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Abstract

Cancer cells frequently undergo chromosome missegregation events during mitosis,
whereby the copies of a given chromosome are not distributed evenly among the two
daughter cells, thus creating cells with heterogeneous karyotypes. A stochastic model
tracing cellular karyotypes derived from clonal populations over hundreds of generations
was recently developed and experimentally validated, and it was capable of predicting
favorable karyotypes frequently observed in cancer. Here, we construct and study a
Markov chain that precisely describes karyotypic evolution during clonally expanding
cancer cell populations. The Markov chain allows us to directly predict the distribution
of karyotypes and the expected size of the tumor after many cell divisions without
resorting to computationally expensive simulations. We determine the limiting
karyotype distribution of an evolving tumor population, and quantify its dependency on
several key parameters including the initial karyotype of the founder cell, the rate of
whole chromosome missegregation, and chromosome-specific cell viability. Using this
model, we confirm the existence of an optimal rate of chromosome missegregation
probabilities that maximizes karyotypic heterogeneity, while minimizing the occurrence
of nullisomy. Interestingly, karyotypic heterogeneity is significantly more dependent on
chromosome missegregation probabilities rather than the number of cell divisions, so
that maximal heterogeneity can be reached rapidly (within a few hundred generations of
cell division) at chromosome missegregation rates commonly observed in cancer cell
lines. Conversely, at low missegregation rates, heterogeneity is constrained even after
thousands of cell division events. This leads us to conclude that chromosome copy
number heterogeneity is primarily constrained by chromosome missegregation rates and
the risk for nullisomy and less so by the age of the tumor. This model enables direct
integration of karyotype information into existing models of tumor evolution based on
somatic mutations.

Author summary

Chromosomal instability (CIN) is a hallmark of cancer and it results from persistent
chromosome segregation errors during cell division. CIN has been shown to play a key
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role in drug resistance and tumor metastasis. While our understanding of CIN on the
cellular level has grown over the past decade, our ability to predict the behavior of
tumors containing billions of cells remains limited due to the paucity of adequate
mathematical models. Here, we develop a Markov-chain model that is capable of
providing exact solutions for long-term chromosome copy number distributions during
tumor growth. Using this model we confirm the presence of optimal chromosome
missegregation rates that balance genomic heterogeneity required for tumor evolution
and survival. Interestingly, we show that chromosome copy number heterogeneity is
primarily influenced by the rate of chromosome segregation errors rather than the age of
the tumor. At chromosome missegregation rates frequently observed in cancer, tumors
can acquire maximal genomic heterogeneity after a few hundred cell divisions. This
model enables the integration of selection imparted by CIN into existing models of
tumor evolution based on somatic mutations to explore their mutual effects.

Introduction 1

Cancer genomic heterogeneity, which is often driven by genomic instability, enables 2

Darwinian selection, leading to tumor metastasis and increased resistance to therapeutic 3

pressures [1–3]. A frequent, yet understudied source of genetic heterogeneity is 4

numerical chromosomal instability, which allows cancer cells to rapidly vary the number 5

of copies of each chromosome (karyotype) through whole chromosome missegregation 6

events during mitosis [4–7]. This karyotypic heterogeneity can lead to tumor cells with 7

varying fitness levels depending on the potency and distribution of oncogenes 8

(proliferative) and tumor suppressor genes (anti-proliferative) on individual 9

chromosomes [8]. Despite its importance, the contribution of numerical chromosomal 10

instability toward tumor evolution has been poorly understood due to limitations in 11

experimental and theoretical models that attempt to understand this process on the 12

systems level. 13

Chromosome missegregation was first incorporated into a model of tumor evolution 14

by Gusev et al. [9] and later in a continuous time model by Desper et al. [10]. While 15

helpful, these models neglected the observed phenomenon that having more copies of 16

chromosomes encoding a higher fraction of oncogenes is advantageous for the cell, while 17

having more copies of chromosomes encoding tumor suppressor genes increases its 18

chances of dying [8]. Laughney et al. addressed this limitation by building a stochastic 19

model that tracks single cell karyotypes derived from clonal populations over hundreds 20

of generations, while simultaneously allowing the cumulative proliferative or 21

anti-proliferative effects of genes encoded on individual chromosomes to alter cellular 22

viability [4]. This model incorporates chromosome-specific scores derived from a recent 23

genomic analysis by Davoli et al. [8], which weighs individual chromosomes based on the 24

potency and chromosomal distribution of oncogenes (proliferative, contributing 25

positively) and tumor suppressor genes (anti-proliferative, contributing negatively). The 26

scores of the individual chromosomes are then aggregated to determine the survival 27

probability of each cell. In its most basic form, the model assumes the following: 28

1. When a cell divides and gives rise to two daughter cells, each individual 29

chromosome copy has a fixed probability of undergoing a missegregation event. 30

Such an event leads to disproportionate inheritance, causing the two daughter 31

cells to end up with one too many or one too few copies of the missegregated 32

chromosome. 33

2. Cells are considered nonviable if they completely lose any given chromosome (a 34

process known as nullisomy), as they would be missing a number of essential 35
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genes, or if they have more than 8 copies of any given chromosome. Sensitivity 36

analysis for these assumptions has been performed for key conclusions [4]. 37

The model by Laughney et al. unveiled several key observations which were 38

validated experimentally. First, it revealed a highly favorable, and commonly observed 39

near-triploid state, onto which evolving cells converge. This is in line with enrichments 40

for near-triploid karyotypes observed in human tumors deposited in the Mitelman 41

database, as well as tumor ploidy inferred from bulk DNA sequencing of TCGA 42

tumors [11,12]. It also predicted the existence of an optimal missegregation rate 43

—which maximizes cell viability with the generation of heterogeneity— that agreed with 44

the experimentally measured chromosome missegregation rates observed in human 45

cancer-derived cell lines [13,14]. Finally, it was directly validated by predicting the 46

frequency at which single cells deviate from the modal chromosome numbers for any 47

given chromosome in an expanding clonal population after 25 cell divisions, as 48

experimentally measured in single-cell-derived clones by fluorescence in situ 49

hybridization. This model, however, was unable to predict the limiting distribution of 50

cellular karyotypes in a tumor population or to complement models of tumor evolution 51

based on somatic mutations, which occur with relatively low frequency, given the sheer 52

number of cells that must be tracked for many generations in order to reach a 53

probabilistic conclusion. It was also unable to test the dependence of large tumor cell 54

populations on multiple parameters due to the sheer computational power required to 55

perform such simulations. 56

In this paper, we construct and mathematically analyze a Markov chain that 57

describes the evolution of the karyotype of a random cell in the above stochastic model. 58

A special case of this Markov chain was briefly mentioned in [4] and used in some 59

computations. However, no mathematical analysis was given, where the focus was to 60

obtain a biological understanding of the role of numerical chromosomal instability in 61

tumor evolutionary dynamics. 62

The structure of the paper is as follows: in the Methods section, we start by 63

describing a simplified version of the model and its associated Markov chain without 64

chromosome-specific influence on cellular viability. Then we describe the full model 65

which enables chromosome-specific scores to alter cellular viability. In the Results 66

section we analyze both models. First we show that the simplified Markov chain, after 67

some slight adjustments, has interesting mathematical properties; for example, the 68

limiting cellular karyotype does not depend on the chromosome missegregation rate. We 69

study this limiting karyotype, as well as its dependence on the maximum allowed 70

number of copies of each chromosome. Next we focus on the full model, showing that, 71

interestingly, the limiting distribution of cellular karyotypes is no longer independent of 72

missegregation rate in this scenario. We show that by varying key parameters of the 73

model, namely the missegregation rate (or probability, p) and the chromosome scores, 74

very different behaviors are obtained in the limit. In particular, for parameters observed 75

in human cancer cells, the resulting limiting behaviors are more realistic than those 76

predicted in [9]. Finally, using our model, we find that maximal karyotype heterogeneity 77

can indeed be achieved after a small number of cell divisions at chromosome 78

missegregation rates frequently observed in cancer. This suggests that chromosome 79

missegregation is more consequential toward genomic heterogeneity than the tumor 80

lifetime, as tumors with low missegregation rates cannot reach maximal heterogeneity 81

even after tens of thousands of generations of cell division. The Discussion section 82

explains these conclusions, and compares our model to others in the literature. 83
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Methods 84

