Allowed patterns of eta-shifts

Sergi Elizalde

Dartmouth College

FPSAC 2011, Reykjavik

Allowed patterns of eta-shifts

Sergi Emiliosson

Partmou∂ College

FPSAC 2011, Reykjavik

Allowed patterns of a map

Let X be a linearly ordered set, $f: X \to X$. For each $w \in X$ and $n \ge 1$, consider the sequence

$$w, f(w), f^{2}(w), \dots, f^{n-1}(w)$$

Allowed patterns of a map

Let X be a linearly ordered set, $f: X \to X$. For each $w \in X$ and $n \ge 1$, consider the sequence

$$w, f(w), f^{2}(w), \ldots, f^{n-1}(w)$$

If there are no repetitions, the relative order of the entries determines a permutation, called an allowed (or realized) pattern of f.

Let
$$f:[0,1] \rightarrow [0,1]$$
 be defined by $f(x) = \{2x\}$ (fractional part)

Let $f:[0,1] \rightarrow [0,1]$ be defined by $f(x) = \{2x\}$ (fractional part)

For
$$w=0.39$$
 and $n=4$, we get
$$0.39 \ \stackrel{f}{\mapsto} \ 0.78 \ \stackrel{f}{\mapsto} \ 0.56 \ \stackrel{f}{\mapsto} \ 0.12$$

Let $f:[0,1] \rightarrow [0,1]$ be defined by $f(x) = \{2x\}$ (fractional part)

For w=0.39 and n=4, we get $0.39 \ \stackrel{f}{\mapsto} \ 0.78 \ \stackrel{f}{\mapsto} \ 0.56 \ \stackrel{f}{\mapsto} \ 0.12$ $\Rightarrow \quad 2431 \ \text{is an allowed pattern of} \ f$

Let $f:[0,1] \rightarrow [0,1]$ be defined by $f(x)=\{2x\}$ (fractional part)

For
$$w=0.39$$
 and $n=4$, we get
$$0.39 \ \stackrel{f}{\mapsto} \ 0.78 \ \stackrel{f}{\mapsto} \ 0.56 \ \stackrel{f}{\mapsto} \ 0.12$$

$$\Rightarrow \quad 2431 \ \text{is an allowed pattern of } f$$

We say that w induces 2431.

 $X = \{0,1\}^{\mathbb{N}}$ infinite binary words, ordered lexicographically

 $X=\{0,1\}^{\mathbb{N}}$ infinite binary words, ordered lexicographically Let $f:X\to X$ be the shift $f(w_1w_2w_3\dots)=w_2w_3w_4\dots$

$$X=\{0,1\}^{\mathbb{N}}$$
 infinite binary words, ordered lexicographically Let $f:X o X$ be the shift
$$f\big(w_1w_2w_3\dots\big)=w_2w_3w_4\dots$$
 $w=0110010111\dots$

```
X=\{0,1\}^{\mathbb{N}} infinite binary words, ordered lexicographically Let f:X\to X be the shift f\big(w_1w_2w_3\dots\big)=w_2w_3w_4\dots w=0110010111\dots f(w)=110010111\dots f^2(w)=10010111\dots f^3(w)=0010111\dots
```

 $X = \{0,1\}^{\mathbb{N}}$ infinite binary words, ordered lexicographically Let $f: X \to X$ be the shift

$$f(w_1w_2w_3\dots)=w_2w_3w_4\dots$$

$$w = 0110010111...$$
 2
 $f(w) = 110010111...$ 4
 $f^{2}(w) = 10010111...$ 3
 $f^{3}(w) = 0010111...$ 1

