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Walks in simplicial regions

For d , L ≥ 0, consider the simplicial region

∆d ,L = {(x1, x2, . . . , xd) ∈ Nd : x1 + x2 + · · ·+ xd = L}.

(L, 0, 0) (0, L, 0)

(0, 0, L)

s1

s3 s2

For 1 ≤ i ≤ d , let ei = (0, . . . , 0, 1, 0, . . . , 0), with 1 in position i ,
and let si = ei+1 − ei , with the convention ed+1 := e1.
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Walks in simplicial regions

Consider walks inside ∆d ,L with steps si for 1 ≤ i ≤ d .

1

2

345

6 7

8
(3, 0, 0) (0, 3, 0)

(0, 0, 3)

s1

s2

s3

D3,3

Denote by Dd ,L the corresponding directed graph.
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Enumeration of walks in Dd ,L starting at a given point

For d = 2, these are one-dimensional walks, and their enumeration
is relatively easy.

For d = 3, the problem was solved by Mortimer and Prellberg ’15.

Mn,h = # Motzkin paths of length n and height at most h.
M ′

n,h = # Motzkin paths of length n and height at most h that
do not have any horizontal steps at height h.

Theorem (Mortimer–Prellberg ’15)

The number of n-step walks in D3,L starting at (L, 0, 0) equals{
Mn,h if L = 2h + 1,
M ′

n,h if L = 2h.
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For d = 2, these are one-dimensional walks, and their enumeration
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For d = 3, the problem was solved by Mortimer and Prellberg ’15.

Mn,h = # Motzkin paths of length n and height at most h.
M ′

n,h = # Motzkin paths of length n and height at most h that
do not have any horizontal steps at height h.
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Enumeration of walks in Dd ,L starting at a given point

To prove this, Mortimer and Prellberg found a functional equation
and used the kernel method to solve it.

A complicated bijective proof was later found by Courtiel, Elvey
Price, and Marcovici in 2021.

In the same paper, they prove the following surprising result.

Theorem (Courtiel–Elvey Price–Marcovici ’21)

For any x ∈ ∆d ,L, there is a bijection between the set of n-step
walks in Dd ,L starting at x and the set of n-step walks in Dd ,L

ending at x.

We will call this the Forward-Backward Theorem.

Their bijection repeatedly applies certain flips to adjacent steps and
to the last step of the walk.
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Small example

Starting at x:

1 2
x

1 2
x

12
x

1

2

x

Ending at x:

1 2
x

1

2
x

1

2
x

12
x
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Standard cylindric tableaux

A cylindric shape of period (d , L) is a doubly infinite weakly
decreasing sequence of integers, α = (αi )i∈Z, such that
αi = αi+d + L for all i ∈ Z.

Λd ,L= set of cylindric shapes of period (d , L).

Ex: α = (. . . , 9, 9, 7, 5, 5, 3, 1, 1,−1, . . . ) ∈ Λ3,4

d = 3

L = 4

α

9
9

7

1

Uniquely determined by α1, α2, . . . , αd . Write α = [α1, α2, . . . , αd ].
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Standard cylindric tableaux

A cylindric shape of period (d , L) is a doubly infinite weakly
decreasing sequence of integers, α = (αi )i∈Z, such that
αi = αi+d + L for all i ∈ Z.

Λd ,L= set of cylindric shapes of period (d , L).

Ex: α = (. . . , 9, 9, 7, 5, 5, 3, 1, 1,−1, . . . ) = [5, 5, 3] ∈ Λ3,4

d = 3

L = 4

α

9
9

7
5
5

3
1

Uniquely determined by α1, α2, . . . , αd . Write α = [α1, α2, . . . , αd ].
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Standard cylindric tableaux

Let λ, µ ∈ Λd ,L such that µi ≤ λi for all i .

d

L

1

1

2

2

2
3

3

3

4

4

4

5

5

6

6

6

7

7

7

8

8

9

9

µ
λ

A standard cylindric tableau of shape λ/µ is a filling of the cells
in between with 1, 2, . . . , n preserving the periodicity, and so that
entries increase along rows (from left to right) and columns (from
top to bottom).

One can think of them as skew SYT with additional restrictions.
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History and notation

Cylindric tableaux are a special case of cylindric partitions,
introduced by Gessel and Krattenthaler ’97. They were studied by
Postnikov ’05 in connection to Gromov–Witten invariants.