The basic model 85

Let us begin by describing a simplified version of the stochastic model, which is also 86

used in [4]. 87

The karyotype of a cell is the vector (n1, . . . , n23) where nk is the number of copies 88

of chromosome k that it contains. Starting from a founder cell with a given karyotype, 89

at each generation, all the cells in the colony divide, giving rise to two cells. When a cell 90

divides, each of the nk copies of chromosome k, for 1 ≤ k ≤ 23, splits into two copies. 91

In normal circumstances, each copy goes to one of the daughter cells, so the daughters 92

have the same karyotype as the mother. However, with probability p, the two copies go 93

to the same daughter cell, while the other daughter receives no copies. Such an event is 94

called a missegregation, and p is called the missegregation rate (per chromosome copy 95

per cell division). Note that at each cell division, each copy of each chromosome 96

undergoes a missegregation with probability p, and these events are independent of each 97

other. If the number of copies of a chromosome in a cell reaches 0 or goes above the 98

maximum allowed number of copies, N , the cell automatically dies and no longer 99

reproduces. Thus, for a cell to be viable, it must have 1 ≤ nk ≤ N for all k. 100

The basic stochastic model described in this section does not include 101

chromosome-specific scores; these will be included in the next section. In the basic 102

model, the only way for a cell to die is if the number of copies of a chromosome leaves 103

the range [1, N ]. We construct a Markov chainM that models the proportion of copies 104

of a given chromosome in the colony. The following simplifications will make our model 105

more tractable: 106

(i) Since, by hypothesis, missegregation events that take place for the different 107

chromosomes are independent, we consider only one type of chromosome (say, 108

chromosome k) at a time. Let us suppose, for now, that cells only have one type of 109

chromosome, and so the only information that we need about the cell is whether it 110

is dead, and otherwise how many copies of the chromosome it has. Thus, our 111

Markov chain has an absorbing state labeled 0, corresponding to dead cells, and N 112

non-absorbing states, with a label i, where 1 ≤ i ≤ N , that indicates the number 113

of copies of the chromosome. This simplification allows us to work with only N 114

non-absorbing states instead of N23. We will be able obtain the probability of a 115

given karyotype (n1, . . . , n23), with 1 ≤ nk ≤ N for all k, by multiplying the 116

probability that the Markov chain corresponding to chromosome k is in state nk 117

for 1 ≤ k ≤ 23. 118

(ii) We follow a random branch in the evolution process by starting with the founder 119

cell and randomly considering one of the two daughters at each division. The 120

number of copies of chromosome k in a cell is affected only by the number of 121

copies of that chromosome in the mother and by the missegregation rate. The 122

Markov chainM at time g will give the probability that a random branch, after g 123

generations, ends at cell with i copies of chromosome k, for each 1 ≤ i ≤ N , or at 124

a dead cell with a disallowed number of copies of chromosome k. 125

(iii) To simplify the transition probabilities, we disregard the highly unlikely event that 126

multiple copies of the same chromosome in a cell missegregate simultaneously. To 127

that end, we disregard terms that are quadratic in p, which are negligible when p 128

is very small. 129

With the above assumptions, the transition matrix M for the non-absorbing states

PLOS 4/30



has entries

Mij =


1− ip if i = j,

ip/2 if |i− j| = 1,

0 if |i− j| ≥ 2,

for 1 ≤ i, j ≤ N , where Mij is the probability of transitioning from state i to state j.
Adding an extra row and column corresponding to the absorbing state 0, we get the
matrix

M′ =



1 0 · · · 0
p/2
0
...
0

Np/2

M


.

For example, if the maximum number of chromosomes is N = 8, which is the bound
used in [4], we have

M′ =



1 0 0 0 0 0 0 0 0
p/2 1− p p/2 0 0 0 0 0 0
0 p 1− 2p p 0 0 0 0 0
0 0 3p/2 1− 3p 3p/2 0 0 0 0
0 0 0 2p 1− 4p 2p 0 0 0
0 0 0 0 5p/2 1− 5p 5p/2 0 0
0 0 0 0 0 3p 1− 6p 3p 0
0 0 0 0 0 0 7p/2 1− 7p 7p/2
4p 0 0 0 0 0 0 4p 1− 8p


.

Indeed, each copy of the chromosome in a cell will produce 0, 1 or 2 copies in a
random daughter with probability p/2, 1− p and p/2, respectively. If a cell has i copies
of the chromosome, since each one of these copies missegregates independently, the
probability that a random daughter has j copies is given by the coefficient of xj in the

polynomial
(
p
2 + (1− p)x+ p

2x
2
)i
. Neglecting quadratic terms in p, we have(p

2
+ (1− p)x+

p

2
x2
)i
≈ ip

2
xi−1 + (1− ip)xi + ip

2
xi+1.

This gives the rows of M′, except for the first row, which is trivial because a dead cell 130

does not divide, and the last row, which takes into account that a cell with N + 1 copies 131

is considered dead. 132

To describe the evolution of the karyotypes of tumor cells with 23 types of 133

chromosomes in this basic model, we consider the product of 23 Markov chains, each of 134

them isomorphic toM. We can do this because missegregation events involving 135

different chromosomes are independent, and the number of copies of each chromosome 136

evolves according toM. Product states where at least one of the components 137

corresponds to a dead (i.e. absorbing) state are regarded as dead states in the product 138

chain. Thus, even though the Markov chain for chromosome k does not capture the fact 139

that a cell may die because of a disallowed number of copies of another chromosome, 140

this event is taken into account in the product of the 23 chains. One way to think about 141

it is by pretending that cells with no copies of a chromosome still divide as usual, but 142

they give rise to two dead cells with no copies of that chromosome. 143

The model with chromosome scores 144

In the basic model from the previous section, the only way for a cell to die is if the 145

number of copies of a chromosome reaches 0 or goes above N . A more realistic model 146
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should include the possibility that a cell dies for other reasons. In fact, the karyotype of 147

the cell is postulated to have an influence on its survival probability. It has been 148

proposed [8] that having more copies of certain oncogenic chromosomes is subject to 149

positive selection as evidenced by a pan-cancer analysis of chromosome-level 150

amplifications, whereas having more copies of other tumor-suppressive chromosomes is 151

subject to negative selection. 152

In this section we construct a more general Markov chain which takes these factors 153

into account. This Markov chain describes the evolution of the number of chromosome 154

copies in random cells in the stochastic model of Laughney et al. [4]. As in that model, 155

we assign a score sk to each chromosome k, which is positive for oncogenic chromosomes 156

and negative for tumor-suppressive ones, so that the total score of a cell with karyotype 157

(n1, . . . , n23) is S =
∑23
k=1 sknk. Numerical values of sk were experimentally inferred by 158

Davoli et al. [8]. Here we describe the Markov chain in a more abstract setting where 159

the sk are left as parameters. 160

The survival probability of the cell with score S at a given generation is 161

Qsurv = ec+dS for some constants c < 0 and d > 0, which again are parameters of the 162

model. With probability 1−Qsurv, the cell spontaneously dies at that generation. With 163

probability Qsurv, the cell divides as usual, with missegregation events taking place as in 164

the model without scores. Note that it is still possible for the daughter cells to die if the 165

number of copies of a chromosome leaves the range [1, N ], but this cause of death is 166

unrelated to the survival probability Qsurv. 167

A key obervation that will make the size of our Markov chains tractable is that 168

Qsurv = ec+d
∑23

k=1 sknk =

23∏
k=1

eck+dsknk =

23∏
k=1

qk(nk), (1)

where the ck are arbitrary constants with c1 + · · ·+ c23 = c, and we write 169

qk(i) = eck+dski to denote the contribution to the survival probability coming from 170

chromosome k. It will be convenient to write qk(i) = Cµi for constants C = eck and 171