2431 is an allowed pattern of f

 $X=\{0,1\}^{\mathbb{N}}$ infinite binary words, ordered lexicographically Let $f:X \to X$ be the shift

$$f(w_1w_2w_3\dots)=w_2w_3w_4\dots$$

$$w = 0110010111...$$
 3
 $f(w) = 110010111...$ 7
 $f^{2}(w) = 10010111...$ 5
 $f^{3}(w) = 0010111...$ 1
 $f^{4}(w) = 010111...$ 2
 $f^{5}(w) = 10111...$ 6
 $f^{6}(w) = 0111...$ 4

lexicographic order of the shifted words

 $X = \{0,1\}^{\mathbb{N}}$ infinite binary words, ordered lexicographically Let $f: X \to X$ be the shift

$$f(w_1w_2w_3\dots)=w_2w_3w_4\dots$$

$$w = 0110010111...$$
 3 $f(w) = 110010111...$ 7 $f^2(w) = 10010111...$ 5 $f^3(w) = 0010111...$ 1 $f^4(w) = 010111...$ 2 $f^5(w) = 10111...$ 6 $f^6(w) = 0111...$ 4

lexicographic order of the shifted words

 \Rightarrow 3751264 is an allowed pattern of f

 $X=\{0,1\}^{\mathbb{N}}$ infinite binary words, ordered lexicographically Let $f:X\to X$ be the shift

$$f(w_1w_2w_3\dots)=w_2w_3w_4\dots$$

 $X=\{0,1\}^{\mathbb{N}}$ infinite binary words, ordered lexicographically

Let $f: X \to X$ be the shift

$$f(w_1w_2w_3\dots)=w_2w_3w_4\dots$$

$$\pi = 1$$
 4 2 3 $w = w_1 \quad w_2 \quad w_3 \quad w_4 \quad w_5 \quad \dots$

 $X=\{0,1\}^{\mathbb{N}}$ infinite binary words, ordered lexicographically

Let $f: X \to X$ be the shift

$$f(w_1w_2w_3\dots)=w_2w_3w_4\dots$$

$$\pi = 1$$
 4 2 3 $w = 0$ w_2 w_3 w_4 w_5 ...

 $X=\{0,1\}^{\mathbb{N}}$ infinite binary words, ordered lexicographically

Let $f: X \to X$ be the shift

$$f(w_1w_2w_3\dots)=w_2w_3w_4\dots$$

$$\pi = 1$$
 4 2 3 $w = 0$ w_2 0? w_4 w_5 ...

$$w_2 w_3 w_4 \dots >_{lex} w_4 w_5 w_6 \dots \Rightarrow 0 w_2 w_3 w_4 \dots >_{lex} 0 w_4 w_5 w_6 \dots$$

 $X=\{0,1\}^{\mathbb{N}}$ infinite binary words, ordered lexicographically

Let $f: X \to X$ be the shift

$$f(w_1w_2w_3\dots)=w_2w_3w_4\dots$$

$$\pi = 1 \quad 4 \quad 2 \quad 3$$
 $w = 0 \quad w_2 \quad \emptyset \quad w_4 \quad w_5 \quad \dots$

$$w_2 w_3 w_4 \dots >_{lex} w_4 w_5 w_6 \dots \Rightarrow 0 w_2 w_3 w_4 \dots >_{lex} 0 w_4 w_5 w_6 \dots$$

 $X=\{0,1\}^{\mathbb{N}}$ infinite binary words, ordered lexicographically

Let $f: X \to X$ be the shift

$$f(w_1w_2w_3\dots)=w_2w_3w_4\dots$$

$$\pi = 1$$
 4 2 3 $w = 0$ w_2 1 w_4 w_5 ...

$$w_2 w_3 w_4 \dots >_{lex} w_4 w_5 w_6 \dots \Rightarrow 0 w_2 w_3 w_4 \dots >_{lex} 0 w_4 w_5 w_6 \dots$$

 $X=\{0,1\}^{\mathbb{N}}$ infinite binary words, ordered lexicographically

Let $f: X \to X$ be the shift

$$f(w_1w_2w_3\dots)=w_2w_3w_4\dots$$

On the other hand, 1423 is a forbidden pattern of f:

$$\pi = 1$$
 4 2 3 $w = 0$ w_2 1 w_4 w_5 ...

$$w_2 w_3 w_4 \dots >_{lex} w_4 w_5 w_6 \dots \Rightarrow 0 w_2 w_3 w_4 \dots >_{lex} 0 w_4 w_5 w_6 \dots$$

But then $1w_4w_5... \ge_{lex} w_4w_5... \longrightarrow$ contradiction!

