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Penney's game: original version

Player A selects a binary word v of length at least 3, then Player B

selects another binary word w of the same length.

A coin is tossed repeatedly until v or w appear, making that player

the winner.

Example

Player A chooses 000, Player B chooses 100.

The sequence of tosses is 1011010100, so Player B wins.

It is known that, for any word picked by Player A, Player B can

always pick a word that will be more likely to appear �rst.

A game with this property is called a non-transitive game.
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Conway's formula

Given two binary words v and w , let

b(v ,w) =
∑
i

2i−1,

where the sum is over those i such that w1 . . .wi = vℓ−i+1 . . . vk .

Theorem (Conway '74)

The probability that w appears before v is

b(v , v)− b(v ,w)

b(v , v)− b(v ,w) + b(w ,w)− b(w , v)
.

Example

The probability that w = 100 appears before v = 000 is 7/8.

Guibas�Odlyzko'81 described a winning strategy for player B.

Felix'16 characterized the words w that maximize this probability

for any given v .
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Our variation: Penney's game for permutations

Instead of choosing words, now Player A chooses a permutation

σ ∈ Sk , then Player B chooses τ ∈ Sk (assume k ≥ 3).

A sequence of continuous i.i.d. random variables is drawn until

σ or τ appear (i.e., the last k values are in the same relative order

as σ or τ), making that player the winner.

Example

Player A chooses 123, Player B chooses 213.

0

1

312

132

321

213 → Player B wins
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Questions about Penney's game for permutations

What is the probability that σ appears before τ?

Is the game non-transitive?

If so, what is a winning strategy for Player B?

Let us start with an easier question:

How long do we have to wait until σ appears for the �rst time?
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The �rst occurrence of a pattern

For σ ∈ Sk , de�ne:

ETσ = expected number of draws until the �rst occurrence of σ,

αn(σ) = #{π ∈ Sn that avoid σ as a consecutive pattern},

Pσ(z) =
∑
n≥0

αn(σ)
zn

n!
.

The generating function Pσ(z) is known for some patterns σ:
monotone patterns, non-overlapping patterns that start with 1,

patterns of length 3, and some of length 4 and 5.

Theorem

ETσ = Pσ(1).

Examples:

ET123 =

√
3e

2 cos(
√
3

2
+ π

6
)
≈ 7.924, ET132 =

1

1−
∫
1

0
e−t2/2dt

≈ 6.926.
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The �rst occurrence of a pattern

Corollary

If σ and τ are Wilf-equivalent (as consecutive patterns), then

ETσ = ETτ .

Open question: Is the converse true?

Side note: The theorem ETσ = Pσ(1) extends to vincular

patterns. For example,

ET1-23 =
∑
n≥0

Belln

n!
= ee−1 ≈ 5.575.

And if σ is any classical pattern of length 3,

ETσ =
∑
n≥0

Catn

n!
≈ 5.091.

For any vincular pattern σ, the value ETσ gives a measure of how

easy it is to avoid σ in a random permutation.
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The probability of seeing one pattern before another

For (consecutive) patterns σ, τ ∈ Sk , let

Pr(σ ≺ τ) = probability that σ appears before τ .

Here are the values of Pr(σ ≺ τ) for patterns of length 3:

σ
τ

123 132 213 231 312 321

123 � 0.5 0.412 0.550 0.342 0.5

132 0.5 � 0.461 0.476 0.5 0.658

213 0.588 0.539 � 0.5 0.524 0.450

231 0.450 0.524 0.5 � 0.539 0.588

312 0.658 0.5 0.476 0.461 � 0.5

321 0.5 0.342 0.550 0.412 0.5 �

Because of trivial symmetries, it is enough to compute the orange

entries.
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The probability of seeing one pattern before another

For σ, τ ∈ Sk , let

Avσn(σ, τ) = {π ∈ Sn ending with σ, avoiding σ and τ elsewhere}.