µ = edsk (note that µ > 1 if and only if chromosome k is oncogenic). 172

Eq (1) allows us to break up the model with chromosome scores into 23 independent 173

Markov chains A(k), one for each chromosome type. In A(k), a cell in state i has 174

probability qk(i) of dividing as usual (as in the Markov chainM from the basic model), 175

and probability 1− qk(i) of spontaneously dying, which is represented by a transition to 176

the absorbing state 0. The evolution of karyotypes in the colony is then described by 177

the product of the 23 Markov chains A(k) for 1 ≤ k ≤ 23. Again, a product state where 178

at least one of the coordinates corresponds to the absorbing state of some A(k) is 179

regarded as a dead state in the product chain. With this setup, a cell with karyotype 180

(n1, . . . , n23) has probability Qsurv =
∏
k qk(nk) of surviving and dividing as in the 181

model without scores, with each chromosome type behaving independently, and 182

probability 1−Qsurv of spontaneously dying. Since viable states in the product chain 183

correspond to products of viable states in the chains A(k), the proportion of cells with a 184

given karyotype (n1, . . . , n23) after g generations (as a fraction of 2g) is given by the 185

product for 1 ≤ k ≤ 23 of the probability that the Markov chain A(k) is in state nk. 186

This means that the simplification (i) described in the previous section is still applicable 187

in the model with chromosome scores. 188

When it creates no confusion, we will simply write A instead of A(k). The transition
matrix of this Markov chain restricted to the non-absorbing states is A, with entries
defined as

Aij =


(1− ip) qk(i) if i = j,

ip qk(i)/2 if |i− j| = 1,

0 if |i− j| ≥ 2,
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for 1 ≤ i, j ≤ N . We can express A as A = DM, where D is the diagonal matrix with 189

Dii = qk(i) for 1 ≤ i ≤ N , and M is the matrix from the basic model. 190

If the value of the parameter c is such that Qsurv ≤ 1 for all valid karyotypes, then it 191

is possible to choose the constants ck so that qk(i) ≤ 1 for 1 ≤ i ≤ N and 1 ≤ k ≤ 23, 192

and so the factors qk(i) can be interpreted as probabilities. We point out, however, that 193

any arbitrary choice of the constants ck, provided that they sum to c, will give the same 194

transition probabilities in the product Markov chain and thus the results of the analysis 195

do not depend on this choice. 196

Incorporating whole genome duplication 197

It is possible to modify our model to allow for whole genome duplication [5]. To this
end, consider an N ×N matrix G with entries

Gij =


−pgd if i = j,

pgd/2 if 2i = j,

0 otherwise,

for 1 ≤ i, j ≤ N , where pgd is a new parameter giving the probability that a random cell 198

duplicates its genome but does not divide at a given generation. 199

To incorporate whole genome duplication, we use the matrices Mgd = M+G and 200

Agd = DMgd instead of M and A, for the basic model and for the model with 201

chromosome scores, respectively. With this modification, the corresponding Markov 202

chains contain a transition from state i to 2i (or to the dead state if 2i > N) with 203

probability pgd/2. Indeed, with probability pgd, a random cell duplicates its genome 204

instead of producing two daughter cells, thus we can consider the transition probability 205

to the “daughter” cell with duplicated genome to be pgd/2, while adding an additional 206

transition to the dead state with probability pgd/2, corresponding to the other 207

“daughter” cell that has not been created. It is possible to modify the matrix G to allow 208

for the genome duplication probability pgd to depend on the number of chromosome 209

copies, by setting different values of pgd for different rows of the matrix. 210

Since our model considers each of the 23 chromosomes independently, it cannot 211

account for correlations between duplications in the different chromosomes (namely, the 212

fact that all 23 chromosmes duplicate simultaneously). Nevertheless, by restricting to 213

one chromosome at a time, the model gives the correct distribution of the number of 214

copies over time, as well as the limiting distribution. 215

Incorporating the effects of aneuploidy during early tumor 216

growth 217

Aneuploidy and chromosomal instability are hallmarks of advanced solid tumors. 218

However, during early stages of tumorigenesis, induction of aneuploidy has been shown 219

to mitigate tumor growth [15,16]. It was postulated that the negative effect of 220

aneuploidy might be due to the various steps needed for tumor cells to become tolerant 221

to chromosome copy number abnormalities. Loss of the tumor suppressor p53 has been 222

shown to be a landmark event in the ability of mammalian cells to tolerate aneuploidy 223

and complex karyotypes [17,18]. In this section we attempt to model the process 224

whereby key tumor suppressor proteins are inactivated either through mutational 225

processes or copy number loss therefore enabling tolerance to chromosome 226

missegregation. 227

To this end, we modify the Markov chain A by adding two additional states that 228

model the early stage of the tumor, when deviation from a perfect diploid karyotype 229

results in death due to the presence of active copies of a certain gene X. Recall that A 230
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contains N states corresponding to cells with i copies (for 1 ≤ i ≤ N) of a particular 231

chromosome k, which we assume is the one containing gene X. To obtain the modified 232

Markov chain, which we call AX , the first additional state that we add to A 233

corresponds to cells with two copies of chromosome k, both of which contain an active 234

copy of gene X; we denote this state by σ. The second additional state corresponds to 235

cells with two copies: one where gene X is active, and one where gene X is inactive due 236

to mutation; we denote this state by τ . 237

Let mr denote the mutation rate, which is the probability that, at a given
generation, a given copy of chromosome k undergoes a mutation that inactivates gene
X. The transition matrix of the modified Markov chain consists of the matrix A with
two additional rows and columns, indexed σ and τ , and the following entries:

Aσσ = ((1− p)46 − 2mr)qk(2), Aστ = 2mrqk(2),
Aτσ = 0, Aττ = ((1− p)46 −mr)qk(2),
Aτ1 = p

2qk(2), Aτ2 = mrqk(2),

Aσi = Aiσ = Aiτ = 0 for 1 ≤ i ≤ N,
Aτi = 0 for 3 ≤ i ≤ N.

Indeed, for a cell in state σ, the probability that either of the two active copies of 238

gene X mutates (transitioning to state τ) is about 2mr. The entry Aσσ accounts for the 239

fact that the cell dies if any of the 46 chromosome copies in the cell (2 for each of the 23 240

human chromosomes) missegregates. The probability of none of these copies 241

missegregating is (1− p)46. In the matrix, these probabilities are multiplied by the 242

usual survival probability qk(2) of a cell with two copies of chromosome k. Similarly, for 243

a cell in state τ , the probability that the active copy of gene X mutates (transitioning 244

to state 2) is mr, and the probability that the active copy missegregates and a random 245

daughter cell receives no active copies (transitioning to state 1) is p/2. 246

Results 247

Mathematical analysis of the basic model 248

Let (Mg)i,j be the entry in row i and column j of the gth power of M. In the 249

one-chromosome version, this number is the proportion of cells after g generations that, 250

starting with a founder cell that has i copies of a chromosome, have j copies of that 251

chromosome. In particular, the sum of the entries of the ith row of Mg, which we 252

denote by sg(i), is the probability that the number of copies of the chromosome is 253

between 1 and N . 254

When combining the 23 Markov chains to keep track of all chromosomes, the 255

product
∏23
k=1 sg(nk) is the surviving fraction after g generations when the founder cell 256

has nk copies of chromosome k for every k, as a fraction of 2g, which would be the 257

number of cells after g generations if there were no deaths. Thus, 2g
∏23
k=1 sg(nk) is the 258

expected number of viable cells after g generations. 259

Restricting to viable cells, the ith row of Mg divided by sg(i) gives the probability 260

distribution of the number of copies of a chromosome after g generations among viable 261

cells, when the founder cell has i copies. More generally, if v is a probability vector that 262

describes an initial distribution of the number of copies, then the vector vMg, divided 263

by the sum of its entries, is the distribution among viable cells of the number of copies 264

after g generations. 265

We are interested in the behavior of the Markov chain when the number of 266

generations tends to infinity. Since the Markov chainM has an absorbing state, namely 267

the one corresponding to dead cells, its stationary distribution is not very interesting: in 268
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the long run, the probability that a random branch ends at a dead cell tends to one. 269

