Penney's game for permutations

Sergi Elizalde (joint work with Yixin Lin)

Dartmouth

AMS Fall Eastern Sectional Meeting Special Session on Permutation Patterns Albany, NY, October 2024 Player A selects a binary word v of length at least 3, then Player B selects another binary word w of the same length.

A coin is tossed repeatedly until v or w appear, making that player the winner.

Player A selects a binary word v of length at least 3, then Player B selects another binary word w of the same length.

A coin is tossed repeatedly until v or w appear, making that player the winner.

Example

Player A chooses 000, Player B chooses 100.

The sequence of tosses is 1011010100, so Player B wins.

Player A selects a binary word v of length at least 3, then Player B selects another binary word w of the same length.

A coin is tossed repeatedly until v or w appear, making that player the winner.

Example

Player A chooses 000, Player B chooses 100.

The sequence of tosses is 1011010100, so Player B wins.

It is known that, for any word picked by Player A, Player B can always pick a word that will be more likely to appear first.

A game with this property is called a *non-transitive* game.

Given two binary words v and w, let

$$b(v,w)=\sum_{i}2^{i-1},$$

where the sum is over those *i* such that $w_1 \dots w_i = v_{\ell-i+1} \dots v_k$.

Given two binary words v and w, let

$$b(v,w)=\sum_{i}2^{i-1},$$

where the sum is over those *i* such that $w_1 \dots w_i = v_{\ell-i+1} \dots v_k$.

Theorem (Conway '74)

The probability that w appears before v is

$$\frac{b(v,v)-b(v,w)}{b(v,v)-b(v,w)+b(w,w)-b(w,v)}$$

Given two binary words v and w, let

$$b(v,w)=\sum_{i}2^{i-1},$$

where the sum is over those *i* such that $w_1 \dots w_i = v_{\ell-i+1} \dots v_k$.

Theorem (Conway '74)

The probability that w appears before v is

$$\frac{b(v,v)-b(v,w)}{b(v,v)-b(v,w)+b(w,w)-b(w,v)}$$

Example

The probability that w = 100 appears before v = 000 is 7/8.

Given two binary words v and w, let

$$b(v,w)=\sum_{i}2^{i-1},$$

where the sum is over those *i* such that $w_1 \dots w_i = v_{\ell-i+1} \dots v_k$.

Theorem (Conway '74)

The probability that w appears before v is

$$\frac{b(v,v)-b(v,w)}{b(v,v)-b(v,w)+b(w,w)-b(w,v)}$$

Example

The probability that w = 100 appears before v = 000 is 7/8.

Guibas-Odlyzko'81 described a winning strategy for player B.

Given two binary words v and w, let

$$b(v,w)=\sum_{i}2^{i-1},$$

where the sum is over those *i* such that $w_1 \dots w_i = v_{\ell-i+1} \dots v_k$.

Theorem (Conway '74)

The probability that w appears before v is

$$\frac{b(v,v)-b(v,w)}{b(v,v)-b(v,w)+b(w,w)-b(w,v)}$$

Example

The probability that w = 100 appears before v = 000 is 7/8.

Guibas-Odlyzko'81 described a winning strategy for player B. Felix'16 characterized the words w that maximize this probability for any given v.

Instead of choosing words, now Player A chooses a permutation $\sigma \in S_k$, then Player B chooses $\tau \in S_k$ (assume $k \ge 3$).

Instead of choosing words, now Player A chooses a permutation $\sigma \in S_k$, then Player B chooses $\tau \in S_k$ (assume $k \ge 3$).

Instead of choosing words, now Player A chooses a permutation $\sigma \in S_k$, then Player B chooses $\tau \in S_k$ (assume $k \ge 3$).

A sequence of continuous i.i.d. random variables is drawn until σ or τ appear (i.e., the last k values are in the same relative order as σ or τ), making that player the winner.

Example

Player A chooses 123, Player B chooses 213.

Instead of choosing words, now Player A chooses a permutation $\sigma \in S_k$, then Player B chooses $\tau \in S_k$ (assume $k \ge 3$).

Instead of choosing words, now Player A chooses a permutation $\sigma \in S_k$, then Player B chooses $\tau \in S_k$ (assume $k \ge 3$).

Instead of choosing words, now Player A chooses a permutation $\sigma \in S_k$, then Player B chooses $\tau \in S_k$ (assume $k \ge 3$).

