A generalized Lalanne–Kreweras involution for rectangular tableaux

Sergi Elizalde

Dartmouth

CanaDAM 2025, Ottawa

A Dyck path of length 2n is a lattice path from (0,0) to (2n,0) with steps u = (1,1) and d = (1,-1) that stays weakly above the x-axis.

 $\mathcal{D}_n = \text{set of Dyck paths of length } 2n$

A Dyck path of length 2n is a lattice path from (0,0) to (2n,0) with steps u = (1,1) and d = (1,-1) that stays weakly above the x-axis.

 $\mathcal{D}_n = \text{set of Dyck paths of length } 2n$

A peak of is a pair of consecutive steps ud.

A Dyck path of length 2n is a lattice path from (0,0) to (2n,0) with steps u = (1,1) and d = (1,-1) that stays weakly above the x-axis.

 $\mathcal{D}_n = \text{set of Dyck paths of length } 2n$

A peak of is a pair of consecutive steps ud. A valley of is a pair of consecutive steps du.

A Dyck path of length 2n is a lattice path from (0,0) to (2n,0) with steps u = (1,1) and d = (1,-1) that stays weakly above the x-axis.

 $\mathcal{D}_n = \text{set of Dyck paths of length } 2n$

A peak of is a pair of consecutive steps ud. A valley of is a pair of consecutive steps du.

Classical result

The number of Dyck paths of length 2n with h valleys (or equivalently, h + 1 peaks), is the Narayana number

$$N(n,h) = \frac{1}{n} \binom{n}{h} \binom{n}{h+1}.$$

Symmetry of the Narayana numbers

From the formula

$$N(n,h) = \frac{1}{n} \binom{n}{h} \binom{n}{h+1},$$

we see the symmetry

$$N(n,h) = N(n,n-h-1).$$

From the formula

$$N(n,h) = \frac{1}{n} \binom{n}{h} \binom{n}{h+1},$$

we see the symmetry

$$N(n,h) = N(n,n-h-1).$$

This can be interpreted as

 $\#\{D \in \mathcal{D}_n \text{ with } h+1 \text{ peaks}\} = \#\{D \in \mathcal{D}_n \text{ with } n-h \text{ peaks}\}$

From the formula

$$N(n,h) = \frac{1}{n} \binom{n}{h} \binom{n}{h+1},$$

we see the symmetry

$$N(n,h) = N(n,n-h-1).$$

This can be interpreted as

$$\#\{D \in \mathcal{D}_n \text{ with } h+1 \text{ peaks}\} = \#\{D \in \mathcal{D}_n \text{ with } n-h \text{ peaks}\}$$

Bijective proof?

The Lalanne–Kreweras (LK) involution

Draw $D \in \mathcal{D}_n$ with north and east steps, and suppose that its peaks have coordinates $(x_1, y_1), \ldots, (x_{h+1}, y_{h+1})$.

The Lalanne–Kreweras (LK) involution

Draw $D \in \mathcal{D}_n$ with north and east steps, and suppose that its peaks have coordinates $(x_1, y_1), \ldots, (x_{h+1}, y_{h+1})$. Let

$$\{0, 1, \dots, n\} \setminus \{x_1, x_2, \dots, x_{h+1}\} = \{x'_1, x'_2, \dots, x'_{n-h}\}, \\ \{0, 1, \dots, n\} \setminus \{y_1, y_2, \dots, y_{h+1}\} = \{y'_1, y'_2, \dots, y'_{n-h}\},$$

and let LK(D) be the Dyck path with peaks at $(x'_1, y'_1), \ldots, (x'_{n-h}, y'_{n-h})$.

Let λ be a partition of N. A standard Young tableau of shape λ is a filling of the boxes of the Young diagram of λ with the numbers $1, 2, \ldots, N$ so that rows and columns are increasing.

 $\mathsf{SYT}(\lambda) = \mathsf{set} \text{ of standard Young tableaux of shape } \lambda$

Let λ be a partition of N. A standard Young tableau of shape λ is a filling of the boxes of the Young diagram of λ with the numbers $1, 2, \ldots, N$ so that rows and columns are increasing.

 $\mathsf{SYT}(\lambda) = \mathsf{set} \text{ of standard Young tableaux of shape } \lambda$

There is a simple bijection between \mathcal{D}_n and SYT(n, n):

Let λ be a partition of N. A standard Young tableau of shape λ is a filling of the boxes of the Young diagram of λ with the numbers $1, 2, \ldots, N$ so that rows and columns are increasing.

 $\mathsf{SYT}(\lambda) = \mathsf{set} \text{ of standard Young tableaux of shape } \lambda$

There is a simple bijection between \mathcal{D}_n and SYT(n, n):

Peaks become jumps to a lower row.

Let λ be a partition of N. A standard Young tableau of shape λ is a filling of the boxes of the Young diagram of λ with the numbers $1, 2, \ldots, N$ so that rows and columns are increasing.

 $\mathsf{SYT}(\lambda) = \mathsf{set} \text{ of standard Young tableaux of shape } \lambda$

There is a simple bijection between \mathcal{D}_n and SYT(n, n):

Peaks become jumps to a lower row. Valleys become jumps to a higher row.

In a standard Young tableau,

• *i* is an ascent if i + 1 is higher than *i*,

In a standard Young tableau,

- *i* is an ascent if i + 1 is higher than *i*,
- *i* is a descent if i + 1 is lower than *i*.

In a standard Young tableau,

- *i* is an ascent if i + 1 is higher than *i*,
- *i* is a descent if i + 1 is lower than *i*.