Instead, we would like to know the distribution of the number of chromosome copies 270

among viable cells. Mathematically, we can do this by conditioning on not being on the 271

absorbing state, and finding the limiting conditional distribution on the non-absobring 272

states. 273

The Markov chainM has the property of being irreducible on the non-absorbing 274

states, meaning that it is possible to go from any state other than the absorbing one to 275

any other state if we allow enough steps. Markov chains with this property have been 276

studied in the probability literature, see e.g. [19]. It is known that when conditioning on 277

the non-absorbing states, the limiting conditional distribution of the chain is its 278

so-called quasi-stationary distribution, which is unique. In our case, this is the unique 279

ρ-invariant distribution for M, where ρ is its Perron–Frobenius (i.e. largest) eigenvalue. 280

In other words, this distribution is the vector v ∈ RN≥0 satisfying vM = ρv and 281∑N
i=1 vi = 1. We summarize this result as a lemma, since it will be used later on. 282

Lemma 1. Let Q be a Markov chain with one absorbing state and N non-absorbing 283

states, on which the chain is irreducible. Let Q be the transition matrix restricted to the 284

non-absorbing states, and let ρ be its largest eigenvalue. Then, the limiting distribution 285

of Q conditional on the non-absorbing states is given by the vector v ∈ RN≥0 satisfying 286

vQ = ρv and
∑N
i=1 vi = 1. 287

In particular, it follows from Lemma 1 that the limiting distribution ofM 288

conditional on the non-absorbing states does not depend on the number of chromosome 289

copies of the founder cell. Next we show that, surprisingly, it does not depend on the 290

missegregation rate p either. It will be convenient to write M as M = I+ pJ, where I is 291

the identity matrix, and J is the matrix with entries 292

Jij =


−i if i = j,

i/2 if |i− j| = 1,

0 if |i− j| ≥ 2,

(2)

for 1 ≤ i, j ≤ N . 293

Theorem 2. Assuming p 6= 0, the limiting distribution of the Markov chainM 294

conditional on the non-absorbing states is independent of p. 295

Proof. Let us check that for p 6= 0, the left eigenvectors of M of J are equal. Indeed, if 296

v is a left eigenvector of J with eigenvalue λ, then vJ = λv, which implies that 297

vM = v + pvJ = (1 + pλ)v, that is, v is a left eigenvector of M with eigenvalue 1 + pλ. 298

The converse holds by a very similar argument. 299

In particular, the left eigenvector whose entries are nonnegative and sum to one 300

having largest eigenvalue is the same for M and for J, and so it does not depend on p. 301

By Lemma 1, such an eigenvector for M is the limiting distribution of the Markov chain 302

on non-absorbing states. 303

From now on, for simplicity, the limiting distribution ofM conditional on the 304

non-absorbing states will simply be called the limiting distribution ofM. Even though 305

this distribution does not depend on p by Theorem 2, we will see later that the mixing 306

time does, in the sense that the convergence to the limit distribution is slower if p is 307

small. 308

Our next goal is to describe the limiting distribution ofM. The following 309

straightforward result from linear algebra will be useful when determining the 310

eigenvectors of M. 311
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Lemma 3. For each n ≥ 0, let An be the tridiagonal matrix

An =



a1,1 a1,2 0 · · · 0 0
a2,1 a2,2 a2,3 0 · · · 0
0 a3,2 a3,3 a3,4 0 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 an−1,n−2 an−1,n−1 an−1,n
0 0 · · · 0 an,n−1 an,n


,

where the entries ai,j do not depend on n, and let Pn(x) = det(xI−An) be its 312

characteristic polynomial. Then the following hold: 313

I. Pn(x) satisfies the recurrence

Pn(x) = (x− an,n)Pn−1(x)− an,n−1an−1,nPn−2(x)

for n ≥ 2, with initial conditions P0(x) = 1 and P1(x) = x− a1,1. 314

II. Assuming that aj,j−1 6= 0 for all j, the left eigenvectors of An with eigenvalue λ
have the form v = (v1, v2, . . . , vn), where

vi =
b Pi−1(λ)∏i
j=2 aj,j−1

for 1 ≤ i ≤ n, and b 6= 0 is a constant. 315

Proof. The recurrence for Pn(x) can be obtained easily by expanding the determinant 316

along the last row. 317

To prove part II, note that for 1 ≤ i < n, the i-th component of the vector equation
vAn = λv is

ai−1,ivi−1 + ai,ivi + ai+1,ivi+1 = λvi,

where we write v = (v1, . . . , vn), and we let a0,1 = 0. Solving for vi+1, we get

vi+1 =
1

ai+1,i
((λ− ai,i)vi − ai−1,ivi−1) .

It now follows by induction and using the recurrence for Pn(x) that

vi =
Pi−1(λ) v1∏i
j=2 aj,j−1

.

Letting b = v1 we get the stated expression for v. 318

Let PN (x) be the characteristic polynomial of the matrix J defined in Eq (2). 319

Applying Lemma 3, we see that it satisfies the recurrence 320

Pn(x) = (x+ n)Pn−1(x) +
n(n− 1)

4
Pn−2(x) (3)

with initial conditions P0(x) = 1 and P1(x) = x+ 1. For example, for N = 8, we get

P8(x) = x8+36x7+504x6+3528x5+13230x4+26460x3+26460x2+11340x+2835/2.

The largest eigenvalue of J, which is the largest root of PN (x), depends on N , as shown 321

in Fig 1. 322

Using Lemmas 1 and 3, we can now describe the limiting distribution ofM 323

conditional on the non-absorbing states. The i-th component of v in the next theorem 324

is the fraction of viable cells that have i copies of a given chromosome k, in the limit as 325

the number of generations tends to infinity. 326
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Fig 1. The largest eigenvalue of J as a function of N , for 6 ≤ N ≤ 30.

Theorem 4. The limiting distribution of the Markov chainM conditional on the
non-absorbing states is given by v = 1∑N

i=1 ui
(u1, u2, . . . , uN ) with

ui =
2i−1

i!
Pi−1(α),

where the polynomials Pn(x) satisfy recurrence (3) and α is the largest eigenvalue of J 327

(equivalently, the largest root of PN (x)). 328

Proof. By Lemma 1, the limiting distribution ofM conditional on the non-absorbing 329

states is given by the left eigenvector of J with largest eigenvalue α. The result now 330

follows from Lemma 3, normalizing v so that its components sum to 1. 331

As shown in the proof of Theorem 2, if α is the largest eigenvalue of J, then 1 + pα
is the largest eigenvalue of M. This eigenvalue determines the limiting growth rate of
the tumor, which is the factor by which the number of viable cells multiplies at each
generation assuming that karyotypes are distributed according to the limiting
distribution. This growth rate is

2 (1 + pα)23.

Fig 2A shows a graph of this function for N = 8 and varying p. 332

If we modified the model by allowing only a fraction F of the cells to survive at each 333

generation, killing the remaining ones, then the reciprocal of the limiting growth rate, 334

namely 1
2 (1+pα)23 , would be the threshold such that for values of F below this threshold, 335

the expected number of viable cells would tend to 0 as g →∞, whereas for values of F 336

above this threshold, the size of the colony would grow indefinitely. 337

Finally, Fig 2B shows the proportion of surviving cells, as a fraction of 2g, after 338

g = 1000 generations for different values of p, starting from a cell with 4 copies of each 339

chromosome. The fact that this fraction is close to 1 for very small values of p is 340

another unrealistic prediction of the basic model, which will be addressed by the model 341

with chromosome scores. 342

Limiting distributions in the basic model 343

The limiting distribution described in Theorem 4 is computed in Table 1 for 344

6 ≤ N ≤ 10, along with its average, and graphed in Fig 3 for 8 ≤ N ≤ 16. For every N , 345

the modal chromosomal number is 1, which agrees with the results of Gusev et al. [9], 346
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Fig 2. The limiting growth rate and surviving fraction in the basic model
with N = 8. A: The limiting growth rate as a function of p (in a logarithmic scale). B:
The fraction of cells that survive after 1000 generations, starting with a founder cell
with 4 copies of each chromosome.