Allowed and forbidden patterns

 $Allow_n(f) = set of allowed patterns of f of length n.$

Allowed and forbidden patterns

$$Allow_n(f) = set of allowed patterns of f of length n.$$

Fact: Allow
$$(f) = \bigcup_{n \ge 0} \text{Allow}_n(f)$$
 is closed under consecutive pattern containment.

E.g., if
$$4156273 \in Allow(f)$$
, then $2314 \in Allow(f)$.

Allowed and forbidden patterns

$$Allow_n(f) = set of allowed patterns of f of length n.$$

Fact: Allow
$$(f) = \bigcup_{n \ge 0} \text{Allow}_n(f)$$
 is closed under consecutive pattern containment.

E.g., if
$$4156273 \in Allow(f)$$
, then $2314 \in Allow(f)$.

Describing the set of allowed patterns of a given map is a difficult problem in general.

Maps on a one-dimensional interval

Let $I \subset \mathbb{R}$ be a closed interval.

Theorem (Bandt-Keller-Pompe '02)

Let $f: I \rightarrow I$ be a piecewise monotone map. Then

f has forbidden patterns,

Maps on a one-dimensional interval

Let $I \subset \mathbb{R}$ be a closed interval.

Theorem (Bandt-Keller-Pompe '02)

Let $f: I \rightarrow I$ be a piecewise monotone map. Then

- ▶ f has forbidden patterns,
- ▶ $\lim_{n\to\infty} |\operatorname{Allow}_n(f)|^{1/n}$ exists, and its logarithm equals the topological entropy of f.

Maps on a one-dimensional interval

Let $I \subset \mathbb{R}$ be a closed interval.

Theorem (Bandt-Keller-Pompe '02)

Let $f: I \rightarrow I$ be a piecewise monotone map. Then

- f has forbidden patterns,
- ▶ $\lim_{n\to\infty} |\operatorname{Allow}_n(f)|^{1/n}$ exists, and its logarithm equals the topological entropy of f.

Provides a combinatorial way to compute the topological entropy, which is a measure of the complexity of the dynamical system.

▶ How are properties of Allow(f) related to properties of f?

- ► How are properties of Allow(f) related to properties of f? In particular,
 - ▶ when is the set of minimal forbidden patterns of *f finite*?

- ► How are properties of Allow(f) related to properties of f? In particular,
 - ▶ when is the set of minimal forbidden patterns of *f finite*?
 - ▶ what is the length of the *shortest* forbidden pattern of *f*?

- ► How are properties of Allow(f) related to properties of f? In particular,
 - ▶ when is the set of minimal forbidden patterns of *f finite*?
 - what is the length of the shortest forbidden pattern of f?
- ▶ Enumerate or characterize Allow(f) for some families of maps.

- ► How are properties of Allow(f) related to properties of f? In particular,
 - ▶ when is the set of minimal forbidden patterns of *f finite*?
 - what is the length of the shortest forbidden pattern of f?
- ▶ Enumerate or characterize Allow(f) for some families of maps.
- ▶ What sets of permutations can be Allow(f) for some f?

- ► How are properties of Allow(f) related to properties of f? In particular,
 - ▶ when is the set of minimal forbidden patterns of *f finite*?
 - what is the length of the shortest forbidden pattern of f?
- ▶ Enumerate or characterize Allow(f) for some families of maps.
- ▶ What sets of permutations can be Allow(f) for some f?
- ▶ Use this to design *tests* to distinguish random sequences from deterministic ones.

