Bijections for lattice paths between two boundaries

Sergi Elizalde

Dartmouth College

Joint work with Martin Rubey
CanaDAM 2013
Dyck paths

For \(P \in \mathcal{D}_n \) (Dyck paths with \(2n \) steps), let

\[
\begin{align*}
 t(P) &= \# \text{ of } E \text{ steps in common with } T \\
 &= \text{“height” of the last “peak”} \\
 b(P) &= \# \text{ of } E \text{ steps in common with } B \\
 &= \text{number of returns}
\end{align*}
\]
Dyck paths

For $P \in \mathcal{D}_n$ (Dyck paths with $2n$ steps), let

$t(P) = \# \text{ of } E \text{ steps in common with } T$

$= \text{“height” of the last “peak”}$

$b(P) = \# \text{ of } E \text{ steps in common with } B$

$= \text{number of returns}$

Theorem (Deutsch ’98)

The joint distribution of the pair (t, b) over \mathcal{D}_n is symmetric, i.e.,

$$
\sum_{P \in \mathcal{D}_n} x^{t(P)} y^{b(P)} = \sum_{P \in \mathcal{D}_n} x^{b(P)} y^{t(P)}.
$$
For $P \in \mathcal{D}_n$ (Dyck paths with $2n$ steps), let
\[t(P) = \# \text{ of } E \text{ steps in common with } T = \text{“height” of the last “peak”} \]
\[b(P) = \# \text{ of } E \text{ steps in common with } B = \text{number of returns} \]

Theorem (Deutsch ’98)

The joint distribution of the pair (t, b) over \mathcal{D}_n is symmetric, i.e.,
\[\sum_{P \in \mathcal{D}_n} x^{t(P)} y^{b(P)} = \sum_{P \in \mathcal{D}_n} x^{b(P)} y^{t(P)}. \]

Proof 1 (Deutsch): Recursive bijection. **Proof 2:** Generating fcts.
Both proofs rely on the recursive structure of Dyck paths.
A generalization to arbitrary boundaries

T and B paths from O to F with steps N and E, with T weakly above B

$P \in \mathcal{P}(T, B) = \text{set of paths from } O \text{ to } F$ weakly between T and B

$t(P) = \# \text{ of } E \text{ steps in common with } T$

(top contacts of P)

$b(P) = \# \text{ of } E \text{ steps in common with } B$

(bottom contacts of P)
A generalization to arbitrary boundaries

T and B paths from O to F with steps N and E, with T weakly above B

$P \in \mathcal{P}(T, B) =$ set of paths from O to F weakly between T and B

$t(P) =$ # of E steps in common with T
(top contacts of P)

$b(P) =$ # of E steps in common with B
(bottom contacts of P)

Theorem

The joint distribution of (t, b) over $\mathcal{P}(T, B)$ is symmetric, i.e.,

$$
\sum_{P \in \mathcal{P}(T, B)} x^{t(P)} y^{b(P)} = \sum_{P \in \mathcal{P}(T, B)} x^{b(P)} y^{t(P)}.
$$
Example

\[\sum_{P \in \mathcal{P}(T,B)} x^{t(P)} y^{b(P)} = x^3 + x^2 y + xy^2 + y^3 + 2x^2 + 2xy + 2y^2 + 2x + 2y + 1 \]
The known proofs for Dyck paths do not seem to generalize to arbitrary boundaries.

Proof

We give an involution \(\Phi : P(T, B) \to P(T, B) \) with the property \(t(\Phi(P)) = b(P) \) and \(b(\Phi(P)) = t(P) \).

Idea: Given \(P \in P(T, B) \) with \(t(P) > b(P) \), turn some of its top contacts into bottom contacts, one at a time.
Proof

The known proofs for Dyck paths do not seem to generalize to arbitrary boundaries.

We give an involution

$$\Phi : \mathcal{P}(T, B) \rightarrow \mathcal{P}(T, B)$$

with the property $t(\Phi(P)) = b(P)$ and $b(\Phi(P)) = t(P)$.

Idea: Given $P \in \mathcal{P}(T, B)$ with $t(P) > b(P)$, turn some of its top contacts into bottom contacts, one at a time.
We define the involution Φ by iterating a map ϕ, which turns one top contact into one bottom contact.

\[(t, b) = (4, 2) \quad \mapsto \quad (t, b) = (3, 3) \quad \mapsto \quad (t, b) = (2, 4)\]
To define $\phi(P)$, we first find the top contact that will be changed into a bottom contact.
To define $\phi(P)$, we first find the top contact that will be changed into a bottom contact.