although it is not corroborated by experimental observations. In the next section we will 347

describe a better model that will have more realistic outcomes. On the other hand, the 348

average number of chromosome copies depends on N , and it is very close to 3 for N = 8. 349

N limiting distribution ofM conditional on non-absorbing states average
6 (0.34691, 0.25538, 0.17996, 0.11850, 0.069129, 0.030127) 2.3980
7 (0.30638, 0.23576, 0.17598, 0.12582, 0.084111, 0.049851, 0.022079) 2.6832
8 (0.27432, 0.21817, 0.16968, 0.12807, 0.09262, 0.06266, 0.03760, 0.01688) 2.9695
9 (0.24832, 0.20260, 0.16251, 0.12749, 0.09710, 0.07088, 0.04842, 0.02935, 0.01331) 3.2554
10 (0.22681, 0.18888, 0.15517, 0.12533, 0.09906, 0.07600, 0.05592, 0.03852, 0.02354, 0.01078) 3.5418

Table 1. The limiting distribution of M on viable cells and average number of chromosome copies, for
6 ≤ N ≤ 10. The ith entry of each vector is the limiting fraction of viable cells with i copies of the chromosome.

Even though Gusev et al. [9] guess from their figures that the chromosome copy 350

numbers reach a “stable distribution” after a few hundred generations and that changes 351

of N “do not affect the results of calculations,” we remark that the actual limiting 352

distribution is heavily affected by the upper bound N . For example, while for N = 8 353

the limiting proportion of viable cells with one copy of the chromosome is about 0.27432 354

—which is close to the value observed in [9] with p = 0.1 after 200 generations—, for 355

N = 200 this proportion is only 0.012984. 356

Evolution of chromosome copy numbers over time in the basic 357

model 358

Fig 4A–D and S1 Fig show how the distribution of the number of copies of a 359

chromosome evolves over time in the basic model, for different values of the 360

missegregation rate p. The number of chromosome copies of the founder cell is denoted 361

by f . S1 Fig replicates the data over 200 generations obtained by Gusev et al. [9, Figs 362

3A,4A,5A], showing that our simplification (iii) does not noticeably affect the outcome 363

for small values of p. 364

Fig 4A–D shows data for 2000 generations. Note the similarity between Fig 4A and 365

the center panel in S1 Fig. Indeed, for small values of p, increasing the number of 366
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Fig 3. The limiting distribution of M on viable cells for 8 ≤ N ≤ 16. The
average number of chromosome copies for each N is represented by a dot on the x-axis.

generations by a factor of s has a similar effect to multiplying p by a factor of s. This is 367

because (I+ pJ)s ≈ I+ spJ. Fig 4D uses a different upper bound N = 16 on the 368

allowed number of copies, and otherwise the same parameters as Fig 4C. 369

Mathematical analysis of the full model 370

The ith row of the matrix Ag, when normalized by dividing by the sum of the entries in
the row, gives the distribution of the number of copies of chromosome k in viable cells
after g generations, having started with a founder cell that has i copies of the
chromosome. Note that before normalizing, the entries of Ag are affected by the choice

of the constants ck. However, if we denote by s
(k)
g (i) the sum of the entries of the ith

row of Ag, then the product
∏23
k=1 s

(k)
g (nk) is independent of this choice. The expression

2g
23∏
k=1

s(k)g (nk)

is the expected number of viable cells after g generations when the founder cell has nk 371

copies of chromosome k for every k. 372

As in the model without scores, the Markov chain A satisfies the conditions in 373

Lemma 1. Thus, its quasi-stationary distribution, which is its limiting distribution 374

conditional on the non-absorbing states, is given by the unique vector v ∈ RN≥0 375

satisfying vA = ρv and
∑N
i=1 vi = 1, where ρ is the largest eigenvalue of A. We call 376

this the limiting distribution of A for simplicity, and we note that it does not depend on 377

the number of chromosome copies of the founder cell. 378

However, the analogue of Theorem 2 no longer holds for A: its limiting distribution 379

depends on p. As expected, it also depends on µ (equivalently, on the chromosome 380

score), but not on the constant ck. Indeed, varying C = eck/23 only changes A by a 381

constant factor, which does not affect its eigenvectors. Another consequence is that 382

while the number of viable cells in the colony after g generations depends on the 383

parameter c, the limiting distribution of karyotypes among viable cells does not. 384
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Fig 4. The evolution of the distribution of the number of chromosome copies for the various models. Each
curve represents a given number of copies. A–D: Basic model (M) with N = 8 (except in D, which uses N = 16), over 2000
generations. E–L: Full model with chromosome scores (A) with N = 8 and a founder cell with f = 2 chromosome copies, over
2000 generations. M–P: Modified model incorporating the effects of aneuploidy during early tumor growth (AX) with N = 8
and a founder cell with 2 active copies of gene X, over 1000 generations.
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Theorem 5. The limiting distribution of the Markov chain A conditional on the
non-absorbing states is given by v = 1∑23

i=1 ui
(u1, u2, . . . , uN ) with

ui =
2i−1

i!pi−1µ(i2+i−2)/2Pi−1(α),

where the Pn(x) satisfy the recurrence

Pn(x) = (x− µn(1− np))Pn−1(x)− µ2n−1p2
n(n− 1)

4
Pn−2(x)

with initial conditions P0(x) = 1, P1(x) = x− µ(1− p), and α is the largest eigenvalue 385

of A (i.e., the largest root of PN (x)). 386

Proof. By Lemma 1, the limiting distribution of A conditional on the non-absorbing
states is given by the left eigenvector of A with largest eigenvalue α. Since this
eigenvector does not depend on the constant factor C, we can assume that C = 1, and
so qk(i) = µi. The entries of A are then

Aij =


(1− ip)µi if i = j,

ip µi/2 if |i− j| = 1,

0 if |i− j| ≥ 2.

Applying Lemma 3 to A, it follows that its characteristic polynomial PN (x) satisfies the 387

recurrence in the statement, and that its left eigenvector with eigenvalue α, normalized 388

so that its components sum to 1, is v. 389

If αk is the largest eigenvalue of A(k), then the limiting growth rate of the tumor is 390

2

23∏
k=1

αk. (4)

Its value depends on p, on the parameters c, d, and also on the scores of the 23 391

chromosomes. 392

The estimated values for these parameters that we will use in our figures are 393

c = −0.036132164 and d = 0.00039047. (5)

This value of d was found in [4] using experimental data. On the other hand, our value 394

of c differs slightly from the value in [4] in order to ensure that Qsurv ≤ 1 for all valid 395

karyotypes. Experimental values for the chromosome scores sk were originally found 396

in [8], and used in [4]. These values are given in Table 2, together with the 397

corresponding values of µ = edsk . 398

Fig 5 shows a graph of the growth rate in Eq (4) as a function of p, with the values 399

of c, d from Eq (5) and the chromosome scores from Table 2 (we call these the standard 400

parameters). If we were to multiply Qsurv by a factor F to reduce the survival rate for 401

all cells, then the reciprocal of expression (4) is the threshold for F that determines 402

whether the expected number of cells will tend to zero or to infinity as g →∞. 403

Limiting distributions in the full model 404

The value of the parameter µ = edsk in human chromosomes, using the estimates for 405

chromosome scores from [8] and for d from [4], is roughly between 0.9994 and 1.0012 406

(see Table 2). We will use this range for µ in our computations below. 407
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k sk µ
1 −0.143640496 0.999943914
2 0.638322635 1.000249277
3 0.597508197 1.000233336
4 0.106407616 1.000041550
5 −0.785208831 0.999693447
6 −0.664148445 0.999740704
7 3.039521587 1.001187547
8 1.650903175 1.000644836
9 0.765873656 1.000299095
10 −1.23443224 0.999518107
11 0.210103365 1.000082042
12 1.720482377 1.000672022
13 −1.207617162 0.999528573
14 −0.712581034 0.999721797
15 −0.751608856 0.999706562
16 −1.277797927 0.999501183
17 −0.784673321 0.999693656
18 −1.428496154 0.999442371
19 0.809097907 1.000315978
20 1.780741874 1.000695568
21 1.568732394 1.000612731
22 −1.576297101 0.999384693
23 0 1

Table 2. The values of the chromosome scores determined experimentally
in [8], and the corresponding values of µ.
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full model

basic model

Fig 5. The limiting growth rate for the full model with N = 8 and the
standard parameters. The limiting growth rate is graphed in red as a function of p.
Fig 2A has been overlaid in blue for comparison.