- ► How are properties of Allow(f) related to properties of f? In particular,
 - ▶ when is the set of minimal forbidden patterns of *f finite*?
 - what is the length of the shortest forbidden pattern of f?
- ▶ Enumerate or characterize Allow(f) for some families of maps.
- ▶ What sets of permutations can be Allow(f) for some f?
- ▶ Use this to design *tests* to distinguish random sequences from deterministic ones.

Shift maps

$$\mathcal{W}_{N} = \{0, 1, \dots, N-1\}^{\mathbb{N}}$$

infinite words on *N* letters, ordered lexicographically

infinite words on *N* letters, ordered lexicographically

Shift maps

$$\mathcal{W}_{N} = \{0, 1, \dots, N-1\}^{\mathbb{N}}$$

Shift on N letters (for $N \ge 2$):

$$\Sigma_N: \mathcal{W}_N \longrightarrow \mathcal{W}_N$$
 $w_1w_2w_3 \dots \mapsto w_2w_3w_4 \dots$

Shift maps

$$\mathcal{W}_{N} = \{0, 1, \dots, N-1\}^{\mathbb{N}}$$

Shift on N letters (for $N \ge 2$):

infinite words on *N* letters, ordered lexicographically

Thinking of words as expansions in base N of numbers in [0,1), \sum_{N} is "equivalent" to the sawtooth map

$$M_N: [0,1) \rightarrow [0,1)$$
 $X \mapsto \{NX\}$
(fractional part)

Forbidden patterns of shifts

Theorem

 Σ_N has no forbidden patterns of length N+1 or shorter, but it has forbidden patterns of length N+2.

Forbidden patterns of shifts

Theorem

 Σ_N has no forbidden patterns of length N+1 or shorter, but it has forbidden patterns of length N+2.

In fact, Σ_N has exactly 6 forbidden patterns of length N+2.

Forbidden patterns of shifts

Theorem

 Σ_N has no forbidden patterns of length N+1 or shorter, but it has forbidden patterns of length N+2.

In fact, Σ_N has exactly 6 forbidden patterns of length N+2.

Example

The shortest forbidden patterns of Σ_4 are

615243, 324156, 342516, 162534, 453621, 435261.

For
$$\pi \in \mathcal{S}_n$$
, let $N(\pi) = \min\{N : \pi \in Allow(\Sigma_N)\}.$

For
$$\pi \in \mathcal{S}_n$$
, let $N(\pi) = \min\{N : \pi \in Allow(\Sigma_N)\}.$

Theorem:
$$N(\pi) = 1 + \operatorname{\mathsf{des}}(\hat{\pi}) + \underbrace{\epsilon(\hat{\pi})}_{0 \text{ or } 1}.$$

For
$$\pi \in \mathcal{S}_n$$
, let $N(\pi) = \min\{N : \pi \in Allow(\Sigma_N)\}.$

Theorem:
$$N(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \underbrace{\epsilon(\hat{\pi})}_{0 \text{ or } 1}.$$

An example of what $\hat{\pi}$ is:

$$\pi = 892364157 \rightsquigarrow (8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 53617492 = \hat{\pi}$$

For
$$\pi \in \mathcal{S}_n$$
, let $N(\pi) = \min\{N : \pi \in Allow(\Sigma_N)\}.$

Theorem:
$$N(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \underbrace{\epsilon(\hat{\pi})}_{0 \text{ or } 1}$$
.

An example of what $\hat{\pi}$ is:

$$\pi = 892364157 \rightsquigarrow (8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 53617492 = \hat{\pi}$$

$$\mathsf{des}(\hat{\pi}) = \mathsf{des}(53617492) = 4$$

For
$$\pi \in \mathcal{S}_n$$
, let $N(\pi) = \min\{N : \pi \in Allow(\Sigma_N)\}.$

Theorem:
$$N(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \underbrace{\epsilon(\hat{\pi})}_{0 \text{ or } 1}$$
.