Lemma

Pr(σ ≺ τ) =
∑
n≥k

|Avσn(σ, τ)|
n!

.

Theorem

Pr(123 ≺ 132) =
1

2
,

Pr(132 ≺ 231) =
e2 − 2e − 1

2
≈ 0.476,

Pr(123 ≺ 213) = e
3

2

(
2− 3

∫
1

0

e−t− t2

2 dt

)
− 1 ≈ 0.412.

Sergi Elizalde Penney's game for permutations



The probability of seeing one pattern before another

For σ, τ ∈ Sk , let

Avσn(σ, τ) = {π ∈ Sn ending with σ, avoiding σ and τ elsewhere}.

Lemma

Pr(σ ≺ τ) =
∑
n≥k

|Avσn(σ, τ)|
n!

.

Theorem

Pr(123 ≺ 132) =
1

2
,

Pr(132 ≺ 231) =
e2 − 2e − 1

2
≈ 0.476,

Pr(123 ≺ 213) = e
3

2

(
2− 3

∫
1

0

e−t− t2

2 dt

)
− 1 ≈ 0.412.

Sergi Elizalde Penney's game for permutations



The probability of seeing one pattern before another

For σ, τ ∈ Sk , let

Avσn(σ, τ) = {π ∈ Sn ending with σ, avoiding σ and τ elsewhere}.

Lemma

Pr(σ ≺ τ) =
∑
n≥k

|Avσn(σ, τ)|
n!

.

Theorem

Pr(123 ≺ 132) =
1

2
,

Pr(132 ≺ 231) =
e2 − 2e − 1

2
≈ 0.476,

Pr(123 ≺ 213) = e
3

2

(
2− 3

∫
1

0

e−t− t2

2 dt

)
− 1 ≈ 0.412.

Sergi Elizalde Penney's game for permutations



Non-transitivity

Penney's game for permutations is non-transitive:

123

312
231

Pr(123 ≺ 231) > 1

2
, Pr(312 ≺ 123) > 1

2
, Pr(231 ≺ 312) > 1

2
.

Compare this to the fact that ET123 > ET231, i.e.,

123 is more likely to appear before 231, but

on average we have to wait longer to see 123.
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Tied pairs

We write σ ≡ τ to indicate Pr(σ ≺ τ) = 1

2
.

Not an equivalence relation: 132 ≡ 123 ≡ 321, but 132 ̸≡ 321.

Lemma

If there is a bijection between Avσn(σ, τ) and Avτn(σ, τ) for all n,
then σ ≡ τ .

Theorem

Let 2 ≤ i , i ′ ≤ k − 1. Then,

12 . . . k ≡ 12 . . . (i − 1)(i + 1) . . . ki ,

12 . . . (i − 1)(i + 1) · · · ki ≡ 12 · · · (i ′ − 1)(i ′ + 1) . . . ki ′ ,

134 . . . (k − 2)k2(k − 1) ≡ 134 . . . (k − 2)(k − 1)2k

1kα(k − 2)(k − 1) ≡ 1(k − 1)β(k − 2)k ,

where α and β are permutations of {2, 3, . . . , k − 3}.

Sergi Elizalde Penney's game for permutations



Tied pairs

We write σ ≡ τ to indicate Pr(σ ≺ τ) = 1

2
.

Not an equivalence relation: 132 ≡ 123 ≡ 321, but 132 ̸≡ 321.

Lemma

If there is a bijection between Avσn(σ, τ) and Avτn(σ, τ) for all n,
then σ ≡ τ .

Theorem

Let 2 ≤ i , i ′ ≤ k − 1. Then,

12 . . . k ≡ 12 . . . (i − 1)(i + 1) . . . ki ,

12 . . . (i − 1)(i + 1) · · · ki ≡ 12 · · · (i ′ − 1)(i ′ + 1) . . . ki ′ ,

134 . . . (k − 2)k2(k − 1) ≡ 134 . . . (k − 2)(k − 1)2k

1kα(k − 2)(k − 1) ≡ 1(k − 1)β(k − 2)k ,

where α and β are permutations of {2, 3, . . . , k − 3}.