 $\operatorname{asc}(T) = \operatorname{number} \operatorname{of} \operatorname{ascents} \operatorname{of} T$ $\operatorname{des}(T) = \operatorname{number} \operatorname{of} \operatorname{descents} \operatorname{of} T$

1	2	5	7
3	6		
4	8		

$$\operatorname{asc}(T) = 2$$

 $\operatorname{des}(T) = 4$

In a standard Young tableau,

- *i* is an ascent if i + 1 is higher than *i*,
- *i* is a descent if i + 1 is lower than *i*.

 $\operatorname{asc}(T) = \operatorname{number} \operatorname{of} \operatorname{ascents} \operatorname{of} T$ $\operatorname{des}(T) = \operatorname{number} \operatorname{of} \operatorname{descents} \operatorname{of} T$

Aside: if $RSK(\pi) = (P, Q)$, then π and Q have the same descent set.

In a standard Young tableau,

- *i* is an ascent if i + 1 is higher than *i*,
- *i* is a descent if i + 1 is lower than *i*.

 $\operatorname{asc}(T) = \operatorname{number} \operatorname{of} \operatorname{ascents} \operatorname{of} T$ $\operatorname{des}(T) = \operatorname{number} \operatorname{of} \operatorname{descents} \operatorname{of} T$

Aside: if $\mathsf{RSK}(\pi) = (P, Q)$, then π and Q have the same descent set.

 $SYT(n^k) =$ set of standard Young tableaux of rectangular shape $k \times n$

In a standard Young tableau,

- *i* is an ascent if i + 1 is higher than *i*,
- *i* is a descent if i + 1 is lower than *i*.

 $\operatorname{asc}(T) = \operatorname{number} \operatorname{of} \operatorname{ascents} \operatorname{of} T$ $\operatorname{des}(T) = \operatorname{number} \operatorname{of} \operatorname{descents} \operatorname{of} T$

Aside: if $RSK(\pi) = (P, Q)$, then π and Q have the same descent set.

 $SYT(n^k) =$ set of standard Young tableaux of rectangular shape $k \times n$

The k-Narayana numbers are defined as

$$N(k, n, h) = |\{T \in \mathsf{SYT}(n^k) : \mathsf{asc}(T) = h\}|$$

In a standard Young tableau,

- *i* is an ascent if i + 1 is higher than *i*,
- *i* is a descent if i + 1 is lower than *i*.

 $\operatorname{asc}(T) = \operatorname{number} \operatorname{of} \operatorname{ascents} \operatorname{of} T$ $\operatorname{des}(T) = \operatorname{number} \operatorname{of} \operatorname{descents} \operatorname{of} T$

Aside: if $RSK(\pi) = (P, Q)$, then π and Q have the same descent set.

 $\mathsf{SYT}(n^k) = \mathsf{set}$ of standard Young tableaux of rectangular shape $k \times n$

The k-Narayana numbers are defined as

$$N(k, n, h) = |\{T \in SYT(n^k) : asc(T) = h\}|$$

= |{T \in SYT(n^k) : des(T) = h + k - 1}| (Sulanke '04)

Theorem (Sulanke '04)

$$N(k, n, h) = \sum_{\ell=0}^{h} (-1)^{h-\ell} \binom{kn+1}{h-\ell} \prod_{i=0}^{n-1} \prod_{j=0}^{k-1} \frac{i+j+1+\ell}{i+j+1}.$$

Sulanke's proof is based on Stanley's theory of P-partitions.

Theorem (Sulanke '04)

$$N(k, n, h) = \sum_{\ell=0}^{h} (-1)^{h-\ell} \binom{kn+1}{h-\ell} \prod_{i=0}^{n-1} \prod_{j=0}^{k-1} \frac{i+j+1+\ell}{i+j+1}.$$

Sulanke's proof is based on Stanley's theory of *P*-partitions.

Corollary (Sulanke '04)

$$N(k, n, h) = N(k, n, (k-1)(n-1) - h).$$

Theorem (Sulanke '04)

$$N(k, n, h) = \sum_{\ell=0}^{h} (-1)^{h-\ell} \binom{kn+1}{h-\ell} \prod_{i=0}^{n-1} \prod_{j=0}^{k-1} \frac{i+j+1+\ell}{i+j+1}.$$

Sulanke's proof is based on Stanley's theory of *P*-partitions.

Corollary (Sulanke '04)

$$N(k, n, h) = N(k, n, (k-1)(n-1) - h).$$

Our goal is to give a bijective proof of this symmetry.

It turns out that the symmetry

$$N(k, n, h) = N(k, n, (k-1)(n-1) - h).$$

is also a special case of an older result of Stanley:

It turns out that the symmetry

$$N(k, n, h) = N(k, n, (k-1)(n-1) - h).$$

is also a special case of an older result of Stanley:

Theorem (Stanley '72)

In any graded poset *P*, the distribution of the number of descents on linear extensions of *P* (with respect to any given natural labeling) is symmetric.

Ours is the special case $P = k \times n$, the product of two chains.

It turns out that the symmetry

$$N(k, n, h) = N(k, n, (k-1)(n-1) - h).$$

is also a special case of an older result of Stanley:

Theorem (Stanley '72)

In any graded poset *P*, the distribution of the number of descents on linear extensions of *P* (with respect to any given natural labeling) is symmetric.

Ours is the special case $P = k \times n$, the product of two chains.

Problem (Stanley '81)

Find a bijective proof of this symmetry. Even for the case $P = k \times n$.