Instead of choosing words, now Player A chooses a permutation $\sigma \in S_k$, then Player B chooses $\tau \in S_k$ (assume $k \ge 3$).

• What is the probability that σ appears before τ ?

- What is the probability that σ appears before τ ?
- Is the game non-transitive?

- What is the probability that σ appears before τ ?
- Is the game non-transitive?
- If so, what is a winning strategy for Player B?

- What is the probability that σ appears before τ ?
- Is the game non-transitive?
- If so, what is a winning strategy for Player B?

Let us start with an easier question:

• How long do we have to wait until σ appears for the first time?

For $\sigma \in \mathcal{S}_k$, define:

 $\mathbb{E} T_{\sigma} =$ expected number of draws until the first occurrence of σ ,

For $\sigma \in \mathcal{S}_k$, define:

 $\mathbb{E} T_{\sigma}$ = expected number of draws until the first occurrence of σ , $\alpha_n(\sigma) = \#\{\pi \in S_n \text{ that avoid } \sigma \text{ as a consecutive pattern}\},\$

For $\sigma \in \mathcal{S}_k$, define:

 $\mathbb{E} T_{\sigma} =$ expected number of draws until the first occurrence of σ , $\alpha_n(\sigma) = \#\{\pi \in S_n \text{ that avoid } \sigma \text{ as a consecutive pattern}\},$

$$P_{\sigma}(z) = \sum_{n \ge 0} \alpha_n(\sigma) \frac{z^n}{n!}.$$

For $\sigma \in \mathcal{S}_k$, define:

 $\mathbb{E} T_{\sigma} = \text{expected number of draws until the first occurrence of } \sigma,$ $\alpha_n(\sigma) = \#\{\pi \in S_n \text{ that avoid } \sigma \text{ as a consecutive pattern}\},$ $P_{\sigma}(z) = \sum_{n \ge 0} \alpha_n(\sigma) \frac{z^n}{n!}.$

The generating function $P_{\sigma}(z)$ is known for some patterns σ : monotone patterns, non-overlapping patterns that start with 1, patterns of length 3, and some of length 4 and 5.

For $\sigma \in \mathcal{S}_k$, define:

 $\mathbb{E} T_{\sigma} = \text{expected number of draws until the first occurrence of } \sigma,$ $\alpha_n(\sigma) = \#\{\pi \in S_n \text{ that avoid } \sigma \text{ as a consecutive pattern}\},$ $P_{\sigma}(z) = \sum_{n \ge 0} \alpha_n(\sigma) \frac{z^n}{n!}.$

The generating function $P_{\sigma}(z)$ is known for some patterns σ : monotone patterns, non-overlapping patterns that start with 1, patterns of length 3, and some of length 4 and 5.

Theorem

$$\mathbb{E} T_{\sigma} = P_{\sigma}(1).$$

For $\sigma \in \mathcal{S}_k$, define:

 $\mathbb{E} T_{\sigma} = \text{expected number of draws until the first occurrence of } \sigma,$ $\alpha_n(\sigma) = \#\{\pi \in S_n \text{ that avoid } \sigma \text{ as a consecutive pattern}\},$ $P_{\sigma}(z) = \sum_{n \ge 0} \alpha_n(\sigma) \frac{z^n}{n!}.$

The generating function $P_{\sigma}(z)$ is known for some patterns σ : monotone patterns, non-overlapping patterns that start with 1, patterns of length 3, and some of length 4 and 5.

Theorem

$$\mathbb{E} T_{\sigma} = P_{\sigma}(1).$$

Examples:

$$\mathbb{E}T_{123} = \frac{\sqrt{3e}}{2\cos(\frac{\sqrt{3}}{2} + \frac{\pi}{6})} \approx 7.924, \quad \mathbb{E}T_{132} = \frac{1}{1 - \int_0^1 e^{-t^2/2} dt} \approx 6.926.$$

If σ and τ are Wilf-equivalent (as consecutive patterns), then $\mathbb{E} T_{\sigma} = \mathbb{E} T_{\tau}$.

If σ and τ are Wilf-equivalent (as consecutive patterns), then $\mathbb{E} T_{\sigma} = \mathbb{E} T_{\tau}$.

Open question: Is the converse true?

If σ and τ are Wilf-equivalent (as consecutive patterns), then $\mathbb{E} T_{\sigma} = \mathbb{E} T_{\tau}$.