Fig 6A–C shows the limiting distribution described in Theorem 5 for N = 8, three 408

fixed values of p, and µ varying in the above range. Note that for µ = 1, which 409

corresponds to a chromosome score of 0 (this is the score given to the sex chromosome), 410

the limiting distribution is the same as in the basic model and it does not depend on p, 411

PLOS 16/30



since in this case A and M differ only by a constant factor. 412

As expected, for higher chromosome scores, the limiting distribution favors higher 413

numbers of copies. Smaller values of the missegregation rate p make the influence of the 414

chromosome scores more noticeable, whereas larger values make the distribution closer 415

to the one in Fig 3 for N = 8. It is interesting to observe that when the chromosome 416

score is positive (equivalently, µ > 1), the modal number of copies soon becomes higher 417

than one, and it gets larger as µ increases. This agrees with experimental observations 418

and addresses the main shortcoming of Gusev’s model [9]. Fig 7A shows that for 419

p = 0.0025, small variations of µ in the interval [1.0002, 1.0006] cause the modal number 420

of copies in the limiting distribution to take all values between 1 and 5. The average 421

number of copies and the modal number for three values of p and several values of µ is 422

given in Table 3. 423

p = 0.001 p = 0.0025 p = 0.01
µ average mode average mode average mode

0.9994 1.538 1 1.975 1 2.613 1
0.9995 1.614 1 2.072 1 2.667 1
0.9996 1.713 1 2.189 1 2.722 1
0.9997 1.855 1 2.334 1 2.781 1
0.9998 2.071 1 2.511 1 2.842 1
0.9999 2.417 1 2.723 1 2.904 1
1.0000 2.969 1 2.969 1 2.969 1
1.0001 3.666 2 3.242 1 3.036 1
1.0002 4.288 4 3.526 1 3.102 1
1.0003 4.757 5 3.800 3 3.171 1
1.0004 5.104 6 4.057 4 3.242 1
1.0005 5.367 6 4.289 4 3.313 1
1.0006 5.573 6 4.492 5 3.382 1
1.0007 5.742 6 4.673 5 3.452 1
1.0008 5.883 6 4.832 5 3.523 1
1.0009 6.002 7 4.974 5 3.592 2
1.0010 6.105 7 5.101 6 3.661 2
1.0011 6.196 7 5.215 6 3.731 3
1.0012 6.277 7 5.316 6 3.795 3

Table 3. The average and the modal number of chromosome copies in the
limiting distribution of A on viable cells, for N = 8 and varying p and µ.

Fig 6D–F shows the limiting distribution for the experimental values of µ for each of 424

the 23 human chromosomes (Table 2), for N = 8 and different values of p, as well as the 425

average of these limiting distributions. The average number of chromosome copies in 426

the limit is 3.3591 for p = 0.001, 3.1618 for p = 0.0025, and 3.0107 for p = 0.01. A 427

graph of this dependence on p appears in S3 FigA. 428

We point out that, even though the basic model without chromosome scores also 429

yielded an average number of chromosome copies near 3 for N = 8 (see Table 1), the 430

shape of the limiting distribution in the basic model was unrealistic, with the modal 431

number of copies always being 1. 432

The effect of changing the missegregation rate for a fixed chromosome score is shown 433

in Fig 7B, which gives the limiting distributions obtained by fixing µ = 1.0004 434

(corresponding to a score of sk = 1.0242) and letting p range from 0.001 to 0.009. 435

Next we analyze how these limiting distributions are affected by whole genome 436

duplication. Considering the Markov chain with transition matrix Agd, Fig 6G–J shows 437
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Fig 6. The limiting distribution on viable cells for the full model with N = 8. The horizontal axis indicates the
number of copies of the chromosome, and the vertical axis measures the fraction of cells (among viable ones). A–C: Full
model (A) for different values of p, and µ ranging in the interval [0.9994, 1.0012]. D–F: Full model (A) with the experimental
values of µ corresponding to the 23 human chromosomes, for different values of p. The colors depict how oncogenic (blue) or
tumor suppressive (red) each chromosome is. The average of the 23 limiting distributions is shown in black. The average
number of chromosome copies in this average distribution is represented by a dot on the x-axis. G–J: Modified model with
whole genome duplication for different values of p and pgd, together with the average of the 23 limiting distributions. The
value pgd = 0 corresponds to the full model depicted in panels D–F.
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Fig 7. The limiting distribution of A with N = 8 for small variations of the
parameters. A: For fixed p and varying µ. B: For fixed µ and varying p.

the limiting distribution of chromosome copy numbers for each of the 23 human 438

chromosomes, for N = 8 and different values of both p and the genome duplication 439

rate pgd. Comparing these results to those in Fig 6D–F, which correspond to the case 440

pgd = 0 (i.e., no genome duplication), we see that, for rates of pgd below 10−4, the 441

outcomes are very similar to those of the model without whole genome duplication. On 442

the other hand, larger values of pgd skew the limiting distribution towards higher copy 443

numbers, with this tendency being more noticeable when the missegregation rate p is 444

low. 445

It is shown in [20] that certain karyotypes promote cytokinesis failure and thus 446

genome duplication. In particular, it is suggested that cells with 3 or more copies of 447

chromosome 13 have a higher genome duplication rate. This phenomenon can be 448

incorporated in our model by using different values of pgd in different rows of the 449

matrix G. For example, making the value of pgd increase by a factor of 10 when the 450

number of copies of chromosome 13 is at least 3, the limiting distribution of the number 451

of copies of chromosome 13 is shown in S4 Fig for different values of the parameters. 452

We see that copy numbers 3 and above become more infrequent in this modified version, 453

compared to the limiting distributions obtained when pgd is independent of karyotype. 454

Unfortunately, when pgd is dependent on the number of copies of chromosome 13, our 455

model cannot keep track of the distributions of other chromosomes. 456

Evolution of chromosome copy numbers over time in the full 457

model 458

As discussed above, the normalized rows of the powers of A describe the evolution over 459

time of the distribution of the number of copies of a chromosome. This evolution is 460

depicted in Fig 4E–L for missegregation rates p = 0.0025 and p = 0.001, a founder cell 461

with 2 copies of the chromosome, and different values of µ. 462

The number of generations that it takes for the distribution of chromosome copies to 463

be close to the limiting distribution is determined by the mixing time of the Markov 464

chain. This mixing time is roughly proportional to (1− ρ̃/ρ)−1, where ρ and ρ̃ are the 465

largest and the second largest eigenvalues of A, respectively. S2 FigB plots this quantity 466

as a function of p for different values µ. Whereas the mixing time decreases for larger p, 467
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as expected, the dependence on µ is more subtle: values of µ further from 1 (in either 468

direction) result in smaller mixing times. In the case µ = 1, which corresponds to the 469

basic model with no chromosome scores, we have ρ = 1 + pα and ρ̃ = 1 + pα̃, where α 470

and α̃ are the two largest eigenvalues of J. The quantity (1− ρ̃/ρ)−1 is plotted in S2 471

FigA for different values of N . 472

Fig 8 shows the evolution of the average number of copies of each of the 23 human 473

chromosomes (with the scores from Table 2), as well as the total average number of 474

copies for a random cell, with missegregation rates p = 0.001 and p = 0.0025, starting 475

with a founder cell with 2 copies of each chromosome. 476
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Fig 8. The evolution over 2000 generations of the average number of copies
of the 23 human chromosomes, for N = 8 and two values of p. For each
chromosome, the color of the curve depicts how oncogenic (blue) or tumor suppressive
(red) it is. The average of the 23 averages is shown in black.