An example of what $\hat{\pi}$ is:

$$\pi=892364157 \rightsquigarrow (8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 53617492=\hat{\pi}$$

$$\operatorname{des}(\hat{\pi})=\operatorname{des}(53617492)=4$$

$$N(892364157)=1+4+0=5$$

For
$$\pi \in \mathcal{S}_n$$
, let $N(\pi) = \min\{N : \pi \in Allow(\Sigma_N)\}.$

Theorem:
$$N(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \underbrace{\epsilon(\hat{\pi})}_{0 \text{ or } 1}.$$

An example of what $\hat{\pi}$ is:

$$\pi = 892364157 \rightsquigarrow (8,9,2,3,6,4,1,5,7) \rightsquigarrow 536174892 \rightsquigarrow 53617492 = \hat{\pi}$$

$$des(\hat{\pi}) = des(53617492) = 4$$

$$N(892364157) = 1 + 4 + 0 = 5$$

Can deduce an ugly formula for $|Allow_n(\Sigma_N)|$, for given n and N.

Why β -shifts?

- ► Natural generalization of shifts.
- Good prototypes of chaotic dynamical systems.

Why β -shifts?

- ► Natural generalization of shifts.
- Good prototypes of chaotic dynamical systems.
- ▶ Originated in the study of expansions of real numbers in an arbitrary real base $\beta > 1$.
- ➤ Widely studied in the literature from different perspectives: measure theory, computability theory, number theory, etc.

β -shifts

For a real number $\beta > 1$, let M_{β} be the β -sawtooth map

$$\begin{array}{ccc} \textit{M}_{\beta}: & [0,1) & \rightarrow & [0,1) \\ x & \mapsto & \{\beta x\} \end{array}$$

β -shifts

For a real number $\beta > 1$, let M_{β} be the β -sawtooth map

$$\begin{array}{cccc} \textit{M}_{\beta}: & [0,1) & \rightarrow & [0,1) \\ & x & \mapsto & \{\beta x\} \end{array}$$

We'd like to define the β -shift as

$$\Sigma_{\beta}: W(\beta) \longrightarrow W(\beta)$$
 $w_1 w_2 w_3 \dots \mapsto w_2 w_3 w_4 \dots$

for some set $W(\beta)$.

The domain of Σ_{eta_i}

$$\begin{array}{cccc} \Sigma_{\beta}: & W(\beta) & \longrightarrow & W(\beta) \\ & w_1 w_2 w_3 \dots & \mapsto & w_2 w_3 w_4 \dots \end{array}$$

The domain of Σ_{eta}

$$\Sigma_{\beta}: W(\beta) \longrightarrow W(\beta)$$
 $w_1w_2w_3 \dots \mapsto w_2w_3w_4 \dots$

 $W(\beta)$ is be the set of words given by expansions in base β of numbers $x \in [0,1)$,

The domain of Σ_{eta}

$$\begin{array}{cccc} \Sigma_{\beta} : & \mathcal{W}(\beta) & \longrightarrow & \mathcal{W}(\beta) \\ & w_1 w_2 w_3 \dots & \mapsto & w_2 w_3 w_4 \dots \end{array}$$

 $W(\beta)$ is be the set of words given by expansions in base β of numbers $x \in [0,1)$,

$$x=\frac{w_1}{\beta}+\frac{w_2}{\beta^2}+\cdots,$$

with
$$w_0 = |x|$$
, $w_1 = |\beta\{x\}|$, $w_2 = |\beta\{\beta\{x\}\}|$, ...