1. Record top and bottom contacts of P as a word w over $\{t, b\}$:

$$w = bttbtt$$
2. Having built w, select a top contact as follows:

$$w = bttbtbbbtbttbttbtt$$
From paths to words

2. Having built w, select a top contact as follows:
 - Draw a path with a step $(1, 1)$ for each t, and a step $(1, -1)$ for each b.

\[w = bttbtbbbtbttbttbtt \]
2. Having built w, select a top contact as follows:
 - Draw a path with a step $(1, 1)$ for each t, and a step $(1, -1)$ for each b.
 - Match t’s and b’s that “face” each other in the path.

$$w = bttbtbbbbtttbbttbttt$$
2. Having built w, select a top contact as follows:

- Draw a path with a step $(1, 1)$ for each t, and a step $(1, -1)$ for each b.
- Match t’s and b’s that “face” each other in the path.
- Select the leftmost unmatched t as the top contact that will be changed.

$$w = bttbtbbbttbttbttbtt$$
The map ϕ

Given $P \in \mathcal{P}(T,B)$, define $\phi(P)$ as follows:

- Record top and bottom contacts of P as a word w over $\{t, b\}$.

$$w = bttbtt$$
The map ϕ

Given $P \in \mathcal{P}(T, B)$, define $\phi(P)$ as follows:

- Record top and bottom contacts of P as a word w over $\{t, b\}$.
- Find leftmost unmatched t; let E be the corresponding step.

$P \quad \quad E$

$w = bttbtt$
The map ϕ

Given $P \in \mathcal{P}(T, B)$, define $\phi(P)$ as follows:

- Record top and bottom contacts of P as a word w over $\{t, b\}$.
- Find leftmost unmatched t; let E be the corresponding step.
- Write $P = X Y E Z$, where Y touches B only at its left endpoint.

![Diagram illustrating the bijection]

$w = \text{bttbtt}$
The map ϕ

Given $P \in \mathcal{P}(T, B)$, define $\phi(P)$ as follows:

- Record top and bottom contacts of P as a word w over $\{t, b\}$.
- Find leftmost unmatched t; let E be the corresponding step.
- Write $P = XYEZ$, where Y touches B only at its left endpoint.
- Let $\phi(P) = XEYZ$.

$\phi(P)$

$w = bttbtt$

$bbtbtt$
The involution Φ

For $P \in \mathcal{P}(T, B)$ with $t(P) = e$ and $b(P) = f$, define

$$\Phi(P) = \phi^{e-f}(P).$$
The involution Φ

For $P \in \mathcal{P}(T, B)$ with $t(P) = e$ and $b(P) = f$, define

$$\Phi(P) = \phi^{e-f}(P).$$

Theorem

Φ is an involution on $\mathcal{P}(T, B)$ that satisfies $t(\Phi(P)) = b(P)$ and $b(\Phi(P)) = t(P)$.
The involution Φ

For $P \in \mathcal{P}(T, B)$ with $t(P) = e$ and $b(P) = f$, define

$$\Phi(P) = \phi^{e-f}(P).$$

Theorem

Φ is an involution on $\mathcal{P}(T, B)$ that satisfies $t(\Phi(P)) = b(P)$ and $b(\Phi(P)) = t(P)$.
A generalization to paths with S steps

$\tilde{\mathcal{P}}(T, B) =$ set of paths from O to F
with steps N, E and S
weakly between T and B.

For $P \in \tilde{\mathcal{P}}(T, B)$, define $t(P)$ and $b(P)$ as before.
The descent set of P is the set of x-coordinates where S steps occur.
A generalization to paths with S steps

$\tilde{\mathcal{P}}(T, B) =$ set of paths from O to F with steps N, E and S weakly between T and B.

For $P \in \tilde{\mathcal{P}}(T, B)$, define $t(P)$ and $b(P)$ as before.

The descent set of P is the set of x-coordinates where S steps occur.