Let λ, µ ∈ Λd ,L such that µi ≤ λi for all i .

SCTd ,L(λ/µ) = set of standard cylindric tableaux of shape λ/µ

SCTn
d ,L(·/µ) = set of standard cylindric tableaux with n cells

and inner shape µ

SCTn
d ,L(λ/·) = set of standard cylindric tableaux with n cells

and outer shape λ

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.
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The totally asymmetric simple exclusion process (TASEP)

States of the TASEP on the cycle ZN are encoded by binary words
with d ones (representing the positions of particles) and N − d
zeros. At each time step, a particle can jump to the next site in
counterclockwise direction if this site is empty.

1100100 1101000

Typically, one associates transition probabilities to these particle
jumps to define a Markov chain (Liggett ’99, Ferrari–Martin ’07).

Here we consider the underlying directed graph Ed ,N−d whose
vertices are the states, and whose edges correspond to valid jumps
of a particle.

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.
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The totally asymmetric simple exclusion process (TASEP)

E3,3

One can also consider the directed multigraph obtained as the
quotient of Ed ,N−d under cyclic rotations.
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Connecting all three

cylindric shape
α ∈ Λd ,L

⇝
vertex in simplicial region

x = (x1, x2, . . . , xd) ∈ ∆d ,L

xi = αi−1 − αi ∀i

⇝ state in TASEP
u = 0x110x21 . . . 0xd1

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.
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Example

d = 3

L = 3
α = [2, 2, 0] = (. . . , 5, 5, 3, 2, 2, 0, . . . )

s1

x = (α0 − α1, α1 − α2, α2 − α3)

= (1, 0, 2)

D3,3

u = 0x110x210x31 = 011001

E3,3

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.
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Connecting all three

Theorem
Let α ∈ Λd ,L, let x = (x1, x2, . . . , xd) ∈ ∆d ,L where xi = αi−1 − αi

for 1 ≤ i ≤ d , and let u = 0x110x21 . . . 0xd1.

There are bijections between the following:
a The set SCTn

d ,L(·/α).
b The set of n-step walks in Dd ,L starting at vertex x.
c The set of n-step walks in Ed ,L starting at state u.

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.
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The basic bijections: idea

One can view a SCT as a sequence of cylindric shapes, each one
obtained from the previous one by adding a cell.

Idea for the bijections:

adding a cell in row i of the cylindric shape
↕

taking step si in the simplicial walk
↕

ith particle jumping to the next site
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Conjugation of SCT

The conjugate of a cylindric shape (or a SCT) is obtained by
reflecting it along the diagonal:

d

L

1

2

2

3

4

4

5

5

6

α = [2, 0, 0]
conjugate L

d

1

1

2

2

5

5

6

6

3

3

4

4
α′ = [1, 1]

Note that conjugation swaps the parameters d and L.

Let us use our bijections to translate this symmetry to the other
settings.

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.



Walks SCT TASEP Connecting all three Cylindric RS Cylindric growth diagrams Open problems

Conjugation of SCT

The conjugate of a cylindric shape (or a SCT) is obtained by
reflecting it along the diagonal:

d

L

1

2

2

3

4

4

5

5

6

α = [2, 0, 0]
conjugate L

d

1

1

2

2

5

5

6

6

3

3

4

4
α′ = [1, 1]

Note that conjugation swaps the parameters d and L.

Let us use our bijections to translate this symmetry to the other
settings.

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.



Walks SCT TASEP Connecting all three Cylindric RS Cylindric growth diagrams Open problems

Conjugation of SCT

The conjugate of a cylindric shape (or a SCT) is obtained by
reflecting it along the diagonal:

d

L

1

2

2

3

4

4

5

5

6

α = [2, 0, 0]
conjugate L

d

1

1

2

2

5

5

6

6

3

3

4

4
α′ = [1, 1]

Note that conjugation swaps the parameters d and L.

Let us use our bijections to translate this symmetry to the other
settings.

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.



Walks SCT TASEP Connecting all three Cylindric RS Cylindric growth diagrams Open problems

Symmetries

Theorem
Let α ∈ Λd ,L , let x = (x1, x2, . . . , xd) ∈ ∆d ,L where xi = αi−1 − αi

for 1 ≤ i ≤ d , and let u = 0x110x21 . . . 0xd1.