Open question: Is the converse true?

Side note: The theorem $\mathbb{E} T_{\sigma} = P_{\sigma}(1)$ extends to vincular patterns. For example,

$$\mathbb{E}T_{1-23} = \sum_{n\geq 0} \frac{\operatorname{Bell}_n}{n!} = e^{e-1} \approx 5.575.$$

If σ and τ are Wilf-equivalent (as consecutive patterns), then $\mathbb{E} T_{\sigma} = \mathbb{E} T_{\tau}$.

Open question: Is the converse true?

Side note: The theorem $\mathbb{E} T_{\sigma} = P_{\sigma}(1)$ extends to vincular patterns. For example,

$$\mathbb{E} T_{1-23} = \sum_{n\geq 0} \frac{\operatorname{Bell}_n}{n!} = e^{e-1} \approx 5.575.$$

And if σ is any classical pattern of length 3,

$$\mathbb{E} T_{\sigma} = \sum_{n \ge 0} \frac{\operatorname{Cat}_n}{n!} \approx 5.091.$$

If σ and τ are Wilf-equivalent (as consecutive patterns), then $\mathbb{E} T_{\sigma} = \mathbb{E} T_{\tau}$.

Open question: Is the converse true?

Side note: The theorem $\mathbb{E} T_{\sigma} = P_{\sigma}(1)$ extends to vincular patterns. For example,

$$\mathbb{E} T_{1-23} = \sum_{n\geq 0} \frac{\operatorname{Bell}_n}{n!} = e^{e-1} \approx 5.575.$$

And if σ is any classical pattern of length 3,

$$\mathbb{E}T_{\sigma} = \sum_{n\geq 0} \frac{\operatorname{Cat}_n}{n!} \approx 5.091.$$

For any vincular pattern σ , the value $\mathbb{E} T_{\sigma}$ gives a measure of how easy it is to avoid σ in a random permutation.

For (consecutive) patterns $\sigma, \tau \in \mathcal{S}_k$, let

 $\Pr(\sigma \prec \tau) = \text{probability that } \sigma \text{ appears before } \tau.$

For (consecutive) patterns $\sigma, \tau \in \mathcal{S}_k$, let

 $\Pr(\sigma \prec \tau) = \text{probability that } \sigma \text{ appears before } \tau.$

Here are the values of $Pr(\sigma \prec \tau)$ for patterns of length 3:

σ	123	132	213	231	312	321
123	_	0.5	0.412	0.550	0.342	0.5
132	0.5	_	0.461	0.476	0.5	0.658
213	0.588	0.539	_	0.5	0.524	0.450
231	0.450	0.524	0.5	_	0.539	0.588
312	0.658	0.5	0.476	0.461	_	0.5
321	0.5	0.342	0.550	0.412	0.5	-

Because of trivial symmetries, it is enough to compute the orange entries.

For $\sigma, \tau \in \mathcal{S}_k$, let

 $\mathsf{Av}_n^{\sigma}(\sigma, \tau) = \{\pi \in \mathcal{S}_n \text{ ending with } \sigma, \text{ avoiding } \sigma \text{ and } \tau \text{ elsewhere}\}.$

For $\sigma, \tau \in \mathcal{S}_k$, let

 $\mathsf{Av}_n^{\sigma}(\sigma, \tau) = \{\pi \in \mathcal{S}_n \text{ ending with } \sigma, \text{ avoiding } \sigma \text{ and } \tau \text{ elsewhere}\}.$

Lemma

$$\Pr(\sigma \prec \tau) = \sum_{n \geq k} \frac{|\mathsf{Av}_n^{\sigma}(\sigma, \tau)|}{n!}.$$

For $\sigma, \tau \in \mathcal{S}_k$, let

 $\mathsf{Av}_n^{\sigma}(\sigma, \tau) = \{\pi \in \mathcal{S}_n \text{ ending with } \sigma, \text{ avoiding } \sigma \text{ and } \tau \text{ elsewhere}\}.$

Lemma

$$\Pr(\sigma \prec \tau) = \sum_{n \geq k} \frac{|\mathsf{Av}_n^{\sigma}(\sigma, \tau)|}{n!}$$

Theorem

Pr(123 ≺ 132) =
$$\frac{1}{2}$$
,
Pr(132 ≺ 231) = $\frac{e^2 - 2e - 1}{2} \approx 0.476$,
Pr(123 ≺ 213) = $e^{\frac{3}{2}} \left(2 - 3 \int_0^1 e^{-t - \frac{t^2}{2}} dt\right) - 1 \approx 0.412$.