The domain of Σ_eta

$$\begin{array}{cccc} \Sigma_{\beta} : & \mathcal{W}(\beta) & \longrightarrow & \mathcal{W}(\beta) \\ & w_1 w_2 w_3 \dots & \mapsto & w_2 w_3 w_4 \dots \end{array}$$

 $W(\beta)$ is be the set of words given by expansions in base β of numbers $x \in [0,1)$,

$$x = \frac{w_1}{\beta} + \frac{w_2}{\beta^2} + \cdots,$$

with
$$w_0 = \lfloor x \rfloor$$
, $w_1 = \lfloor \beta \{x\} \rfloor$, $w_2 = \lfloor \beta \{\beta \{x\}\} \rfloor$, ...

Example:
$$0.7 = \frac{2}{\pi} + \frac{0}{\pi^2} + \frac{1}{\pi^3} + \frac{3}{\pi^4} + \cdots$$

The domain of Σ_{eta}

Theorem (Parry '60)

Let

$$\beta = a_0 + \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \cdots$$

be the β -expansion of β . Then

$$W(\beta) = \{ w : w_k w_{k+1} w_{k+2} \dots <_{lex} a_0 a_1 a_2 \dots \text{ for all } k \ge 1 \}.$$

The domain of Σ_eta

Theorem (Parry '60)

Let

$$\beta = a_0 + \frac{a_1}{\beta} + \frac{a_2}{\beta^2} + \cdots$$

be the β -expansion of β . Then

$$W(\beta) = \{ w : w_k w_{k+1} w_{k+2} \dots <_{lex} a_0 a_1 a_2 \dots \text{ for all } k \ge 1 \}.$$

Example

For
$$\beta = 1 + \sqrt{2}$$
, $\beta = 2 + \frac{1}{\beta}$, so $a_0 a_1 a_2 \dots = 210^{\infty}$,

 $W(\beta) = \text{words over } \{0, 1, 2\} \text{ where every 2 is followed by a 0.}$

The shift-complexity of a permutation

Proposition. If $1 < \beta \le \beta'$, then

- \blacktriangleright $W(\beta) \subseteq W(\beta')$,
- ightharpoonup Allow $(\Sigma_{\beta}) \subseteq \text{Allow}(\Sigma_{\beta'})$.

The shift-complexity of a permutation

Proposition. If $1 < \beta \le \beta'$, then

- $ightharpoonup W(\beta) \subseteq W(\beta'),$
- ▶ Allow(Σ_{β}) \subseteq Allow($\Sigma_{\beta'}$).

Definition (shift-complexity)

For any permutation π , let

$$B(\pi) = \inf\{\beta : \pi \in Allow(\Sigma_{\beta})\}.$$

The shift-complexity of a permutation

Proposition. If $1 < \beta \le \beta'$, then

- $ightharpoonup W(\beta) \subseteq W(\beta'),$
- ▶ Allow(Σ_{β}) \subseteq Allow($\Sigma_{\beta'}$).

Definition (shift-complexity)

For any permutation π , let

$$B(\pi) = \inf\{\beta : \pi \in Allow(\Sigma_{\beta})\}.$$

Easy fact:
$$N(\pi) = |B(\pi)| + 1$$
.

Our goal is to be able to determine $B(\pi)$ for an arbitrary π .

For a word
$$w$$
, let $b(w) = \inf\{\beta : w \in W(\beta)\}$. Then
$$B(\pi) = \inf\{b(w) : w \text{ induces } \pi\}.$$

For a word
$$w$$
, let $b(w) = \inf\{\beta : w \in W(\beta)\}$. Then
$$B(\pi) = \inf\{b(w) : w \text{ induces } \pi\}.$$

Example: $b(30003020^{\infty}) \approx 3.1958$, $b(212310^{\infty}) \approx 3.3028$.

For a word
$$w$$
, let $b(w)=\inf\{\beta:w\in W(\beta)\}.$ Then
$$B(\pi)=\inf\{b(w):w \text{ induces }\pi\}.$$

Example: $b(30003020^{\infty}) \approx 3.1958$, $b(212310^{\infty}) \approx 3.3028$.