It turns out that the symmetry

$$N(k, n, h) = N(k, n, (k-1)(n-1) - h).$$

is also a special case of an older result of Stanley:

Theorem (Stanley '72)

In any graded poset P, the distribution of the number of descents on linear extensions of P (with respect to any given natural labeling) is symmetric.

Ours is the special case $P = k \times n$, the product of two chains.

Problem (Stanley '81)

Find a bijective proof of this symmetry. Even for the case $P = k \times n$.

In 2005, Farley turned Stanley's proof into a recursive bijection based on Garsia and Milne's involution principle, and again asked for a direct bijection for the case $P = k \times n$.

We will describe a bijection φ : SYT $(n^k) \rightarrow$ SYT (n^k) such that $des(T) + des(\varphi(T)) = (k - 1)(n + 1)$ for all $T \in$ SYT (n^k) .

1	2	6	9	10	15
3	5	11	17	18	22
4	8	16	21	24	27
7	12	19	23	26	28
13	14	20	25	29	30

	1	2	6	9	10	15
1	3	5	11	17	18	22
1	4	8	16	21	24	27
1	7	12	19	23	26	28
1	13	14	20	25	29	30

	<u>1</u>	2	6	9	10	15
1	3	5	11	17	18	22
1	4	8	16	21	24	27
1	7	12	19	23	26	28
1	13	14	20	25	29	30

	<u>1</u>	<u>2</u>	6	9	10	15
1	3	5	11	17	18	22
1	4	8	16	21	24	27
1	7	12	19	23	26	28
1	13	14	20	25	29	30

	<u>1</u>	2	- 6	9	10	15
1	<u>3</u>	5	11	17	18	22
1	4	8	16	21	24	27
1	7	12	19	23	26	28
1	13	14	20	25	29	30

	<u>1</u>	2	- 6	9	10	15
1	<u>3</u>	5	11	17	18	22
1	<u>4</u>	8	16	21	24	27
1	7	12	19	23	26	28
1	13	14	20	25	29	30

	<u>1</u>	2	- 6	9	10	15
1	<u>3</u>	<u>5</u>	11	17	18	22
1	<u>4</u> ↑	8	16	21	24	27
1	7	12	19	23	26	28
1	13	14	20	25	29	30
	<u>1</u>	2	<u>6</u>	9	10	15
---	------------	--------------	----------	----	----	----
1	<u>3</u>	Ļ <u>5</u> ↑	11	17	18	22
1	<u>4</u> ↑	8	16	21	24	27
1	7	12	19	23	26	28
1	13	14	20	25	29	30

	<u>1</u>	2	<u>6</u>	9	10	15
1	<u>3</u>	ר <u>5</u> ל	11	17	18	22
1	` <u>4</u> ↑	↓ 8	16	21	24	27
1	<u>7</u>	12	19	23	26	28
1	13	14	20	25	29	30

	<u>1</u>	2	<u>6</u>	9	10	15
1	<u>3</u>	<u>5</u> ל	. 11	17	18	22
1	<u>4</u> †	↓ <u>8</u>	16	21	24	27
1	<u>7</u>	12	19	23	26	28
1	13	14	20	25	29	30

	<u>1</u>	2	<u>6</u>	<u>9</u>	10	15
1	<u>3</u>	<u>5</u> ל	† 11	17	18	22
1	<u>4</u> 1	<mark>↓</mark> ≗↑	16	21	24	27
1	<u>7</u> ~	12	19	23	26	28
1	13	14	20	25	29	30

	<u>1</u>	2	<u>6</u>	<u>9</u>	<u>10</u>	15
1	` <u>3</u> .	ר <u>5</u> ל	† 11	17	18	22
1	<u>4</u> ↑	↓ <mark>≗</mark> ↑	16	21	24	27
1	<u>7</u> 1	12	19	23	26	28
1	13	14	20	25	29	30

	<u>1</u>	2	<u>6</u>	<u>9</u>	<u>10</u>	15
1	<u>3</u>	<u>5</u> ל	, <u>†11</u>	17	18	22
1	<u>4</u> 1	<mark>↓</mark> ≗↑	16	21	24	27
1	<u>7</u> ~	12	19	23	26	28
1	13	14	20	25	29	30

	<u>1</u>	2	<u>6</u>	<u>9</u>	<u>10</u>	15
1	<u>3</u>	ר <u>5</u> ל	↑ <mark>11</mark> ↓	17	18	22
1	` <u>4</u> ↑	↓ <mark>≗</mark> ↑	16	21	24	27
1	<u> </u>	<u>12</u>	19	23	26	28
1	13	14	20	25	29	30

	<u>1</u>	2	<u>6</u>	<u>9</u>	<u>10</u>	15
↑	<u>3</u>	ר <u>5</u> ל	↑ <mark>11</mark> ↓	17	18	22
↑	<u>4</u> ↑	↓ <mark></mark> ≜↑	- 16	21	24	27
↑	<u>7</u> 1	∖ <u>12</u> ↓	. 19	23	26	28
↑	<u>13</u>	14	20	25	29	30

	<u>1</u>	2	<u>6</u>	<u>9</u>	<u>10</u>	15
↑	<u>3</u>	ר <u>5</u> ל	↑ <mark>11</mark> ↓	17	18	22
↑	<u>4</u> ↑	↓ <mark></mark> ≜↑	- 16	21	24	27
↑	<u>7</u> 1	∖ <u>12</u> ↓	. 19	23	26	28
↑	<u>13</u>	<u>14</u>	20	25	29	30