Penney's game for permutations is non-transitive:

 $\Pr(123 \prec 231) > \frac{1}{2}$, $\Pr(312 \prec 123) > \frac{1}{2}$, $\Pr(231 \prec 312) > \frac{1}{2}$.

Penney's game for permutations is non-transitive: 123 \uparrow 231312

 $\Pr(123 \prec 231) > \frac{1}{2}$, $\Pr(312 \prec 123) > \frac{1}{2}$, $\Pr(231 \prec 312) > \frac{1}{2}$.

¹²³ ⁺ ²³¹ ⁺ ²³¹

Penney's game for permutations is non-transitive:

 $\Pr(123 \prec 231) > \frac{1}{2}$, $\Pr(312 \prec 123) > \frac{1}{2}$, $\Pr(231 \prec 312) > \frac{1}{2}$.

Compare this to the fact that $\mathbb{E}T_{123} > \mathbb{E}T_{231}$, i.e., 123 is more likely to appear before 231, but on average we have to wait longer to see 123.

We write $\sigma \equiv \tau$ to indicate $\Pr(\sigma \prec \tau) = \frac{1}{2}$.

We write $\sigma \equiv \tau$ to indicate $\Pr(\sigma \prec \tau) = \frac{1}{2}$.

Not an equivalence relation: $132 \equiv 123 \equiv 321$, but $132 \neq 321$.

We write $\sigma \equiv \tau$ to indicate $\Pr(\sigma \prec \tau) = \frac{1}{2}$.

Not an equivalence relation: $132 \equiv 123 \equiv 321$, but $132 \neq 321$.

Lemma

If there is a bijection between $Av_n^{\sigma}(\sigma, \tau)$ and $Av_n^{\tau}(\sigma, \tau)$ for all n, then $\sigma \equiv \tau$.

We write $\sigma \equiv \tau$ to indicate $\Pr(\sigma \prec \tau) = \frac{1}{2}$.

Not an equivalence relation: $132 \equiv 123 \equiv 321$, but $132 \neq 321$.

Lemma

If there is a bijection between $Av_n^{\sigma}(\sigma, \tau)$ and $Av_n^{\tau}(\sigma, \tau)$ for all n, then $\sigma \equiv \tau$.

Theorem

Let $2 \leq i, i' \leq k - 1$. Then,

$$12 \dots k \equiv 12 \dots (i-1)(i+1) \dots ki,$$

$$12 \dots (i-1)(i+1) \dots ki \equiv 12 \dots (i'-1)(i'+1) \dots ki',$$

$$134 \dots (k-2)k2(k-1) \equiv 134 \dots (k-2)(k-1)2k$$

$$1k\alpha(k-2)(k-1) \equiv 1(k-1)\beta(k-2)k,$$

where α and β are permutations of $\{2, 3, \ldots, k-3\}$.

All tied pairs of patterns of length 4

All tied pairs of patterns of length 4

All tied pairs follow from the previous theorem, except for the two blue edges.

Theorem

 $2134 \equiv 3241.$

Theorem

$$2134 \equiv 3241.$$

Proof idea: We want to show

$$\left|\operatorname{Av}_{n}^{2134}(2134,3241)\right| = \left|\operatorname{Av}_{n}^{3241}(2134,3241)\right|.$$

Theorem

$$2134 \equiv 3241.$$

Proof idea: We want to show

$$\left|\operatorname{Av}_{n}^{2134}(2134,3241)\right| = \left|\operatorname{Av}_{n}^{3241}(2134,3241)\right|.$$

Applying complementation to the right-hand side, this is equivalent to

$$\left|\operatorname{Av}_{n}^{2134}(2134,3241)\right| = \left|\operatorname{Av}_{n}^{2314}(2314,3421)\right|.$$

Theorem

$$2134 \equiv 3241.$$

Proof idea: We want to show

$$\left|\operatorname{Av}_{n}^{2134}(2134,3241)\right| = \left|\operatorname{Av}_{n}^{3241}(2134,3241)\right|.$$

Applying complementation to the right-hand side, this is equivalent to

$$|\operatorname{Av}_n^{2134}(2134, 3241)| = |\operatorname{Av}_n^{2314}(2314, 3421)|.$$

We do not have a direct bijection between these sets. But for any set I of positions, we can construct a bijection between $\{\pi \in S_n \text{ having occurrences of } 2134 \text{ and } 3241 \text{ in positions } I\}$ and $\{\pi \in S_n \text{ having occurrences of } 2314 \text{ and } 3421 \text{ in positions } I\}$ (there may be occurrences in other positions as well).

