Definition

A directed graph or digraph, D, consists of a set of vertices, V(D), and a set of edges, E(D). Each edge is an ordered pair of vertices.

Definition

A directed graph or digraph, D, consists of a set of vertices, V(D), and a set of edges, E(D). Each edge is an ordered pair of vertices.

If e = (u, v), we call u the tail and v the head of the edge u.

Definition

A directed graph or digraph, D, consists of a set of vertices, V(D), and a set of edges, E(D). Each edge is an ordered pair of vertices.

If e = (u, v), we call u the tail and v the head of the edge u.

Digraphs are used to model finite automata and Markov chains, and also to represent functions from a finite set to itself.

Definition

A directed graph or digraph, D, consists of a set of vertices, V(D), and a set of edges, E(D). Each edge is an ordered pair of vertices.

If e = (u, v), we call u the tail and v the head of the edge u.

Digraphs are used to model finite automata and Markov chains, and also to represent functions from a finite set to itself.

Definition

A digraph is **simple** if each ordered pair is the head and the tail of at most one edge. One loop may be present at each vertex.

Definition

A directed graph or digraph, D, consists of a set of vertices, V(D), and a set of edges, E(D). Each edge is an ordered pair of vertices.

If e = (u, v), we call u the tail and v the head of the edge u.

Digraphs are used to model finite automata and Markov chains, and also to represent functions from a finite set to itself.

Definition

A digraph is **simple** if each ordered pair is the head and the tail of at most one edge. One loop may be present at each vertex.

Definition

The underlying graph of a digraph D is the graph obtained by treating the edges of D as unordered pairs.

The adjacency matrix of a diagraph D of order n is the $n \times n$ matrix where the entry a_{ij} is the number of edges from v_i to v_j .

The **adjacency matrix** of a diagraph D of order n is the $n \times n$ matrix where the entry a_{ij} is the number of edges from v_i to v_j .

Definition

The incidence matrix of a diagraph D of order n and size e is the $n \times e$ matrix with entries

$$m_{ij} = \begin{cases} 1 & \text{if } v_i \text{ is the tail of } e_j, \\ -1 & \text{if } v_i \text{ is the head of } e_j, \\ 0 & otherwise. \end{cases}$$

A diagraph is **weakly connected** if its underlying graph is connected.

A diagraph is weakly connected if its underlying graph is connected. A diagraph is strongly connected if for every ordered pair of vertices u and v there is a path from u to v.

Notation:

d⁺(v) denotes the outdegree of v, which is the number of edges with tail v.

Notation:

- d⁺(v) denotes the outdegree of v, which is the number of edges with tail v.
- d⁻(v) denotes the indegree of v, which is the number of edges with head v.

Notation:

- d⁺(v) denotes the outdegree of v, which is the number of edges with tail v.
- d⁻(v) denotes the indegree of v, which is the number of edges with head v.
- δ⁺(D) and δ⁻(D) denote the minimum outdegree and indegree of D, respectively.

Notation:

- d⁺(v) denotes the outdegree of v, which is the number of edges with tail v.
- d⁻(v) denotes the indegree of v, which is the number of edges with head v.
- δ⁺(D) and δ⁻(D) denote the minimum outdegree and indegree of D, respectively.
- Δ⁺(D) and Δ⁻(D) denote the maximum outdegree and indegree of D, respectively.

Notation:

- d⁺(v) denotes the outdegree of v, which is the number of edges with tail v.
- d⁻(v) denotes the indegree of v, which is the number of edges with head v.
- δ⁺(D) and δ⁻(D) denote the minimum outdegree and indegree of D, respectively.
- Δ⁺(D) and Δ⁻(D) denote the maximum outdegree and indegree of D, respectively.

Proposition

In a diagraph D,

$$\sum_{v \in V(D)} d^+(v) = \sum_{v \in V(D)} d^-(v) = e(D).$$

Theorem

A weakly connected digraph is Eulerian if and only if $d^+(v) = d^-(v)$ for each vertex v.

An cyclic arrangement with this property is called a de Bruijn sequence.

An cyclic arrangement with this property is called a de Bruijn sequence.

To construct such sequences, define a digraph D_n , called a **de Bruijn graph**, as follows:

• $V(D_n)$ is the set of binary words of length n-1.

An cyclic arrangement with this property is called a de Bruijn sequence.

To construct such sequences, define a digraph D_n , called a **de Bruijn graph**, as follows:

- $V(D_n)$ is the set of binary words of length n-1.
- There is an edge from $a_1 a_2 ... a_{n-1}$ to $b_1 b_2 ... b_{n-1}$ if $a_2 ... a_{n-1} = b_1 b_2 ... b_{n-2}$.

An cyclic arrangement with this property is called a de Bruijn sequence.

To construct such sequences, define a digraph D_n , called a **de Bruijn graph**, as follows:

- $V(D_n)$ is the set of binary words of length n-1.
- There is an edge from $a_1a_2 \ldots a_{n-1}$ to $b_1b_2 \ldots b_{n-1}$ if $a_2 \ldots a_{n-1} = b_1b_2 \ldots b_{n-2}$. We label this edge with b_{n-1} .

An cyclic arrangement with this property is called a de Bruijn sequence.

To construct such sequences, define a digraph D_n , called a **de Bruijn graph**, as follows:

- $V(D_n)$ is the set of binary words of length n-1.
- There is an edge from $a_1a_2 \ldots a_{n-1}$ to $b_1b_2 \ldots b_{n-1}$ if $a_2 \ldots a_{n-1} = b_1b_2 \ldots b_{n-2}$. We label this edge with b_{n-1} .

Theorem

The digraph D_n is Eulerian, and the edge labels of any Eulerian circuit form a de Bruijn sequence.

The number of simple graphs with vertices v_1, v_2, \ldots, v_n is

The number of simple graphs with vertices v_1, v_2, \ldots, v_n is $2^{\binom{n}{2}}$.

Definition

An orientation of a graph G is a digraph obtained by choosing a direction for each edge.

Definition

An orientation of a graph G is a digraph obtained by choosing a direction for each edge.

A **tournament** is an orientation of K_n .

Definition

An orientation of a graph G is a digraph obtained by choosing a direction for each edge.

```
A tournament is an orientation of K_n.
```

The number of tournaments with vertices v_1, v_2, \ldots, v_n is

Definition

An orientation of a graph G is a digraph obtained by choosing a direction for each edge.

```
A tournament is an orientation of K_n.
```

The number of tournaments with vertices v_1, v_2, \ldots, v_n is $2^{\binom{n}{2}}$.