Proposition. There is an "easy" way to find b(w) for any given w.

For a word
$$w$$
, let $b(w) = \inf\{\beta : w \in W(\beta)\}$. Then
$$B(\pi) = \inf\{b(w) : w \text{ induces } \pi\}.$$

Example: $b(30003020^{\infty}) \approx 3.1958$, $b(212310^{\infty}) \approx 3.3028$.

Proposition. There is an "easy" way to find b(w) for any given w.

To compute $B(\pi)$, we'll find a word w inducing π such that b(w) is as small as possible.

$$\pi = 8 \ 9 \ 3 \ 1 \ 4 \ 6 \ 2 \ 7 \ 5$$
 $w = 0$

$$\pi = 8 9 3 1 4 6 2 7 5$$

 $w = 0 0$

$$\pi = 8 \quad 9 \quad 3 \quad 1 \quad 4 \quad 6 \quad 2 \quad 7 \quad 5$$

 $w = \quad 1 \quad 0 \quad 1 \quad 0 \quad ?$

$$\pi = 8 \quad 9 \quad 3 \quad 1 \quad 4 \quad 6 \quad 2 \quad 7 \quad 5$$
 $w = 1 \quad 0 \quad 1 \quad 2 \quad 0 \qquad ?$

$$\pi = 8 9 3 1 4 6 2 7 5$$

 $w = 1 0 1 2 0 2 ?$

Goal: find a word w inducing π such that b(w) is small (in particular, want w not to have big letters).

$$\pi = 8 9 3 1 4 6 2 7 5$$

 $w = 2 1 0 1 2 0 2 ?$

Goal: find a word w inducing π such that b(w) is small (in particular, want w not to have big letters).

$$\pi = 8 9 3 1 4 6 2 7 5$$

 $w = 2 3 1 0 1 2 0 2 ?$

Goal: find a word w inducing π such that b(w) is small (in particular, want w not to have big letters).

$$\pi = 8 9 3 1 4 6 2 7 5$$

 $w = 2 3 1 0 1 2 0 2 ?$

Proposition: The entries $w_1w_2...w_{n-1}$ are forced (if minimizing # letters), and can be completed into a word w that induces π .

Goal: find a word w inducing π such that b(w) is small (in particular, want w not to have big letters).

$$\pi = 8 9 3 1 4 6 2 7 5$$

 $w = 2 3 1 0 1 2 0 2 ?$

Proposition: The entries $w_1w_2...w_{n-1}$ are forced (if minimizing # letters), and can be completed into a word w that induces π .

Goal: find a word w inducing π such that b(w) is small (in particular, want w not to have big letters).

Proposition: The entries $w_1w_2...w_{n-1}$ are forced (if minimizing # letters), and can be completed into a word w that induces π .

Goal: find a word w inducing π such that b(w) is small (in particular, want w not to have big letters).

$$\pi = 8 \quad 9 \quad 3 \quad 1 \quad 4 \quad 6 \quad 2 \quad 7 \quad 5$$
 $w = 2 \quad 3 \quad 1 \quad 0 \quad 1 \quad 2 \quad 0 \quad 2 \quad 1 \quad 3^{\infty}$ (one possibility)
 $w = 2 \quad 3 \quad 1 \quad 0 \quad 1 \quad 2 \quad 0 \quad 2 \quad 1 \quad 2 \quad 0 \quad 2 \quad 2 \quad 0^{\infty}$ (smaller b)

Proposition: The entries $w_1w_2...w_{n-1}$ are forced (if minimizing # letters), and can be completed into a word w that induces π .

Goal: find a word w inducing π such that b(w) is small (in particular, want w not to have big letters).

$$\pi=893146275$$
 $w=23101202$ 120213^{∞} (one possibility) $w=23101$ 120212 12022 1200 (smaller b)

Here, letting $w^{(m)} = 2310(1202)^m 20^{\infty}$, we have

$$B(\pi) = \lim_{m \to \infty} b(w^{(m)}).$$

Proposition: The entries $w_1w_2...w_{n-1}$ are forced (if minimizing # letters), and can be completed into a word w that induces π .