Theorem

$$2134 \equiv 3241.$$

Proof idea: We want to show

$$\left|\operatorname{Av}_{n}^{2134}(2134,3241)\right| = \left|\operatorname{Av}_{n}^{3241}(2134,3241)\right|.$$

Applying complementation to the right-hand side, this is equivalent to

$$|\operatorname{Av}_n^{2134}(2134, 3241)| = |\operatorname{Av}_n^{2314}(2314, 3421)|.$$

We do not have a direct bijection between these sets. But for any set I of positions, we can construct a bijection between $\{\pi \in S_n \text{ having occurrences of } 2134 \text{ and } 3241 \text{ in positions } I\}$ and $\{\pi \in S_n \text{ having occurrences of } 2314 \text{ and } 3421 \text{ in positions } I\}$ (there may be occurrences in other positions as well).

Finally, we apply inclusion-exclusion to get the above equality.

The approximate probabilities $Pr(\sigma \prec \tau)$ for $\sigma, \tau \in \mathcal{S}_4$

σ τ	1234	1243	1324	1342	1423	1432	2134	2143	2314	2341	2413	2431	3124	3142	3214	3241	3412	3421	4123	4132	4213	4231	4312	4321
1234																								
1243																								
1324																								
1342																								
1423																								
1432																								
2134																								
2143																								
2314																								
2341																								
2413																								
2431																								
3124																								
3142																								
3214																								
3241																								
3412																								
3421																								
4123																								
4132																								
4213																								
4231																								
4312																								
4321																								

Sergi Elizalde Penney's game for permutations

The approximate probabilities $\Pr(\sigma \prec \tau)$ for $\sigma, \tau \in \mathcal{S}_4$

Sergi Elizalde Pe

Penney's game for permutations

Find expressions for Pr(σ ≺ τ) for arbitrary patterns σ and τ.
 Special case: characterize all pairs σ, τ for which σ ≡ τ.

- Find expressions for Pr(σ ≺ τ) for arbitrary patterns σ and τ.
 Special case: characterize all pairs σ, τ for which σ ≡ τ.
- Is there a winning strategy for Player B in general?

- Find expressions for Pr(σ ≺ τ) for arbitrary patterns σ and τ.
 Special case: characterize all pairs σ, τ for which σ ≡ τ.
- Is there a winning strategy for Player B in general?

Conjecture

For any $k \geq 3$ and any $\sigma = \sigma_1 \dots \sigma_{k-1} \sigma_k \in S_k$, the permutation $\tau = \sigma_k \sigma_1 \dots \sigma_{k-1}$ satisfies

$$\Pr(\sigma \prec \tau) < \frac{1}{2}.$$

- Find expressions for Pr(σ ≺ τ) for arbitrary patterns σ and τ.
 Special case: characterize all pairs σ, τ for which σ ≡ τ.
- Is there a winning strategy for Player B in general?

Conjecture

For any $k \ge 3$ and any $\sigma = \sigma_1 \dots \sigma_{k-1} \sigma_k \in S_k$, the permutation $\tau = \sigma_k \sigma_1 \dots \sigma_{k-1}$ satisfies $\Pr(\sigma \prec \tau) < \frac{1}{2}.$

What is the optimal strategy for Player B?
 For any given σ, find τ that minimizes Pr(σ ≺ τ).

- Find expressions for Pr(σ ≺ τ) for arbitrary patterns σ and τ.
 Special case: characterize all pairs σ, τ for which σ ≡ τ.
- Is there a winning strategy for Player B in general?

Conjecture

For any $k \geq 3$ and any $\sigma = \sigma_1 \dots \sigma_{k-1} \sigma_k \in S_k$, the permutation $\tau = \sigma_k \sigma_1 \dots \sigma_{k-1}$ satisfies $\Pr(\sigma \prec \tau) < \frac{1}{2}.$

- What is the optimal strategy for Player B?
 For any given σ, find τ that minimizes Pr(σ ≺ τ).
- Consider the analogous questions for classical patterns.