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Notation for derangements

Sp = permutations of {1,2,...,n}

iis a fixed point of m € S, if w(i) =i
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Notation for derangements

Sp = permutations of {1,2,...,n}

iis a fixed point of m € S, if w(i) =i

Derangements:

D, = {m € S, : 7 has no fixed points} dn = | Dyl

Non-derangements:
Dy =38,\Dx |Dp| = n! —d,
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Notation for derangements

Sp = permutations of {1,2,...,n}

iis a fixed point of m € S, if w(i) =i

Derangements:

D, = {m € S, : 7 has no fixed points} dn = | Dyl

Non-derangements:
Dy =38,\Dx |Dp| = n! —d,

Permutations with one fixed point:

Fn={m € S, : 7 has exactly one fixed point} |Fn| = ndn_1
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Known recurrences for the derangement numbers

Recurrence 1: For n > 2,
d, = (n — 1)(dn_1 + dn_g).

It has a relatively simple bijective proof.
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Known recurrences for the derangement numbers

Recurrence 1: For n > 2,
dn = (n—1)(dn—1 + dn—2).
It has a relatively simple bijective proof.
Recurrence 2: For n > 1,
dyn=ndy—1+(-1)".

A combinatorial proof requires “considerably more work™ (Stanley,
EC1).
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Known recurrences for the derangement numbers

Recurrence 1: For n > 2,
dn = (n—1)(dn—1 + dn—2).
It has a relatively simple bijective proof.
Recurrence 2: For n > 1,
dyn=ndy—1+(-1)".

A combinatorial proof requires “considerably more work™ (Stanley,
EC1).

Bijective proofs have been given by Remmel, Wilf, Désarménien,
and Benjamin—Ornstein.
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Known recurrences for the derangement numbers

Recurrence 1: For n > 2,
d, = (n — 1)(dn_1 + dn_g).
It has a relatively simple bijective proof.

Recurrence 2: For n > 1,

dyn=ndy—1+(-1)".
A combinatorial proof requires “considerably more work™ (Stanley,
EC1).

Bijective proofs have been given by Remmel, Wilf, Désarménien,
and Benjamin—Ornstein.

Here we present a new bijective proof of Recurrence 2 that is
arguably simpler than these.
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A bijective proof of d, = nd, 1+ (—1)"

Recall that |F,| = nd,—1 counts permutations with one fixed
point.
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A bijective proof of d, = nd, 1+ (—1)"

Recall that |F,| = nd,—1 counts permutations with one fixed
point.

We describe a bijection
YDy — Fp,

where

D, if n odd,

« ) Fn if n even,
o = {fn \ {(1)(2,3)...(n—1,n)} if nodd.

Dt — {Dn \{(1,2)(3,4)...(n—1,n)} if neven,
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The bijection

Write m € Dj; in cycle notation so that each cycle begins with its
smallest element, and cycles are ordered by increasing first element.
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The bijection ¢ : D) — F,

Write m € Dj; in cycle notation so that each cycle begins with its
smallest element, and cycles are ordered by increasing first element.

Let k > 0 be the largest such that

7 =(1,2)(3,4)...(2k — 1,2k) ]

Bijections for derangements and inversion sequences



The bijection ¢ : Df — F

Write m € Dj; in cycle notation so that each cycle begins with its
smallest element, and cycles are ordered by increasing first element.

Let k > 0 be the largest such that
m=(1,2)(3,4)...(2k — 1,2k) ]
To define 9 (7) € F, consider two cases:
@ |If the cycle containing 2k + 1 has at least 3 elements:

m=(1,2)(3,4)...(2k — 1,2k)(2k + 1,21, a2, .. ., a))

]
P(r) = (1)(2,3)(4,5) ... (2k,a1)k+1,a,...,a;)]
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The bijection ¢ : Df — F

Write m € Dj; in cycle notation so that each cycle begins with its
smallest element, and cycles are ordered by increasing first element.

Let k > 0 be the largest such that
m=(1,2)(3,4)...(2k — 1,2k) 3
To define 9 (7) € F, consider two cases:

Q |If the cycle containing 2k + 1 has at least 3 elements:

m=(1,2)(3,4)...(2k — 1,2k)(2k + 1,21, 2, . . ., aj) ]
P(r) =(1)(2,3)(4,5) ... (2k,a1)(2k+1,ap,...,a;)]
@ Otherwise:
m=(1,2)(3,4)...(2k — 1,2k)(2k + 1,21)(2k + 2, 2y, ..., a}) [
P(m) = (1)(2,3)(4,5) ... (2k,2k+1)(2k+2,a1,a0,...,a;)]
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Examples of ¢ : D} — F;