	<u>1</u>	2↓6	↓ 9	<u>10</u>	. <u>15</u>
↑	3	_ <u>5</u> ↑↓↑ <u>11</u> ↓	† 17	18	22
↑	<u>4</u> ↑	↓ <u>8</u>↑↓ ↑16	21	24	27
↑	<u>7</u> 1	` <u>12</u> ↓↑19	23	26	28
↑	<u>13</u>	<u>14</u> ↑ 20	25	29	30

	<u>1</u>	<u>2</u> ↓ <u>6</u>	↓ 9	<u>10</u>	<u>15</u> ↓
↑	<u>3</u>	_ <u>5</u> ↑↓↑ <u>11</u>	 17	18	22
↑	<u>4</u> ↑	↓ <u>8</u> ↑↓↑ <u>16</u>	21	24	27
↑	71	► <u>12</u> ↓↑ 19	23	26	28
↑	<u>13</u>	<u>14</u> ↑ 20	25	29	30

	<u>1</u>	2↓6、	F 8	<u>10</u>	- <u>15</u> ↓
↑	3 ↓	<u>5</u>	↓ <u>17</u>	18	22
↑	<u>4</u> ↑	↓ <u>8</u> ↑↓↑ <u>16</u> ↑	21	24	27
↑	71	` <u>12</u> ↓↑19	23	26	28
↑	<u>13</u>	<u>14</u> ↑ 20	25	29	30

	<u>1</u>	2↓6、	↓ ᠑	<u>10</u>	<u>15</u>
↑	3 ↓	<u>5</u> ^ <u>11</u>	1 <u>17</u>	<u>18</u>	22
↑	<u>4</u> ↑	↓ <u>8</u> ↑↓↑ <u>16</u> ↑	21	24	27
↑	<u>7</u> 1	` <u>12</u> ↓↑19	23	26	28
↑	<u>13</u>	<u>14</u> ↑ 20	25	29	30

	<u>1</u>	2↓6、	F 8	<u>10</u>	_ <u>15</u> ↓
↑	<u>3</u>	<u>5</u>	↓ <u>17</u>	<u>18</u>	22
↑	<u>4</u> ↑	↓ <u>8</u> ↑↓↑ <u>16</u> ↑	1 21	24	27
↑	<u>7</u> 1	` <u>12↓†19</u>	23	26	28
↑	<u>13</u>	<u>14</u> ↑ 20	25	29	30

	<u>1</u>	2↓6、	F 8	<u>10</u>	, <u>15</u> ↓
↑	<u>3</u>	_ <u>5</u> ↑↓↑ <u>11</u> ↓	↓ <u>17</u>	<u>18</u>	22
↑	<u>4</u> ↑	↓ <u>8</u> ↑↓↑ <u>16</u> ↑	↓21	24	27
↑	<u>7</u> 1	` <u>12</u> ↓↑ <u>19</u> ↓	23	26	28
↑	<u>13</u>	<u>14</u> ↑ <u>20</u>	25	29	30

	<u>1</u>	2↓6↓9	<u>10</u>	_ <u>15</u> ↓
↑	3 ↓	<u>5</u> 11 <u>1</u> 11 <u>1</u> 17	<u>18</u>	22
↑	<u>4</u> ↑	↓ <u>8</u> ↑↓↑ <u>16</u> ↑↓ <u>21</u>	24	27
↑	71	` <u>12↓↑19</u> ↓↑23	26	28
↑	<u>13</u>	<u>14</u> ↑ <u>20</u> ↑ 25	29	30

	<u>1</u>	2↓6.	↓ <u>9</u>	<u>10</u>	<u>15</u>
1	<u>3</u>	_ <u>5</u> ↑↓↑ <u>11</u> ↓	<u>†↓17</u>	<u>18</u>	2 <u>2</u>
1	<u>4</u> ↑	↓ <u>8</u> ↑↓↑ <u>16</u> 1	↓ <u>21</u> ↑	24	27
1	<u>7</u>	<u>12</u> ↓↑ <u>19</u> ↓	† 23	26	28
1	<u>13</u>	<u>14</u> ↑ <u>20</u> ·	^ 25	29	30

	<u>1</u>	2↓6	↓ 9	<u>10</u>	- <u>15</u> ↓
1	<u>3</u>	↓ <u>5</u> ↑↓↑ <u>11</u>	↓↑↓ <u>17</u>	<u>18</u>	- <u>22</u> ↓
1	<u>4</u>	\$↓ <u>8</u> ↑↓↑ <u>16</u>	1, <mark>21</mark> 1	↓24	27
1	<u>7</u>	↑ <u>12</u> ↓↑ <u>19</u>	↓↑ <u>23</u>	26	28
1	<u>13</u>	<u>14</u> ↑ <u>20</u>	† 25	29	30

		<u>1</u>		2、	ŀ	<u>6</u> 、	F 8	<u>10</u>	, <u>15</u> ,	ł
1	1	<u>3</u>	1	, <u>5</u> ↑	1	11	↓ <u>17</u>	<u>18</u> 、	2 <u>2</u> 、	Ļ
1	1	<u>4</u>	ţ	↓ <mark>≗</mark> ↑	1	<u>16</u> †	↓ <u>21</u> ↑	↓ <u>24</u>	27	
1	1	<u>7</u>	1	` <u>12</u> ↓	1	<u>19</u> ↓	<u>↑23</u> ↑	26	28	
1	1	<u>13</u>		<u>14</u>		20 -	25	29	30	