If we instead use the modified Markov chain AX that incorporates the effects of 477

aneuploidy in early tumor growth, the evolution over time of the distribution of 478

chromosome copy numbers is shown in Fig 4M–P for different values of the parameters 479

p, mr and µ, when starting with a founder diploid cell with two active copies of gene X. 480

These plots show that there is a sudden transition from the stage when most cells 481

contain active copies of gene X (that is, states σ and τ in AX), to the stage when most 482

cells contain no active copies of gene X (that is, states 1, 2, . . . , 8). The value of g when 483

this transition happens, which we call time to inactivation, is plotted in S5 FigA as a 484

function of p and mr. We see that the time to inactivation is larger when p and mr are 485

small. S5 FigB displays the fraction of surviving cells (as a fraction of 2g) over time, 486

showing that the growth rate of the colony sharply increases when inactivation takes 487

place. 488

Surviving fraction and heterogeneity in the full model 489

As we did in Fig 2B for the model without scores, we can compute the proportion of 490

surviving cells, as a fraction of 2g, after g generations as a function of p. The 491

corresponding graphs for different values of g are given in Fig 9A, starting from a cell 492

with 4 copies of each chromosome and using the standard parameters (that is, c and d 493

from Eq (5) and the chromosome scores from Table 2). The y-axis has been normalized 494

for each graph so that the maximum surviving fraction occurs at the same height for 495

each value of g. For g = 1000, a very similar figure appears in [4], where it was obtained 496
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by running lengthy computer simulations. The value of p that maximizes the fraction of 497

cells that survive after g generations is just under 10−3 for g = 500 and g = 1000. This 498

optimal value of p decreases slowly as the number of generation g increases. 499

Interestingly, a large surviving fraction of cells is obtained only in a very narrow interval 500

of values of the missegregation rate p, and this fact is more pronounced for large g. 501

Another important characteristic of the colony is its heterogeneity, which in [4] is
measured as the Shannon diversity index of its cell scores. Here we propose another
related measure of heterogeneity, based on the Shannon diversity of copy numbers of the
different chromosomes. More precisely, if ak,j denotes the fraction of viable cells in the
colony with j copies of chromosome k, we define its karyotype diversity index

K = −
23∑
k=1

N∑
j=1

ak,j ln ak,j .

In our model, the vector (ak,j)
N
j=1 obtained after g generations starting with a 502

founder cell with i copies of chromosome k can be easily computed by normalizing the 503

ith row of Ag. Fig 9B plots the karyotype diversity index K as a function of p for the 504

same colonies as in Fig 9A, as well as the karyotype diversity index in the limiting 505

distribution. After g = 500 and g = 1000 generations, the karyotype diversity is 506

maximized when p is near 10−3, close to the value that maximizes the surviving fraction 507

as well. For larger values of g, the curves in Fig 9B reach a local maximum that is not 508

an absolute maximum, and this local maximum shifts to the left as g increases. The 509

reason for this phenomenon is understood when considering K = K(g, p) as a function 510

of two variables g and p. The graph of this function appears in Fig 9D. The cross 511

sections for fixed g and varying p are the curves in Fig 9B, and the cross sections for 512

fixed p and varying g are the curves in Fig 9C. For the latter curves, as g →∞, the 513

karyotype diversity index K converges to that of the limiting distribution for the given 514

missegregation rate p. As the colony evolves towards this limiting karyotype 515

distribution, it can attain values of K that are higher than the limiting value. For each 516

fixed p, if we let g(p) be the value of g that maximizes K(g, p), then g(p) is a decreasing 517

function of p. In other words, for smaller missegregation rates p it takes longer for the 518

karyotype diversity to reach its maximum value. When fixing g and letting p vary, this 519

effect translates into some of the curves in Fig 9B having a local maximum at the value 520

of p such that g = g(p). 521

Fig 9D also illustrates that, in the region g ≤ 103, the value of K(g, p) is nearly 522

stable on the curves of the form pg = constant, attaining maximum values when this 523

constant is close to 1. Interestingly, such high values of K(g, p) are only attained for 524

missegregation rates p ≥ 10−3, after about g ≈ 1/p generations; in contrast, for lower 525

missegregation rates, the karyotype diversity index does never reach such values, see 526

Fig 9C. 527

Finally, we observe that, even though large missegregation rates p yield a high 528

karyotype diversity index K (see Fig 9B), Fig 9A shows that the surviving fraction may 529

be extremely low for such p. A measure of fitness is given by multiplying the surviving 530

fraction from Fig 9A by the karyotype diversity index from Fig 9B. The value of p that 531

maximizes this product is plotted in Fig 9E as a function of g. 532

If one starts with a founder cell with 2 copies of each chromosome, instead of 4 533

copies, the resulting data is shown in Fig 9F–I, in analogy to Fig 9A–D, respectively. 534

Discussion 535

Herein, we have developed a Markov chain to directly analyze the long-term behavior of 536

chromosome copy numbers in cancer cells whose viability and ability to evolve is shaped 537
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Fig 9. Surviving fraction and karyotype diversity index K, for the full model with N = 8 and the standard
parameters. Starting with a founder cell with 4 copies (A–E) or 2 copies (F–I). A, F: Normalized fraction of cells that
survive as a function of p (in a logarithmic scale) after g generations for seven values of g. B, G: Karyotype diversity index K
for the same values of p and g. The black curve gives the karyotype diversity of the limiting distribution as a function of p
(see this distribution in Fig 6D–F for three values of p). As g →∞, the other curves in the graph converge to the black curve.
C, H: K as a function of g (in a logarithmic scale) for seven fixed values of the missegregation rate p. D, I: K as a function of
g and p (both in a logarithmic scale), for 10 ≤ g ≤ 106 and 10−7 ≤ p ≤ 10−1. E: The optimal value of p (in a logarithmic
scale) that maximizes the surviving fraction times the karyotype diversity index K after g generations, as a function of g.
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by numerical chromosomal instability —the frequent, yet understudied source of 538

genomic instability in which cancer cells rapidly vary their karyotype through whole 539

chromosome missegregation events during mitosis. Within the framework of this 540

mathematical model, clonal fitness is defined by both the chromosomal distribution of 541

oncogenes and tumor suppressor genes and the karyotype of single cells within the 542

tumor population. Using this model, we directly obtain —without the need for lengthy 543

computer simulations— the probability that a random cell after g generations has i 544

copies of a specific chromosome, for any given g, i and an initial distribution of 545

karyotypes. Further, we directly compute the expected size of a given clonal population 546

after g generations when subject to selection pressures imparted by chromosomal 547

instability. From a theoretical perspective, the main advantage of this Markov chain is 548

that its stationary distribution can be used to determine the exact expected karyotype 549

distribution of a population of cells after an infinite number of cell divisions. Conversely, 550

exhaustive computational models can only approximately guess the behavior of single 551

cell karyotypes in this limiting distribution. We therefore apply this model to precisely 552

describe the limiting distributions of karyotypes in evolving clonal populations and 553

discover the following: 554

1. The limiting distribution does not depend on the initial karyotype of founder cells 555

or the probability of chromosome missegregation when the chromosomal 556

distribution of oncogenes and tumor suppressor genes does not inform cell 557

viability (i.e. the basic model). The limiting karyotype distribution of this basic 558

model, is however, strongly affected by the upper bound placed on the maximum 559

copy number of any specific chromosome that a viable cell can tolerate. 560

2. When cell viability is determined by the chromosome-specific distribution of 561

tumor suppressor and oncogenes (i.e. the full model with chromosome scores), 562

higher copy numbers of more oncogenic chromosomes are favored in the limiting 563

distribution. This limiting distribution is still independent of the karyotype of 564

founder cells. However, it depends now on the probability of chromosome 565

missegregation. 566

3. Karyotype diversity within expanding clonal populations grows rapidly as a 567

function of chromosome missegregation rates; however, very high missegregation 568

rates are lethal to the cells because highly unstable clones are more likely to lose 569

all copies of a given chromosome (or gain too many), which can lead to the 570

complete loss of essential genes vital for cell survival. The selection imparted by 571

the lethal effect of losing all copies of any given chromosome (nullisomy) generates 572

an upper limit to karyotypic heterogeneity, which can be overcome only when 573

given sufficient time for the population to evolve. This depends reciprocally on 574

the number of cell divisions and the whole chromosome missegregation rate. 575

4. In an exponentially expanding clonal population, karyotypic heterogeneity is most 576

exquisitely dependent on chromosome missegregation rates and its upward bounds 577

are constrained by the risk for nullisomy. Whereas increased cell division number 578

can lead to increased heterogeneity, at very low missegregation rates, even 10,000 579

generations of cell division fail to achieve maximal heterogeneity. This suggests 580

that chromosome copy number heterogeneity observed in a given tumor is most 581

likely influenced by chromosome missegregation rather than the age of the tumor. 582

