{n-1}.

De Bruijn cycles

Is there a cyclic arrangement of 2^{n} binary digits such that the 2^{n} strings of n consecutive digits are all distinct?

An cyclic arrangement with this property is called a de Bruijn sequence.

To construct such sequences, define a digraph D_{n}, called a de Bruijn graph, as follows:

- $V\left(D_{n}\right)$ is the set of binary words of length $n-1$.
- There is an edge from $a_{1} a_{2} \ldots a_{n-1}$ to $b_{1} b_{2} \ldots b_{n-1}$ if $a_{2} \ldots a_{n-1}=b_{1} b_{2} \ldots b_{n-2}$. We label this edge with b_{n-1}.

Theorem

The digraph D_{n} is Eulerian, and the edge labels of any Eulerian circuit form a de Bruijn sequence.

The number simple graphs and digraphs

The number of simple graphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is

The number simple graphs and digraphs

The number of simple graphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2\binom{n}{2}$.

The number simple graphs and digraphs

The number of simple graphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2\binom{n}{2}$.
The number of simple digraphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is

The number simple graphs and digraphs

The number of simple graphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2\binom{n}{2}$. The number of simple digraphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2^{n^{2}}$.

The number simple graphs and digraphs

The number of simple graphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2\binom{n}{2}$. The number of simple digraphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2^{n^{2}}$.

Definition

An orientation of a graph G is a digraph obtained by choosing a direction for each edge.

The number simple graphs and digraphs

The number of simple graphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2\binom{n}{2}$. The number of simple digraphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2^{n^{2}}$.

Definition

An orientation of a graph G is a digraph obtained by choosing a direction for each edge.

A tournament is an orientation of K_{n}.

The number simple graphs and digraphs

The number of simple graphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2\binom{n}{2}$. The number of simple digraphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2^{n^{2}}$.

Definition

An orientation of a graph G is a digraph obtained by choosing a direction for each edge.

A tournament is an orientation of K_{n}.
The number of tournaments with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is

The number simple graphs and digraphs

The number of simple graphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2\binom{n}{2}$. The number of simple digraphs with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2^{n^{2}}$.

Definition

An orientation of a graph G is a digraph obtained by choosing a direction for each edge.

A tournament is an orientation of K_{n}.
The number of tournaments with vertices $v_{1}, v_{2}, \ldots, v_{n}$ is $2\binom{n}{2}$.