	<u>1</u>	<u>2</u> ↓ <u>6</u> 、	F 8	<u>10</u>	, <u>15</u> ↓
1	<u>3</u>	_ <u>5</u> ↑↓↑ <u>11</u> ↓	↓ <u>17</u>	<u>18</u>	- <u>22</u> ↓
1	<u>4</u> ↑	↓ <u>8</u> ↑↓↑ <u>16</u> ↑	↓ <u>21</u> ↑	↓ <u>24</u> ↓	- 27
1	<u>7</u> 1	` <u>12</u> ↓↑ <u>19</u> ↓	↑ <u>23</u> ↑	↓26	28
1	<u>13</u>	<u>14</u> ↑ <u>20</u> 1	<u>25</u>	29	30

	<u>1</u>	<u>2</u> ↓ <u>6</u> 、	F 8	<u>10</u>	- <u>15</u> ↓
1	<u>3</u>	_ <u>5</u> ↑↓↑ <u>11</u> ↓	↓ <u>17</u>	<u>18</u>	- <u>22</u> ↓
1	<u>4</u> ↑	↓ <u>8</u> ↑↓↑ <u>16</u> ↑	↓ <u>21</u> ↑	↓ <u>24</u> ↓	- 27
1	<u>7</u> 1	` <u>12</u> ↓↑ <u>19</u> ↓	↑ <u>23</u> ↑	↓ <u>26</u>	28
1	<u>13</u>	<u>14</u> ↑ <u>20</u> 1	2 <u>5</u> 1	29	30

		1			2	↓	<u>6</u>	,	ŀ	<u>9</u>		1	<u>10</u>	↓	. <u>15</u>	į .	L
1	1	<u>3</u>	1	-	<u>5</u> 1	¥	<u>†11</u>	¥	↓	<u>17</u>		1	8	↓	22	2 、	L
1	1	<u>4</u>	ţ	Ļ	<u>8</u> 1	¥	<u>↑16</u>	1	;↓	<u>21</u>	↑	↓2	<u>24</u>	↓	. <u>27</u>	-	
1	1	<u>7</u>	1	<u> </u>	<u>12</u> .	11	- <u>19</u>	ţ	1	<u>23</u>	↑.	₽	<u>26</u>	↑	28	}	
1	1	<u>13</u>		1	<u>14</u>	↑	<u>20</u>	1	1	<u>25</u>	1	2	29		30)	

		1			<u>2</u>	1	-	<u>6</u>	1	-	<u>9</u>		-	<u>L0</u>	↓	-	<u>15</u>	,	4
1	1	<u>3</u>	1	-	<u>5</u> 1	1	1	<u>11</u>	41	1	<u>17</u>		-	L <u>8</u>	↓	-	<u>22</u>	,	4
1		<u>4</u>	ſ.	Ļ	<u>8</u> 1	1	1	16	↑	÷	<u>21</u>	↑	Ļ	24	↓	-	<u>27</u>	,	4
1	1	<u>7</u>	1	`	<u>12</u>	ţ	1	<u>19</u>	ţ	1	<u>23</u>	↑.	Ļ	<u>26</u>	1	•	<u>28</u>		
1	1	<u>13</u>			<u>14</u>	1	-	<u>20</u>	1	-	<u>25</u>	1		29			30		

		1			<u>2</u>	1	ŀ	<u>6</u>	1	ŀ	<u>9</u>		-	<u>L0</u>	↓	-	<u>15</u>	,	ŀ
1	1	<u>3</u>	1	ŀ	<u>5</u> -	1	1	<u>11</u>	41	↓	<u>17</u>		-	L <u>8</u>	1	-	<u>22</u>	,	ŀ
1	1	<u>4</u>	ſ.	÷	<u>8</u> -	↑	1	16	↑	;↓	21	↑	Ļ	<u>24</u>	1	-	<u>27</u>	,	ŀ
1	1	<u>7</u>	1		<u>12</u>	ţ	1	<u>19</u>	ţ	1	<u>23</u>	↑.	Ļ	<u>26</u>	1	•	<u>28</u>	,	ŀ
1	1	<u>13</u>		-	<u>14</u>	1	1	<u>20</u>	1	1	<u>25</u>	1		<u>29</u>			30		

		1			<u>2</u>	1	ŀ	<u>6</u>	1	-	<u>9</u>		-	<u>10</u>	1	-	<u>15</u>	,	ŀ
1	1	<u>3</u>	1	ŀ	<u>5</u> -	† ,	1	<u>11</u>	41	1	<u>17</u>		-	<u>18</u>	↓	-	<u>22</u>	,	ŀ
1	1	<u>4</u>	↑	÷	<u>8</u> -	† ,	1	<u>16</u>	↑	÷	<u>21</u>	↑	Ļ	<u>24</u>	↓	-	<u>27</u>	`	ŀ
1	1	<u>7</u>	1		<u>12</u>	↓ [.]	1	<u>19</u>	ţ	1	<u>23</u>	↑.	Ļ	<u>26</u>	1	•	<u>28</u>	,	ŀ
1	1	<u>13</u>			<u>14</u>	1	1	<u>20</u>	1	-	<u>25</u>	1		<u>29</u>			<u>30</u>		

This encoding is a bijection between $SYT(n^k)$ and valid arrow arrays (i.e., satisfying certain conditions).

Leading and trailing arrows

- leading \downarrow = leftmost \downarrow in its block
- trailing \uparrow = rightmost \uparrow in its block

Leading and trailing arrows

- leading \downarrow = leftmost \downarrow in its block
- trailing \uparrow = rightmost \uparrow in its block

	1	2 、	6 、	9	10	15	-
↑	3	- 5个	,↑11↓	¦↓17	18	22	-
↑	4 ↑	↓ <mark>8</mark> ↑	, ↑16 ↑	↓ <mark>21</mark> ↑	↓24	27	-
↑	7	↑ 12↓	↑19↓	<mark>↑23</mark> ↑	<mark>↓26</mark> 1	28	-
↑	13	14 1	20	25	29	30	

Leading \downarrow are colored in red.