The observation that maximal heterogeneity is most dependent on chromosome 583

missegregation rates rather than the number of cell divisions has important implications 584

toward our understanding of tumor evolution and therapy. It suggests that, at 585

sufficiently high missegregation rates, heterogeneity can be readily obtained even during 586
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the early stages of tumorigenesis. Indeed, recent observations have demonstrated that 587

pre-invasive lesions can achieve high levels of chromosome copy number 588

abnormalities [21]. Furthermore, it was shown that pancreatic cancer evolution occurs 589

in punctuated bursts of chromosomal alterations that generate significant heterogeneity 590

over a short period of time thereby supporting metastatic progression [22]. This finding 591

is also in line with observations showing that elevated chromosome missegregation rates 592

in human tumors might be an important predictor of therapeutic resistance and 593

existence of clonal heterogeneity irrespective of tumor stage [23]. 594

Comparison to other models in the literature 595

This Markov chain has several advantages over the computational models used by 596

Laughney et al. [4] and in the previous papers [9, 10]. For example, it allows us to 597

determine, without having to run lengthy computer simulations, the probability that a 598

random cell after g generations has i of copies of a certain chromosome, for any given 599

g, i and an initial distribution of karyotypes. It also yields the expected surviving 600

fraction relative to an exponentially expanding population that does not undergo any 601

cell death. From a theoretical point of view, the main advantage of the Markov chain is 602

that its stationary distribution determines the exact expected distribution of copies of 603

each chromosome as g tends to infinity. Note that the computational model can only 604

make approximate guesses of the behavior in the limit. In this paper we compute the 605

stationary distribution of the Markov chain, thereby obtaining a precise description of 606

the limiting distribution of karyotypes, which agrees with prior observations [4]. 607

This basic model is similar to the one considered by Gusev, Kagansky and 608

Dooley [9,24], which makes basic assumptions about how cells divide and missegregation 609

events take place. Their stochastic model is developed whereby short-term simulations 610

are run. That model uses a semianalytical approach to estimate the long-term behavior 611

of the chromosome copy numbers in cancer cells. For this purpose, and to overcome 612

some of the computational constraints of running the simulations, the authors develop a 613

transition probability model similar to our Markov chain, which they run for as many as 614

500 generations, using the data to guess that there is a stable distribution in the limit. 615

Let us point out the main differences between the transition probability model used 616

by Gusev et al. [9] and our Markov chain. The first difference is our simplification (iii) 617

described in the Methods section, which neglects quadratic terms in p. This 618

simplification, which does not noticeably affect the behavior of the random process for 619

small values of p like the ones observed in experiments, allows us to give an accurate 620

and simple mathematical description of the limit behavior of the Markov chain. 621

Another difference is our simplification (ii), which allows us to interpret the entries of 622

our transition matrix as probabilities of a Markov chain, and therefore apply theoretical 623

results about Markov chains such as Lemma 1. Finally, the model by Gusev et al. [9] 624

does not impose a realistic upper bound on the number of copies of a chromosome that 625

a viable cell can have, which further complicates the computations, although a variation 626

that imposes an upper bound is considered as well. 627

Based on the figures obtained from their simulations, Gusev et al. [9] observe that 628

after a large enough number of generations (and for large enough p), the fraction of 629

viable cells with i copies of a chromosome seems to converge for each i, but they give no 630

mathematical proof of this phenomenon. One consequence of the analysis of our Markov 631

chain is that we provide a proof of its convergence, and determine exactly what the 632

limit values are. We also prove that these values do not depend on the missegregation 633

rate p (in contrast to the “weak dependence on p” observed in [9] after 500 generations), 634

or on the karyotype of the initial cell (this is also mentioned with no proof in the Gusev 635

et al. model), although they do depend on the upper bound N on the number of 636

allowed copies in viable cells. 637
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In trying to remediate the fact that their model predicts a long-term distribution 638

where the most likely number of copies of a chromosome is 1, which seems to disagree 639

with experiments, Gusev et al. [9, §4.5.2] propose an alternative model which allows 640

only one missegregation per chromosome type, as in simplification (iii) above. However, 641

this alternative model is significantly different from ours in that they consider the 642

probability that a cell missegregates to be independent on how many copies of the 643

chromosome it has. In practice, in a cell with more copies of a chromosome, it is more 644

likely that some copy missegregates [25]. 645

We remark that the basic model in this section also suffers from the same problem: 646

it has a limiting distribution where the most frequent number of copies of a chromosome 647

is 1. However, once we incorporate chromosome scores in the full model, we will obtain 648

different limiting distributions that match the experimentally observed ones. 649

Finally, a continuous time model based on the one from Gusev et al. [9, 24] was 650

developed by Desper, Difilippantonio, Ried and Schäffer [10]. This model uses an 651

exponential distribution for the time between cell divisions, and it allows to vary the 652

cell division rates as a function of the number of copies of the chromosome. In this 653

study, the authors consider the evolution of the average copy number, and obtain some 654

analytic estimates for it. 655

Potential uses for our Markov chain model 656

Predicting tumor behavior from single-cell data is critical to our ability to simulate 657

complex processes such as therapeutic resistance. Significant effort has been devoted 658

toward simulating mutational processes in cancer in an attempt to predict resistance to 659

targeted therapies for example. However, these efforts have not incorporated numerical 660

chromosomal instability, a major driver of therapeutic resistance. Our Markov chain 661

can be integrated with other models to account for both mutational heterogeneity as 662

well as chromosome copy number evolution. Integrated models that combine different 663

modes of genomic instability would undoubtedly be better at predicting the process of 664

therapeutic resistance. Such models would generate experimentally testable hypothesis 665

in the laboratory and would be used as a guide to inform clinical management and the 666

selection of anti-cancer therapies. 667
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S1 Fig. The distribution of the number of chromosome copies in the basic model with N = 8 over 200
generations, for different values of p and f .
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S2 Fig. The value of (1− ρ̃/ρ)−1, which is an estimate of the mixing time of
the Markov chain, as a function of p. A: Basic model (M), for 8 ≤ N ≤ 16. B:
Full model (A) with N = 8 and µ in the range [0.9994, 1.0012]. The curve for µ = 1,
which has been truncated, coincides with the lowest curve in A.
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limiting distributions for experimentally computed human chromosome
scores. A: In the full model (A), as a function of p. B: In the modified model with
whole genome duplication, as a function of p and pgd.
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S4 Fig. The limiting distribution of copies of chromosome 13 in the modified model with whole genome
duplication, with pgd dependent on the number of copies. The dashed line shows the limiting distribution when the

genome duplication rate is p≤2gd or p≥3gd depending on whether the number of copies of chromosome 13 is at most 2 or at least 3,
respectively. The solid line shows the limiting distribution when the genome duplication rate pgd is constant (these are the
same curves given in Figure 6H–J for chromosome 13).
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S5 Fig. Time to inactivation and surviving fraction for the model
incorporating the effects of aneuploidy during early tumor growth (AX)
with N = 8 and a founder cell with 2 active copies of gene X. A: Time to
inactivation, i.e. the number of generations until the proportion of cells containing no
active copies of gene X is more than half, as a function of p and mr. B: Surviving
fraction over 500 generations.
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