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Type A root poset and Dyck paths

Let An−1 denote the positive root poset of type An−1; equivalently,
the set of intervals {[i , j ] : 1 ≤ i ≤ j ≤ n − 1} ordered by inclusion.

[1, 1] [2, 2] [3, 3] [7, 7]

[1, 2]

[1, 3]

[1, 7]

[2, 3]

A7

The set of order ideals of An−1 is in bijection with the set Dn Dyck
paths of semilength n.

We can view rowmotion on ideals of An−1 as an operation on Dyck
paths ρD : Dn → Dn.
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Rowmotion on Dyck paths
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321-avoiding permutations

A permutation π = π(1)π(2) . . . π(n) ∈ Sn is 321-avoiding if there
do not exist i < j < k such that π(i) > π(j) > π(k).

Sn(321) = {π ∈ Sn : π is 321-avoiding}

Example:
π = 241358967

We say that (i , π(i)) is an excedance if π(i) > i , a fixed point if
π(i) = i , and a deficiency if π(i) < i .
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Properties of 321-avoiding permutations

Any π ∈ Sn(321) is uniquely determined by the positions and
values of its excedances, which form an increasing subsequence.

We can view the set of excedances of π as an antichain in An−1.
Denote this bijection by

Exc : Sn(321)→ A(An−1).

π = 241358967 ∈ Sn(321)

Exc

A(An−1)

= antichains of An−1
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Rowmotion on 321-avoiding permutations

We define a rowmotion operation ρS : Sn(321)→ Sn(321) by

ρS = Exc−1 ◦ρA ◦ Exc .

241358967

ρS

Exc

ρA

312569478

ρS

ρA

Exc

124673589

ρS

Exc

ρA
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Rowmotion on 321-avoiding permutations

If we consider the antichains of An−1 given by the deficiencies of π
instead, Def(π) := Exc(π−1), then ρS is equivalent to inverse
rowmotion of these antichains:

Def

ρS

ρA

Def

ρS

ρA

ρS

Def

ρA
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321-avoiding permutations and Dyck paths

Here are some bijections between Sn(321) and Dn

(Billey–Jockush–Stanley’93, Krattenthaler’01, E.’02):

E (π)
at

weak
excedances

E (π)

at
excedances

D (π)

at
weak

deficiencies
D (π)

at
deficiencies
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Rowmotion on 321-avoiding permutations via Dyck paths

The rowmotion operation ρS : Sn(321)→ Sn(321) can be
equivalently described as

ρS = E−1 ◦ E = D−1 ◦ D .

π = 241358967

E (π)

D (π)

ρS

ρS(π) = 312569478

ρS

ρ2S(π) = 124673589

ρS

The map that sends E (π) to D (π) is called the Lalanne–Kreweras
involution.
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Homomesy of fixed points

Given a set S and a bijection ρ : S → S , a statistic on S is
homomesic under the action of ρ if its average on each orbit is
constant.

It is called c-mesic if its average over each orbit is c .

For π ∈ Sn, let fp(π) be its number of fixed points.

Theorem

The statistic fp is 1-mesic under the action of ρS on Sn(321).

fp = 1

ρS

ρS

2

ρS

1

ρS

ρS

0

1

1+2+1+0+1+2+1+0
8

= 1

ρS

2

ρS

1

ρS

0
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Homomesy of fixed points

Note that the statistic fp does not correspond to a natural statistic
on antichains.

fp(π) = 1

Exc
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The statistics hi

Hopkins and Joseph define a family of statistics on antichains A of
An−1:

hi (A) =
i∑

j=1

1[j ,i ] +
n−1∑
j=i

1[i ,j], where 1x =

{
1 if x ∈ A,

0 if x /∈ A.

In terms of the permutation π ∈ Sn(321) such that A = Exc(π),
this statistic is the number of crosses in the shaded region:

i+1

i1· · · · · · n

1

...

...

n

h3(314267958) = 2

where the darker square in the
corner is counted twice.

Theorem (Hopkins–Joseph ’20)

The statistics hi are 1-mesic under
the action of ρA on A(An−1).

Corollary

The statistics hi are 1-mesic under
the action of ρS on Sn(321).
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The statistics `i

We can define similar statistics on permutations that do not come
from natural statistics on antichains.

For π ∈ Sn and 1 ≤ i ≤ n, let `i (π) be the number of crosses in
the shaded region:

i

i1· · · · · · n

1

...