11/23

Leading and trailing arrows

- leading \downarrow = leftmost \downarrow in its block
- trailing \uparrow = rightmost \uparrow in its block

	1		2	-	-	6	1	ŀ	9		10	1	-	15	,	4
1	3.	ł	51	↑ ,	1	11.	1	↓	.17		18	1	-	22	-	-
1	4 1	₽	81	↑ ,	1	16	1	÷	21	1↓	-24	1	-	27	-	-
1	7	↑	12	t	1	19	t	1	231	† ↓	26	1		28	,	-
1	13		14	1	1	20	1	1	25	↑	29			30		

Leading ↓ are colored in red. Trailing ↑ are colored in green.

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;
if A has no leading ↓ and B has no trailing ↑, add these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;
if A has no leading ↓ and B has no trailing ↑, add these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;
if A has no leading ↓ and B has no trailing ↑, add these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks ^A_B with A immediately above B,
if A has a leading ↓ and B has a trailing ↑, remove these arrows;

For every pair of arrow blocks $\begin{array}{c} A \\ B \end{array}$ with A immediately above B,

- if A has a leading \downarrow and B has a trailing \uparrow , remove these arrows;
- if A has no leading \downarrow and B has no trailing \uparrow , add these arrows.

13/23

For every pair of arrow blocks $\begin{array}{c} A \\ B \end{array}$ with A immediately above B,

- if A has a leading \downarrow and B has a trailing \uparrow , remove these arrows;
- if A has no leading \downarrow and B has no trailing \uparrow , add these arrows.

	1		2 .	6	9	10 、	15		1.	4	5 、	7.	- 13	↓ 1	9
↑	3	¥	<mark>5</mark> 个	↓ ↑11↓	1,17	18 .	22		2 🗸	1 6 1	:↓11↓	↓15↓	↑ 20	↓ 2	!4
↑	4	1↓	<mark>8</mark> 个	↓↑ <mark>16</mark> 1	↓21-	¢↓24 .	27	$\stackrel{\varphi}{\longleftrightarrow}$	3 1	:↓10↑	↓ ↑14 ↑	↓1 <mark>7</mark> ↓1	\$ 1 25	2	:6
↑	7	↑	12↓	<u>†19</u>	<u>↑23</u> 1	†↓26 ⁻	1 28		8 1	<u>↑12</u>	<u>^ 16</u> -	<u>18</u>	† 27	↓ 2	9
↑	13		14 -	↑ 20 ⁻	↑ 25	↑ 29	30	,	9 -	[^] 21	22	23 -	[^] 28	↑ 3	0

13/23

Theorem

The map $\varphi : SYT(n^k) \rightarrow SYT(n^k)$ is an involution satisfying

$$\operatorname{des}(T) + \operatorname{des}(\varphi(T)) = (k-1)(n+1).$$

Theorem

The map $\varphi : \mathsf{SYT}(n^k) \to \mathsf{SYT}(n^k)$ is an involution satisfying

$$\operatorname{des}(T) + \operatorname{des}(\varphi(T)) = (k-1)(n+1).$$

By switching the roles of leading and trailing arrows, we can similarly describe another bijection $\psi : SYT(n^k) \rightarrow SYT(n^k)$.

Theorem

The map $\psi : SYT(n^k) \rightarrow SYT(n^k)$ is an involution satisfying

$$\operatorname{asc}(T) + \operatorname{asc}(\psi(T)) = (k-1)(n-1).$$

14/23

Consider a third involution β : SYT $(n^k) \rightarrow$ SYT (n^k) that simply reverses (i.e., reads from right to left) each block of arrows:

Consider a third involution β : SYT $(n^k) \rightarrow$ SYT (n^k) that simply reverses (i.e., reads from right to left) each block of arrows:

	1	2 .	6	↓ 9	10	, 15 ↓			1	2 、	7.	↓ 9	10 -	13	¥
↑	3.	↓ 5↑	↓ ↑11↓	↑↓17	18	22 🗸	2	↑	3 🗸	- 6个	 ↑11↓	118	19 .	24	↓
↑	4 1	¥ 8↑	↓↑ <mark>16</mark> 1	t <mark>↓21</mark> 1	↓24 、	27 🗸	$\stackrel{\beta}{\longleftrightarrow}$	↑	4 ↓	↑8↑	 ↑14↓	<mark>↑20</mark> 、	<u>† 25</u> .	27	↓
↑	7 -	12	↑19、	↑231	<mark>↓26</mark> 1	► 28 🗸		↑	5 1	` 12†	↓171	↓22↓	<u>↑26</u> -	1 28	↓
↑	13	14 -	† 20 ·	↑ 25 ⁻	↑ 29	30		↑ :	15	16 1	21 -	† 23 ⁻	↑ 29	30	

Theorem

The map β : SYT $(n^k) \rightarrow$ SYT (n^k) is an involution satisfying

$$des(T) = asc(\beta(T)) + k - 1,$$
$$asc(T) + k - 1 = des(\beta(T)).$$

Theorem

The map β : SYT $(n^k) \rightarrow$ SYT (n^k) is an involution satisfying

$$des(T) = asc(\beta(T)) + k - 1,$$
$$asc(T) + k - 1 = des(\beta(T)).$$

This gives a simpler proof of Sulanke's identity

 $|\{T \in \mathsf{SYT}(n^k) : \mathsf{asc}(T) = h\}| = |\{T \in \mathsf{SYT}(n^k) : \mathsf{des}(T) = h + k - 1\}|.$