Let α′ ∈ ΛL,d be the conjugate of α, let y = (y1, y2, . . . , yL) ∈ ∆L,d

where yj = α′
j−1 − α′

j for 1 ≤ j ≤ L.

There are natural bijections between the following:
a The set SCTn

d ,L(·/α).
b The set of n-step walks in Dd ,L starting at vertex x.
c The set of n-step walks in Ed ,L starting at state u.

a’ The set SCTn
L,d(·/α′).

b’ The set of n-step walks in DL,d starting at vertex y.
c’ The set of n-step walks in EL,d starting at state

urc = 01xd . . . 01x201x1 (reverse-complement of u).

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.
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Symmetries: example

SCTn
d ,L(·/α)

d

L

1
2

2

3
4

4

5

5

6
α = [2, 0, 0]s1

s2
s3

conjugate

SCTn
d ,L(·/α′)

L

d

1

1

2

2

5

5

6

6
3

3

4

4
α′ = [1, 1]s1

s2

1234
5
6

x = (0, 2, 0)

s1

s2

s3

s2s3s2s3s1s2

D3,2

n-step walks in Dd ,L
starting at x

1, 5 2, 6

4 3y = (3, 0)

s1s2

s1s1s2s2s1s1

D2,3

n-step walks in DL,d
starting at y

u = 10011 1
2
3

1

2

3

4

5

6

reverse-
complement

E3,2

urc = 00110
1 2 1

2

3

4

5

6

E2,3
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The cylindric Robinson–Schensted correspondence

Sagan and Stanley ’90 introduced analogues of the
Robinson–Schensted correspondence for skew tableaux.

Neyman ’15 extended these to cylindric tableaux.

Theorem (Neyman ’15, adapting Sagan–Stanley ’90)

Fix α, β ∈ Λd ,L and n,m ≥ 0. There is a bijection:

CRS :
⊔

µ⊆α,β
|α/µ|=n,|β/µ|=m

SCTd ,L(α/µ)× SCTd ,L(β/µ)

→
⊔

λ⊇α,β
|λ/β|=n,|λ/α|=m

SCTd ,L(λ/β)× SCTd ,L(λ/α).

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.
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Internal row insertion

The description of CRS is based on row insertion operations.

Here’s an example of internal row insertion at row 1 of a SCT:
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Internal row insertion

The description of CRS is based on row insertion operations.

Here’s an example of internal row insertion at row 1 of a SCT:
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The CRS correspondence: example

CRS :
⊔

µ⊆α,β
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A special case of CRS

In the special case α = β and T = U, we have CRS(T ,T ) = (P,P).

The resulting map T 7→ P is a bijection

ϕ : SCTn
d ,L(α/·) → SCTn

d ,L(·/α).
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Translating ϕ to the other settings

Theorem
Let α ∈ Λd ,L , let x = (x1, x2, . . . , xd) ∈ ∆d ,L where xi = αi−1 − αi

for 1 ≤ i ≤ d , and let u = 0x110x21 . . . 0xd1.

There are natural bijections between the following:
a The set SCTn

d ,L(·/α).
b The set of n-step walks in Dd ,L starting at vertex x.
c The set of n-step walks in Ed ,L starting at state u.

a” The set SCTn
d ,L(α/·).

b” The set of n-step walks in Dd ,L ending at vertex x.
c” The set of n-step walks in Ed ,L ending at state u.

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.
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Growth diagrams

Growth diagrams were introduced by Fomin as an alternative
description of the Robinson–Schensted correspondence, in order to
generalize it to differential posets.

Roby showed that Sagan and Stanley’s analogue of RS for skew
tableaux also has a natural description in terms of growth diagrams.

correspondence insertion-based version growth diagram version
RS Robinson’38, Schensted’61 Fomin’86

skew RS Stanley–Sagan’90 Roby’91
cylindric RS Neyman’15 ??

Let’s extend growth diagrams to the cylindric case.

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.
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RS Robinson’38, Schensted’61 Fomin’86

skew RS Stanley–Sagan’90 Roby’91
cylindric RS Neyman’15 ??

Let’s extend growth diagrams to the cylindric case.
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Cylindric growth diagrams

Given T ∈ SCTd ,L(α/µ) and U ∈ SCTd ,L(β/µ), where |α/µ| = n
and |β/µ| = m, we will draw an m × n grid whose vertices are
labeled by cylindric shapes.