Sergi Elizalde Penney's game for permutations



Tied pairs

We write σ ≡ τ to indicate Pr(σ ≺ τ) = 1

2
.

Not an equivalence relation: 132 ≡ 123 ≡ 321, but 132 ̸≡ 321.

Lemma

If there is a bijection between Avσn(σ, τ) and Avτn(σ, τ) for all n,
then σ ≡ τ .

Theorem

Let 2 ≤ i , i ′ ≤ k − 1. Then,

12 . . . k ≡ 12 . . . (i − 1)(i + 1) . . . ki ,

12 . . . (i − 1)(i + 1) · · · ki ≡ 12 · · · (i ′ − 1)(i ′ + 1) . . . ki ′ ,

134 . . . (k − 2)k2(k − 1) ≡ 134 . . . (k − 2)(k − 1)2k

1kα(k − 2)(k − 1) ≡ 1(k − 1)β(k − 2)k ,

where α and β are permutations of {2, 3, . . . , k − 3}.

Sergi Elizalde Penney's game for permutations



Tied pairs

We write σ ≡ τ to indicate Pr(σ ≺ τ) = 1

2
.

Not an equivalence relation: 132 ≡ 123 ≡ 321, but 132 ̸≡ 321.

Lemma

If there is a bijection between Avσn(σ, τ) and Avτn(σ, τ) for all n,
then σ ≡ τ .

Theorem

Let 2 ≤ i , i ′ ≤ k − 1. Then,

12 . . . k ≡ 12 . . . (i − 1)(i + 1) . . . ki ,

12 . . . (i − 1)(i + 1) · · · ki ≡ 12 · · · (i ′ − 1)(i ′ + 1) . . . ki ′ ,

134 . . . (k − 2)k2(k − 1) ≡ 134 . . . (k − 2)(k − 1)2k

1kα(k − 2)(k − 1) ≡ 1(k − 1)β(k − 2)k ,

where α and β are permutations of {2, 3, . . . , k − 3}.
Sergi Elizalde Penney's game for permutations



All tied pairs of patterns of length 4

1423

1324

1432

1342

1234

1243 2143 2134 3241 2341 2431 2413

4132

4123

4231

4213

4312

4321

3412 3421 2314 3214 3124 3142

All tied pairs follow from the previous theorem, except for the two

blue edges.
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A surprising tied pair

Theorem

2134 ≡ 3241.

Proof idea: We want to show∣∣Av2134n (2134, 3241)
∣∣ = ∣∣Av3241n (2134, 3241)

∣∣ .
Applying complementation to the right-hand side, this is equivalent

to ∣∣Av2134n (2134, 3241)
∣∣ = ∣∣Av2314n (2314, 3421)

∣∣ .
We do not have a direct bijection between these sets.

But for any set I of positions, we can construct a bijection between

{π ∈ Sn having occurrences of 2134 and 3241 in positions I} and

{π ∈ Sn having occurrences of 2314 and 3421 in positions I}
(there may be occurrences in other positions as well).

Finally, we apply inclusion-exclusion to get the above equality.
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The approximate probabilities Pr(σ ≺ τ) for σ, τ ∈ S4
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Open questions and conjectures

Find expressions for Pr(σ ≺ τ) for arbitrary patterns σ and τ .

Special case: characterize all pairs σ, τ for which σ ≡ τ .

Is there a winning strategy for Player B in general?

Conjecture

For any k ≥ 3 and any σ = σ1 . . . σk−1σk ∈ Sk , the permutation

τ = σkσ1 . . . σk−1 satis�es

Pr(σ ≺ τ) <
1

2
.

What is the optimal strategy for Player B?

For any given σ, �nd τ that minimizes Pr(σ ≺ τ).

Consider the analogous questions for classical patterns.
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