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Definition

The underlying graph of a digraph D is the graph obtained by
treating the edges of D as unordered pairs.
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The adjacency matrix of a diagraph D of order nis the n x n
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Definition

The incidence matrix of a diagraph D of order n and size e is the
n X e matrix with entries

1 if v; is the tail of e,
mj; = —1 if v; is the head of ¢;,

0 otherwise.
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Definition

A diagraph is weakly connected if its underlying graph is
connected.

A diagraph is strongly connected if for every ordered pair of
vertices u and v there is a path from v to v.
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Vertex degrees

Notation:

e d*(v) denotes the outdegree of v, which is the number of
edges with tail v.

@ d~(v) denotes the indegree of v, which is the number of
edges with head v.

e 67(D) and (D) denote the minimum outdegree and
indegree of D, respectively.

e AT(D) and A~(D) denote the maximum outdegree and
indegree of D, respectively.

In a diagraph D,

Y df(v)= ). d (v)=e(D).

veV(D) veV(D)



Eulerian digraphs

A weakly connected digraph is Eulerian if and only if
dt(v) = d~(v) for each vertex v.
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De Bruijn cycles

Is there a cyclic arrangement of 27 binary digits such that the 2"
strings of n consecutive digits are all distinct?

An cyclic arrangement with this property is called a de Bruijn
sequence.

To construct such sequences, define a digraph D,, called a de
Bruijn graph, as follows:
e V(D,) is the set of binary words of length n — 1.

@ There is an edge from ajay...a,_1 to biby... b, if
ay...ap—1 =biby...by_». We label this edge with b,_;.

Theorem

The digraph Dy, is Eulerian, and the edge labels of any Eulerian
circuit form a de Bruijn sequence.
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The number of simple graphs with vertices vy, va, ..., v, is 2(2).
The number of simple digraphs with vertices vi, vo,..., v, is o,
Definition

An orientation of a graph G is a digraph obtained by choosing a
direction for each edge.

A tournament is an orientation of K,,.

The number of tournaments with vertices vi, vo, ..., v, is 2(2).