One can view a SCT as a sequence of cylindric shapes, each one
obtained from the previous one by adding a cell.

[110]µ = [111] [211] [221] [222]= β

[210]

[211]

[311]

[321]

[331]α =

U

T

1

1
2

2

3

3

4 5
µ

α

T

1

1

2

2

3
4

4
µ

β

U

Label the left and bottom
boundaries by the shapes
determined by T and U.
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Local rules

For the rest of the labels, we use the forward local rule.

Given a square

ρ⌞
ρ⌜

ρ⌟
ρ⌝

where ρ⌞, ρ⌜, ρ⌟ have been computed, we compute ρ⌝ as follows:

If ρ⌜ ̸= ρ⌟, let ρ⌝ = ρ⌜ ∪ ρ⌟.

If ρ⌜ = ρ⌟ and this shape is obtained from ρ⌞ by adding a cell
to row i , let ρ⌝ be obtained from ρ⌜ = ρ⌟ by adding a cell to
row i + 1 (mod d).
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Computing the remaining labels

If ρ⌜ ̸= ρ⌟, let ρ⌝ = ρ⌜ ∪ ρ⌟.
If ρ⌜ = ρ⌟ and this shape is obtained from ρ⌞ by adding a cell
to row i , let ρ⌝ be obtained from ρ⌜ = ρ⌟ by adding a cell to
row i + 1 (mod d).

[110]µ = [111] [211] [221] [222]= β

[210]

[211]

[311]

[321]

[331]α =

[211]

[222] [322]

[321] [322] [332]

[321] [322] [422] [432]

[322] [422] [432] [433]

[332] [432] [433] = λ

U

T

Q

P

1

1
2

2

3

3

4 5
µ

α

T

1

1

2

2

3
4

4
µ

β

U

3

3

5

5

1

1
4

4

2

P

β

λ

1

1

4

4

2

2
3

3
Q

α

λ

The right and the top boundaries determine (P,Q) = CRS(T ,U).
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Computing the remaining labels
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A symmetry of CRS

The following symmetry, first proved by Neyman using the
insertion-based version, is now immediate.

Corollary

CRS(T ,U) = (P,Q) ⇐⇒ CRS(U,T ) = (Q,P).

In particular, CRS(T ,T ) = (P,P), which defines the bijection

ϕ : SCTn
d ,L(α/·) → SCTn

d ,L(·/α)
T 7→ P

from before.
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An example of ϕ(T ) = P using cylindric growth diagrams

[1̄1̄2̄] [01̄2̄]

[01̄2̄]

[01̄1̄]

[01̄1̄]

[11̄1̄]

[11̄1̄]

[101̄]

[101̄]

[111̄]

[111̄]

[211̄]

[211̄]

[221̄]

[221̄]

[220]= α

[220]α =

[002̄] [001̄]

[001̄]

[101̄]

[101̄]

[100]

[100]

[110]

[110]

[210]

[210]

[220]

[220]

[320]

[320]

[101̄] [111̄]

[111̄]

[110]

[110]

[111]

[111]

[211]

[211]

[221]

[221]

[321]

[321]

[110] [210]

[210]

[211]

[211]

[221]

[221]

[222]

[222]

[322]

[322]

[220] [221]

[221]

[222]

[222]

[322]

[322]

[332]

[332]

[321] [322]

[322]

[332]

[332]

[333]

[333]

[422] [432]

[432]

[433]

[433]

[433] [533]

[533] [543]

T

T

P

P

1

1
2

2

3

3

4 5
6

6

7
8

8

α

T

α
1

1
2

2

3

3

4
5

5

6

6

7

7

8

P

notation: k̄ = −k
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Another symmetry of CRS

The complement of a SCT with n cells is obtained by performing
a 180◦ rotation and replacing each entry k with n + 1 − k .

1

1
2

2

3

3

4 5
6

6

7
8

8

α

T

complement
ᾱ

1

1

2
3

3

4 5
6

6

7

7
8

8T

Corollary

CRS(T ,U) = (P,Q) ⇐⇒ CRS(P,Q) = (T ,U).

In particular, ϕ(T ) = P ⇐⇒ ϕ(P) = T .

Sergi Elizalde Cylindric growth diagrams, walks in simplices, etc.



Walks SCT TASEP Connecting all three Cylindric RS Cylindric growth diagrams Open problems

Another symmetry of CRS

The complement of a SCT with n cells is obtained by performing
a 180◦ rotation and replacing each entry k with n + 1 − k .