Theorem

There is an involution $\tilde{\mathcal{P}}(T, B) \rightarrow \tilde{\mathcal{P}}(T, B)$ that switches the statistics (t, b) and preserves the descent set.
A generalization: examples

The map ϕ for paths with S steps:
A generalization: examples

The involution \(\Phi \) for paths with \(S \) steps:

\[
\phi \mapsto \Phi(\phi) \mapsto \phi \mapsto \Phi(\phi) \mapsto \phi
\]
A related theorem

For $P \in \mathcal{P}(T, B)$, let

\[\ell(P) = \# \text{ of } N \text{ steps in common with } T \]
\[r(P) = \# \text{ of } N \text{ steps in common with } B \]

Example: $t(P) = 4$, $b(P) = 3$, $\ell(P) = 2$, $r(P) = 1$.
A related theorem

For $P \in \mathcal{P}(T, B)$, let

$$\ell(P) = \# \text{ of } N \text{ steps in common with } T$$

$$r(P) = \# \text{ of } N \text{ steps in common with } B$$

Example: $t(P) = 4$, $b(P) = 3$, $\ell(P) = 2$, $r(P) = 1$.

Theorem

The pairs (b, ℓ) and (t, r) have the same joint distribution over $\mathcal{P}(T, B)$, i.e.,

$$\sum_{P \in \mathcal{P}(T, B)} x^{b(P)} y^{\ell(P)} = \sum_{P \in \mathcal{P}(T, B)} x^{t(P)} y^{r(P)}.$$
A related theorem

For $P \in \mathcal{P}(T, B)$, let

$\ell(P) = \# \text{ of } N \text{ steps in common with } T$

$r(P) = \# \text{ of } N \text{ steps in common with } B$

Example: $t(P) = 4$, $b(P) = 3$, $\ell(P) = 2$, $r(P) = 1$.

Theorem

The pairs (b, ℓ) and (t, r) have the same joint distribution over $\mathcal{P}(T, B)$, i.e.,

$$\sum_{P \in \mathcal{P}(T, B)} x^{b(P)} y^{\ell(P)} = \sum_{P \in \mathcal{P}(T, B)} x^{t(P)} y^{r(P)}.$$

We do not know of a bijective proof similar to the previous one.
Proof idea

Both

$$\sum_{P \in \mathcal{P}(T,B)} x^{b(P)} y^{\ell(P)} \quad \text{and} \quad \sum_{P \in \mathcal{P}(T,B)} x^{t(P)} y^{r(P)}$$

equal the Tutte polynomial of a lattice path matroid, as defined by Bonin–De Mier–Noy '03.

The statistics b and ℓ (t and r) are internal and external activities with respect to different linear orderings of the ground set.
$P_0 = T$
$P_1, P_2, \ldots, P_k \in \mathcal{P}(T, B)$,
P_i weakly above P_{i+1} for all i.
Let $P_0 = T$, $P_{k+1} = B$.
For $0 \leq i \leq k$, let

$$h_i = \# \text{ of } E \text{ steps where } P_i \text{ and } P_{i+1} \text{ coincide}$$
$P_0 = T$

$P_1, P_2, \ldots, P_k \in P(T, B),$

P_i weakly above P_{i+1} for all i.

Let $P_0 = T, P_{k+1} = B$.

For $0 \leq i \leq k$, let

$$h_i = \# \text{ of } E \text{ steps where } P_i \text{ and } P_{i+1} \text{ coincide}$$

Theorem

The distribution of (h_0, h_1, \ldots, h_k) over k-fans of paths as above is symmetric.
Connection to flagged SSYT

Let $T = NN \ldots NEE \ldots E$.

$h_i = \# E \text{ steps in } P_i \cap P_{i+1}$

$h_0 = 4 \quad h_1 = 3 \quad h_2 = 3 \quad h_3 = 3$
Connection to flagged SSYT

Let $T = NN \ldots NEE \ldots E$.

$h_i = \# \ E \ steps \ in \ P_i \cap \mathcal{P}_{i+1}$

$h_0 = 4 \quad h_1 = 3 \quad h_2 = 3 \quad h_3 = 3$

$u_j = \# \ of \ unused \ E \ steps \ at \ level \ j$
Connection to flagged SSYT

Let $T = NN \ldots NEE \ldots E$. $u_1 = 2$ $u_2 = 2$ $u_3 = 1$ $u_4 = 1$

$h_i = \# \text{ E steps in } P_i \cap P_{i+1}$ $h_0 = 4$ $h_1 = 3$ $h_2 = 3$ $h_3 = 3$

$u_j = \# \text{ of unused E steps at level } j$

$\lambda = (6, 4, 3, 3, 1)$

T and B form the shape of a Young diagram of a partition λ.
Connection to flagged SSYT

Let $T = NN \ldots NEE \ldots E$.