The three bijections are related by $\psi = \beta \circ \varphi \circ \beta$

1	$2 \downarrow 6 \downarrow 9$	10 \ 15 \		1 4	5 4 7 4	13 19				
↑ 3 .	5 1 1 1 1 1	18 🕹 22 🧅	-	↑ 2 ↓↑ 6 ↑	↓11↓↑↓15↓	►20 ↓ 24 ↓				
↑ 4 ↑	↓ 8↑↓↑16↑↓ 21 1	↓24 ↓ 27 ↓	$\stackrel{\varphi}{\longleftrightarrow}$	↑ 3 ↑↓10↑	L↑14 ↑↓ 17↓↑	L¶25 26↓				
↑ 7 ⁻	` 12 ↓ ↑ 19↓↑ 231	↓26 ↑ 28 ↓		↑ 8 ↓↑12 1	`16 ↑ 18†↓	↑27 ↓ 29 ↓				
↑ 13	14 1 20 1 25 -	↑ 29 30		↑9↑21	22 23 1	⁻ 28 ↑ 30				
	$\uparrow \beta$			$\uparrow eta$						
1	2 ↓ 7 ↓ 9	10 ↓ 13 ↓		1 ↓ 3	4↓9↓	. 13 ↓ 17 ↓				
↑ 3 .	6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 ↓ 24 ↓	-	↑ 2 ↑↓ 7 ↓	↑10↓↑↓16↑	↓19 ↓ 21 ↓				
			2/1							
↑ 4 ↓	↑ 8↑↓↑14↓↑20↓	↑25↓27↓	$\stackrel{\psi}{\longleftrightarrow}$	↑ 5 ↓↑ 8↑	↑14 ↓↑ 18↓↓	1⊉5 26↓				
↑ 4 ↓ ↑ 5 ⁻	↑ 8↑↓114↓↑20↓ 12↑↓17↑↓22↓	↑25 ↓ 27 ↓ ↑26 ↑ 28 ↓	$\stackrel{\psi}{\longleftrightarrow}$	↑ 5 ↓↑ 8↑. ↑ 6 ↑↓ 12 1	↑14 ↓↑ 18↓ ` 15 ↑ 20↑↓	1↓25 26↓ 1+27↓29↓				

Sergi Elizalde (Dartmouth) A Lalanne–Kreweras involution for SYT

Arrow encodings can be defined for arbitrary shapes:

$$1 \downarrow 3 \qquad 4 \downarrow 11 \downarrow 13 \downarrow$$

$$\uparrow 2 \uparrow \downarrow 6 \downarrow 8 \downarrow \uparrow 12 \uparrow \downarrow$$

$$\uparrow 5 \uparrow \downarrow \uparrow 9 \qquad 10 \uparrow \downarrow$$

$$\uparrow 7 \uparrow \downarrow 15 \downarrow$$

$$\uparrow 14 \uparrow$$

Arrow encodings can be defined for arbitrary shapes:

$$1 \downarrow 3 \qquad 4 \downarrow 11 \downarrow 13 \downarrow$$

$$\uparrow 2 \uparrow \downarrow 6 \downarrow 8 \downarrow \uparrow 12 \uparrow \downarrow$$

$$\uparrow 5 \uparrow \downarrow \uparrow 9 \qquad 10 \uparrow \downarrow$$

$$\uparrow 7 \uparrow \downarrow 15 \downarrow$$

$$\uparrow 14 \uparrow$$

However, in general, the maps $\varphi \text{, }\psi$ and β may produce invalid arrow arrays.

Arrow encodings can be defined for arbitrary shapes:

However, in general, the maps $\varphi,\,\psi$ and β may produce invalid arrow arrays.

One exception is for the shape $\lambda = (n, n - 1, ..., n - k + 1)$, called a *truncated staircase*.

Let $\lambda = (n, n - 1, ..., n - k + 1)$. A slight variation of the definition of ψ works on SYT(λ).

Let $\lambda = (n, n - 1, ..., n - k + 1)$. A slight variation of the definition of ψ works on SYT(λ).

Let $\lambda = (n, n - 1, ..., n - k + 1)$. A slight variation of the definition of ψ works on SYT(λ).

Theorem

The map ψ : SYT(λ) \rightarrow SYT(λ) is an involution satisfying asc(T) + asc($\psi(T)$) = $\frac{(2n-k)(k-1)}{2}$.

Let $\lambda = (n, n - 1, ..., n - k + 1)$. A slight variation of the definition of ψ works on SYT(λ).

Theorem

The map ψ : SYT(λ) \rightarrow SYT(λ) is an involution satisfying asc(T) + asc($\psi(T)$) = $\frac{(2n-k)(k-1)}{2}$.

In contrast, the distribution of des on $SYT(\lambda)$ is **not** symmetric.

Corollary (Sulanke '04)

$$N(k, n, h) = N(n, k, h).$$

Corollary (Sulanke '04)

$$N(k, n, h) = N(n, k, h).$$

There are several known proofs, but they are not bijective.

Corollary (Sulanke '04)

$$N(k, n, h) = N(n, k, h).$$

There are several known proofs, but they are not bijective.

The LHS is $N(k, n, h) = |\{T \in SYT(n^k) : \operatorname{asc}(T) = h\}|.$

Corollary (Sulanke '04)

$$N(k, n, h) = N(n, k, h).$$

There are several known proofs, but they are not bijective.