Computation of $B(\pi)$ in general

Given a finite word $u_1u_2 \dots u_r$, let

$$p_{u_1u_2...u_r}(\beta) = \beta^r - u_1\beta^{r-1} - u_2\beta^{r-2} - \cdots - u_r.$$

Computation of $B(\pi)$ in general

Given a finite word $u_1u_2 \dots u_r$, let

$$p_{u_1u_2...u_r}(\beta) = \beta^r - u_1\beta^{r-1} - u_2\beta^{r-2} - \cdots - u_r.$$

Theorem

For $\pi \in \mathcal{S}_n$, let $c = \pi(n)$, $\ell = \pi^{-1}(n)$, $k = \pi^{-1}(c-1)$, and let $w_1 w_2 \dots w_{n-1}$ be the forced entries for w. Let

$$P_{\pi}(\beta) = \begin{cases} p_{w_{\ell}w_{\ell+1}...w_{n-1}}(\beta) & \text{if } c = 1, \\ p_{w_{\ell}w_{\ell+1}...w_{n-1}w_{k}w_{k+1}...w_{\ell-1}}(\beta) - 1 & \text{if } c \neq 1, \ \ell > k, \\ p_{w_{\ell}w_{\ell+1}...w_{n-1}}(\beta) - p_{w_{\ell}w_{\ell+1}...w_{k-1}}(\beta) & \text{if } c \neq 1, \ \ell < k. \end{cases}$$

Then $B(\pi)$ is the unique real root $\beta \geq 1$ of $P_{\pi}(\beta)$.


```
\pi = 8 \quad 9 \quad 3 \quad 1 \quad 4 \quad 6 \quad 2 \quad 7 \quad 5

w = 2 \quad 3 \quad 1 \quad 0 \quad 1 \quad 2 \quad 0 \quad 2 \quad \dots
```

By the theorem, $B(\pi)$ is the root $\beta \geq 1$ of

$$P_{\pi}(\beta) = p_{3101202}(\beta) - p_{310}(\beta) = \beta^7 - 3\beta^6 - \beta^5 - 2\beta^3 + \beta^2 + \beta - 2\beta^6 - \beta^5 - 2\beta^6 + \beta^6 - \beta^6$$

By the theorem, $B(\pi)$ is the root $\beta \geq 1$ of

$$P_{\pi}(\beta) = p_{3101202}(\beta) - p_{310}(\beta) = \beta^{7} - 3\beta^{6} - \beta^{5} - 2\beta^{3} + \beta^{2} + \beta - 2$$

$$\Rightarrow B(893146275) \approx 3.343618091$$

The shift-complexity of permutations of length 4

$\pi \in \mathcal{S}_4$	$B(\pi)$	$B(\pi)$ is a root of
1234, 2341, 3412, 4123	1	eta-1
1342, 2413, 3124, 4231	1.46557	$eta^{3}-eta^{2}-1$
1243, 1324, 2431, 3142, 4312	$\frac{1+\sqrt{5}}{2} \approx 1.61803$	$\beta^2 - \beta - 1$
4213	1.80194	$\beta^3 - \beta^2 - 2\beta + 1$
1432, 2143, 3214, 4321	1.83929	$\beta^3-\beta^2-\beta-1$
2134, 3241	2	$\beta-2$
4132	2.24698	$\beta^3 - 2\beta^2 - \beta + 1$
2314, 3421	$1+\sqrt{2}\approx 2.41421$	$\beta^2 - 2\beta - 1$
1423	$\frac{3+\sqrt{5}}{2} \approx 2.61803$	$\beta^2 - 3\beta + 1$

TAKK