$u_1 = 2$
$u_2 = 2$
$u_3 = 1$
$u_4 = 1$

$h_i = \# E$ steps in $P_i \cap P_{i+1}$
$h_0 = 4 \quad h_1 = 3 \quad h_2 = 3 \quad h_3 = 3$
$u_j = \# of unused E steps at level j

$\lambda = (6, 4, 3, 3, 1)$

T and B form the shape of a Young diagram of a partition λ.

Def: A SSYT of shape λ is called k-flagged if the entries in row r are $\leq k + r$ for each r.

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>\leq 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td>\leq 5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>\leq 6</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>\leq 7</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\leq 8</td>
</tr>
</tbody>
</table>
Connection to flagged SSYTB

Let \(T = NN \ldots NEE \ldots E \).

\[
\begin{align*}
u_1 &= 2 \\
u_2 &= 2 \\
u_3 &= 1 \\
u_4 &= 1
\end{align*}
\]

\[
\begin{array}{cccc}
1 & 1 & 2 & 2 \\
2 & 3 & 3 & 4 \\
4 & 5 & 6 \\
5 & 6 & 7 \\
8
\end{array}
\]

\(h_i = \# \text{ of } E \text{ steps in } P_i \cap P_{i+1} \)

\(h_0 = 4 \quad h_1 = 3 \quad h_2 = 3 \quad h_3 = 3 \)

\(u_j = \# \text{ of unused } E \text{ steps at level } j \)

\(\lambda = (6, 4, 3, 3, 1) \)

\(T \text{ and } B \) form the shape of a Young diagram of a partition \(\lambda \).

Def: A SSYT of shape \(\lambda \) is called \(k\)-flagged if the entries in row \(r \) are \(\leq k + r \) for each \(r \).

\[
\begin{align*}
1 & \leq 4 \\
2 & \leq 5 \\
4 & \leq 6 \\
5 & \leq 7 \\
8 & \leq 8
\end{align*}
\]

weight = \((\#1s, \#2s, \ldots) = (2, 3, 3, 3, 2, 2, 1, 1)\)
Connection to flagged SSYT

Theorem

There is an explicit bijection between

- k-fans of paths in $\mathcal{P}(T, B)$ with statistics h_i and u_j, and
- k-flagged SSYT of shape λ and weight
 $$(\lambda_1 - h_0, \lambda_1 - h_1, \ldots, \lambda_1 - h_k, u_1, u_2, \ldots, u_r).$$

\[\begin{align*}
u_1 &= 2 \\
u_2 &= 2 \\
u_3 &= 1 \\
u_4 &= 1 \\
h_0 &= 4 \quad h_1 = 3 \quad h_2 = 3 \quad h_3 = 3
\end{align*}\]

\[\begin{array}{cccccc}
1 & 1 & 2 & 2 & 3 & 4 \\
2 & 3 & 3 & 4 & \lesssim & 5 \\
4 & 5 & 6 & \lesssim & 6 \\
5 & 6 & 7 & \lesssim & 7 \\
8 & \lesssim & 8 \\
\end{array}\]

$\lambda_1 = 6$

weight $= (2, 3, 3, 3, 2, 2, 1, 1)$
Theorem

There is an explicit bijection between

- k-fans of paths in $\mathcal{P}(T, B)$ with statistics h_i and u_j, and
- k-flagged SSYT of shape λ and weight $(\lambda_1 - h_0, \lambda_1 - h_1, \ldots, \lambda_1 - h_k, u_1, u_2, \ldots, u_r)$.

The bijection uses a variation of jeu de taquin.
Connection to k-triangulations

Theorem (conjectured by C. Nicolás ’09)

The joint distribution of the degrees of $k+1$ consecutive vertices in a k-triangulation of a convex n-gon equals the distribution of (h_0, h_1, \ldots, h_k) over k-fans of Dyck paths of semilength $n - 2k$.

The proof uses the previous theorem in the special case of Dyck paths, together with a bijection of SerranoStump between k-triangulations and flagged SSTY.
Connection to k-triangulations

Theorem (conjectured by C. Nicolás ’09)

The joint distribution of the degrees of $k + 1$ consecutive vertices in a k-triangulation of a convex n-gon equals the distribution of (h_0, h_1, \ldots, h_k) over k-fans of Dyck paths of semilength $n - 2k$.

The proof uses the previous theorem in the special case of Dyck paths, together with a bijection of Serrano–Stump between k-triangulations and k-flagged SSYT.