...

n

`3(314267958) = 2

Theorem

The statistics `i are 1-mesic under
the action of ρS on Sn(321).
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The statistics `i

Theorem

The statistics `i are 1-mesic under the action of ρS on Sn(321).

`2 = 1

ρS

ρS 1

ρS

1

ρS

ρS 2

0

1+1+1+2+0+1+2+0
8

= 1ρS

1

ρS

2

ρS

0

Using that hi and `i are 1-mesic, we get another proof that fp is
1-mesic as well, since

fp(π) =
n∑

i=1

`i (π)−
n−1∑
i=1

hi (π).
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The sign statistic

Let sgn(π) = (−1)inv(π) be the sign of a permutation π.

Theorem

For all π ∈ Sn(321),

sgn(ρS(π)) =

{
sgn(π) if n is odd,

− sgn(π) if n is even.

Example for odd n:

ρS

inv = 3ρS

ρS

1

ρS

3

ρS

5 ρS 5

3

ρS

1

ρS

3

ρS

5

ρS

5
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The sign statistic

Example for even n:

inv = 2

ρS

ρS 1

ρS

2

ρS

ρS 3

2

ρS

1

ρS

2

ρS

3

Corollary

For even n, the statistic sgn is 0-mesic under ρS on Sn(321).

Simion–Schmidt ’85 first proved that Sn(321) contains the same
number of odd and even permutations, for even n.
Reifegerse ’05 gave a bijective proof.
The map π 7→ ρS(π) gives a new bijective proof.
And the map π 7→ ρS(π−1) gives a sign-reversing involution.
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321-avoiding permutations and the LK involution

Panyushev ’09 defined an involution LK on A(An−1), which is
essentially equivalent to the Lalanne–Kreweras involution on Dn.

LK

Theorem (Hopkins–Joseph ’20)

The number of antichains in An−1 fixed by LK ◦ρA equals
( n
bn/2c

)
.

Simpler proof: Via the map Exc, the involution LK ◦ρA on
A(An−1) corresponds to the map π 7→ π−1 on Sn(321). Thus,∣∣{A ∈ A(An−1) : LK ◦ρA(A) = A}

∣∣
=
∣∣{π ∈ Sn(321) : π = π−1}

∣∣

=

(
n

bn/2c

)
,

by a classical result of Simion–Schmidt ’85.
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Promotion

Recall Schützenberger’s promotion on standard Young tableaux:

T = 1 2 4 7 8
3 5 6 9 10

delete 10→ 1 2 4 7 8
3 5 6 9

→ 1 2 4 7 8
3 5 6 9

→ 1 2 4 8
3 5 6 7 9

→ 1 2 4 8
3 5 6 7 9

→ 1 2 4 8
3 5 6 7 9

→ 1 2 4 8
3 5 6 7 9

place 0→ 0 1 2 4 8
3 5 6 7 9

+1→ 1 2 3 5 9
4 6 7 8 10

= Pro(T )

Define a rotation operation on Dyck paths:

X Y

last point
on x-axis

Rot

X

Y
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Promotion and rotation

Via the standard bijections, promotion translates to rotation on
Dyck paths and on non-crossing matchings:

1 2 4 7 8
3 5 6 9 10

Pro

1 2 3 5 9
4 6 7 8 10

Dn

1 2 3 4 5 6 7 8 9 10

Rot

1 2 3 4 5 6 7 8 9 10

1

2

3

4

56

7

8

9

10
Nn

1

2

3

4

56

7

8

9

10
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The Armstrong–Stump–Thomas bijection

Theorem (Armstrong–Stump–Thomas ’13)

There is an equivariant bijection AST between A(An−1) under
rowmotion, and Nn (equivalently, Dn) under rotation.

A(An−1)

AST

ρA Rot

Dn Nn
1

2

3

4
56

7

8

9
10

AST

1
2

3

4
56

7

8

9
10

The bijection AST has a complicated description, and it is defined
uniformly for all root systems.
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A simpler description of AST

We can use 321-avoiding permutations to give a simple description
of the AST bijection in type A:

AST

1
2

3

4
56

7

8

9
10

Exc−1

35124

RSK 1 2 4
3 5

1 2 5
3 4

1 2 3 4 5 1 2 3 4 5

ψ

Theorem

AST = ψ ◦ RSK ◦Exc−1
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A simpler description of AST

35124

RSK 1 2 4
3 5

1 2 5
3 4

ψ

1
2

3

4
56

7

8

9
10

ρS Rot

41235

RSK 1 2 3 5
4

1 3 4 5
2

ψ

1
2

3

4
56

7

8

9
10

THANK YOU!
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