1

1
2

2

3

3

4 5
6

6

7
8

8

α

T

complement
ᾱ
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Why are there no crosses in the growth diagram?

Unlike Young’s lattice, the poset (Λd ,L,⊆) of cylindric shapes
ordered by containment is technically not an r-differential poset,
since it does not have a minimal element.

...

...

[000]

[111]

[101̄]

[210]

[100]

[211]

[111̄]

[220]

[110] [200] [211̄]

[201̄]

[310]

[21̄1̄]

[300]

[112̄]

[221̄]
Λ3,3

However, disregarding this condition and relaxing the usual
requirement that r ≥ 1, (Λd ,L,⊆) could be considered a
“0-differential poset” .
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Oscillating cylindric tableaux

Oscillating cylindric tableaux (OCT) are sequences of cylindric
shapes where each one is obtained from the previous one by either
adding or removing a cell, e.g.

[1, 0, 0], [2, 0, 0], [2, 0,−1], [1, 0,−1]

Note: it is always possible to remove a cell from a cylindric shape.

The above bijections between
a SCT, b walks in simplices, c sequences of states in TASEP
generalize to bijections between

a oscillating cylindric tableaux,

b walks in simplices where steps can be taken in the forward or
backward direction;

c sequences of states in the symmetric simple exclusion process
(where particles can jump in either direction).
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Bijections for oscillating walks

The Forward-Backward Theorem for walks in the simplex has the
following generalization.

Theorem (Courtiel–Elvey Price–Marcovici ’21)

For any x ∈ ∆d ,L and any two binary words w and w ′ of length n,
there is a bijection between oscillating walks in Dd ,L starting at x of
“type” w and those of “type” w ′.

Their proof repeatedly applies certain flips to adjacent steps and to
the last step of the walk.

We can give a new proof by first translating it into a theorem about
OCT, and then using cylindric growth diagrams.
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“type” w and those of “type” w ′.

Their proof repeatedly applies certain flips to adjacent steps and to
the last step of the walk.

We can give a new proof by first translating it into a theorem about
OCT, and then using cylindric growth diagrams.
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Bijections for oscillating cylindric tableaux

Theorem
For any α ∈ Λd ,L and any two binary words w and w ′ of length n,
there is a bijection between OCT starting at α of type w and those
of type w ′.

Proof idea: Both sets are in bijection with the set of symmetric
cylindric growth diagrams on an n × n grid where the upper-left
and lower-right corners have label α.

Example:

OCT starting at α = [100] of type +−−:

[100] +→ [200] −→ [201̄] −→ [101̄]

[100] −→ [101̄] +→ [201̄] +→ [211̄]

[100] [200]

[201̄]

[101̄] [201̄] [200]

[100][11̄2̄] [102̄]

[102̄]

[101̄]

[101̄] [211̄] [210]

[210] [310][100]

[101̄] [201̄] [211̄]

[200]

[101̄] [201̄] [200]

[100]
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Open problem 1: crossings and nestings in partial matchings

Theorem (Huh–Kim–Krattenthaler–Okada ’23)∣∣SCTn
2h+1,2w+1(·/[0d ])

∣∣ equals the number of partial matchings
on n points with no (h + 1)-crossing and no (w + 1)-nesting.

Open problem: Give a bijective proof.

When h = 1, this is equivalent to the Mortimer–Prellberg result
about walks in D3,L and bounded Motkzin paths. A complicated
bijective proof was given by Courtiel, Elvey Price and Marcovici.

When h → ∞, there is a bijective proof using the RS
correspondence.
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Open problem 2: evacuation in terms of CRS

For d , L ≥ n, we have SCTn
d ,L(·/[0d ]) ∼= SYTn (standard Young

tableaux of straight shape).

By complementation, SCTn
d ,L([0

d ]/·) ∼= SYTn as well.

Thus, the map ϕ : SCTn
d ,L([0

d ]/·) → SCTn
d ,L(·/[0d ]) can be viewed

as an involution on SYTn.

1
2

3

4

5 6
7

8
9

complementP

1
2

3
4 5

6

7
8
9

P

ϕ

1 2
3
4

5
6

7

8

9

ϕ(P)

Conjecture
This map coincides with Schützenberger’s evacuation.
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Thank you
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