The LHS is
$$N(k, n, h) = |\{T \in SYT(n^k) : asc(T) = h\}|.$$

The RHS, applying conjugation, is

$$N(n, k, h) = |\{T \in SYT(k^n) : \operatorname{asc}(T) = h\}|$$
$$= |\{T \in SYT(n^k) : \operatorname{hdes}(T) = h\}|,$$

where hdes(T) = # descents *i* where *i* + 1 is strictly to the left of *i* in *T*.

Corollary (Sulanke '04)

$$N(k, n, h) = N(n, k, h).$$

There are several known proofs, but they are not bijective.

The LHS is
$$N(k, n, h) = |\{T \in SYT(n^k) : \operatorname{asc}(T) = h\}|.$$

The RHS, applying conjugation, is

$$N(n, k, h) = |\{T \in SYT(k^n) : \operatorname{asc}(T) = h\}|$$
$$= |\{T \in SYT(n^k) : \operatorname{hdes}(T) = h\}|,$$

where hdes(T) = # descents *i* where *i* + 1 is strictly to the left of *i* in *T*. So we want a bijection that takes asc to hdes.

Corollary (Sulanke '04)

$$N(k, n, h) = N(n, k, h).$$

There are several known proofs, but they are not bijective.

The LHS is
$$N(k, n, h) = |\{T \in SYT(n^k) : \operatorname{asc}(T) = h\}|.$$

The RHS, applying conjugation, is

$$N(n, k, h) = |\{T \in SYT(k^n) : \operatorname{asc}(T) = h\}|$$
$$= |\{T \in SYT(n^k) : \operatorname{hdes}(T) = h\}|,$$

where hdes(T) = # descents *i* where *i* + 1 is strictly to the left of *i* in *T*. So we want a bijection that takes asc to hdes.

(For k = 2, these statistics correspond to valleys and high peaks on Dyck paths, and several bijections are known.)

Proposition

The map $\rho : SYT(n^k) \to SYT(n^k)$ defined by $\rho(T) = \beta(\varphi(\beta(T))')'$ is a bijection satisfying $\operatorname{asc}(T) = \operatorname{hdes}(\rho(T)).$

Proposition

The map $\rho : SYT(n^k) \to SYT(n^k)$ defined by $\rho(T) = \beta(\varphi(\beta(T))')'$ is a bijection satisfying $\operatorname{asc}(T) = \operatorname{hdes}(\rho(T)).$

For k = 2, this bijection is equivalent to *rowmotion* on Dyck paths. We can use ρ as the definition of rowmotion on SYT (n^k) .

Proposition

The map $\rho : SYT(n^k) \to SYT(n^k)$ defined by $\rho(T) = \beta(\varphi(\beta(T))')'$ is a bijection satisfying $\operatorname{asc}(T) = \operatorname{hdes}(\rho(T)).$

For k = 2, this bijection is equivalent to *rowmotion* on Dyck paths. We can use ρ as the definition of rowmotion on SYT (n^k) .

More generally...

Theorem

For any shape λ , there is an bijection ρ : SYT(λ) \rightarrow SYT(λ) satisfying asc(T) = hdes($\rho(T)$).

The major index of $T \in SYT(\lambda)$ is defined as

$$\mathsf{maj}(T) = \sum_{i \text{ is a descent of } T} i.$$

It follows from Stanley's *q*-analogue of the hook length formula that maj has a symmetric distribution over $SYT(\lambda)$, for any λ .

The major index of $T \in SYT(\lambda)$ is defined as

$$\mathsf{maj}(T) = \sum_{i \text{ is a descent of } T} i.$$

It follows from Stanley's *q*-analogue of the hook length formula that maj has a symmetric distribution over $SYT(\lambda)$, for any λ .

Problem

Give a bijective proof of this symmetry.

The major index of $T \in SYT(\lambda)$ is defined as

$$\mathsf{maj}(T) = \sum_{i \text{ is a descent of } T} i.$$

It follows from Stanley's *q*-analogue of the hook length formula that maj has a symmetric distribution over $SYT(\lambda)$, for any λ .

Problem

Give a bijective proof of this symmetry.

For rectangular shapes, it seems that des and maj are "jointly symmetric".

The major index of $T \in SYT(\lambda)$ is defined as

$$\operatorname{maj}(T) = \sum_{i \text{ is a descent of } T} i.$$

It follows from Stanley's *q*-analogue of the hook length formula that maj has a symmetric distribution over $SYT(\lambda)$, for any λ .

Problem

Give a bijective proof of this symmetry.

For rectangular shapes, it seems that des and maj are "jointly symmetric".

Problem

Describe a bijection $\Phi : \mathsf{SYT}(n^k) \to \mathsf{SYT}(n^k)$ satisfying

$$des(T) + des(\Phi(T)) = (k-1)(n+1),$$

$$maj(T) + maj(\Phi(T)) = \frac{k(k-1)n(n+1)}{2}$$

Theorem (Stanley '72)

In any graded poset P, the distribution of the number of descents on linear extensions of P (with respect to any given natural labeling) is symmetric.

Our bijection ψ gives a bijective proof when $P = k \times n$ (rectangular shape) or comes from a truncated staircase shape:

Theorem (Stanley '72)

In any graded poset P, the distribution of the number of descents on linear extensions of P (with respect to any given natural labeling) is symmetric.

Our bijection ψ gives a bijective proof when $P = k \times n$ (rectangular shape) or comes from a truncated staircase shape:

Problem

Give a bijective proof of Stanley's theorem for other graded posets P. Interesting example: the product of three chains $k \times n \times m$.

Sergi Elizalde (Dartmouth) A Lalanne–Kreweras involution for SYT CanaDAM 2025