© If the cycle containing 2k + 1 has at least 3 elements:

T =(1,2)(3,4)...(2k — 1,2k)(2k + 1, a1, a2, . . . , a;) [
P(r) = (1)(2,3)(4,5) ... (2k,a1)(2k +1,a0,...,a;)]
@ Otherwise:
m=(1,2)(3,4)...(2k — 1,2k)(2k + 1,a1)(2k + 2, a2, ... , aj) [
Y(m) = (1)(2,3)(4,5) ... (2k,2k+1)(2k+2,a1,a,...,2;)]
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Examples of ¢ : D} — F;

© If the cycle containing 2k + 1 has at least 3 elements:

7= (1,2)(3,4)...(2k — 1,2k)(2k + 1, a1, 2, ..., a}) (]

P(m) = (1)(2,3)(4,5) ... (2k,a1)(2k+1,a,...,a8;)
@ Otherwise:
m=(1,2)(3,4)...(2k — 1,2k)(2k + 1,a1)(2k + 2, ap, . . . , aj) [
P(m) = (1)(2,3)(4,5) ... (2k,2k+1)(2k +2,a1,ap,...,a;)]
Examples:
7 | (13)(24) | (14)(23) | (1234) | (1243) (1342 | (1423) | ..
o(m) || (1)(234) | (1)(243) | (2)(134) | (2)(143) | (3)(142) | (4)(123) | ..

x| (12)(345)

) | |
)| |
123)(45) | (13)(254) | (14)(235) | (154)(23) \
5) | (1)(2354) | (1)(2435) | (5)(14)(23) | ..

| (
G(n) | (1)(24)(35) | (2)(13)(4




Inversion sequences

Inversion sequences:

Ih={e1e2...,:0< ¢ <iVi}

They encode permutations by the number of inversions created by
each element.
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Inversion sequences

Inversion sequences:

Ih={e1e2...,:0< ¢ <iVi}

They encode permutations by the number of inversions created by
each element.

Pattern avoidance in inversion sequences has been studied by
Martinez, Savage, Mansour, Shattuck, Auli, etc.
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Inversion sequences

Inversion sequences:

Ih={e1e2...,:0< ¢ <iVi}

They encode permutations by the number of inversions created by
each element.

Pattern avoidance in inversion sequences has been studied by
Martinez, Savage, Mansour, Shattuck, Auli, etc.

1,(000) = {e €1, : fi such that e; = ;11 = ej;2}
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Inversion sequences

Inversion sequences:

Ih={e1e2...,:0< ¢ <iVi}

They encode permutations by the number of inversions created by
each element.

Pattern avoidance in inversion sequences has been studied by
Martinez, Savage, Mansour, Shattuck, Auli, etc.

1,(000) = {e €1, : fi such that e; = ;11 = ej;2}

Theorem (Auli, E. '19)

(n + 1)' — dn+1

|In(M)| = .

The original proof was by induction on n.
Here we provide a bijective proof.
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A bijective proof of |1,(000)| = (2F)i=dner

n

One can easily show that

(n + 1)' — dn+1

— |§n L 5n—1|a
n
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A bijective proof of |1,(000)| = (2F)i=dner

n

One can easily show that

(n + 1)' — dn+1

— |§n L 5n—1|a
n

so all we need is a bijection

¢ : In(M) — 5n |—|fnfl-
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A bijective proof of |1,(000)| = (2F)i=dner

n

One can easily show that

(n + 1)' — dn+1

— |§n L ﬁn—1|a
n

so all we need is a bijection

¢ : In(M) — 5n |—|5n71-

Step 1: Encode e € 1,(000) as a word w = w» . .. w, with
wi € [k — 1] U {R} having no two consecutive Rs, by letting

R if € — €k_1,
Wi = § €k if e > €k—1,
ex+1 if e <ex_q.
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The bijection ¢ :

Step 2: Read w from left to right and build a sequence of
permutations o1, 09,...,0,, where o € Dy LDy _1 for all k.

Bijections for derangements and inversion sequences



The bijection ¢ : 1,(000) — D, U D, ;

Step 2: Read w from left to right and build a sequence of
permutations o1, 09,...,0,, where o € Dy LDy _1 for all k.

Set 01 = 1 € Dy. Then, for each k from 2 to n:

o lfwy =R, let oy =0k_1 € ﬁk—l-
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The bijection ¢ : 1,(000) — D, U D, ;

Step 2: Read w from left to right and build a sequence of
permutations o1, 09,...,0,, where o € Dy LDy _1 for all k.

Set 01 = 1 € Dy. Then, for each k from 2 to n:
o lfwy =R, let oy =0k_1 € ﬁk—l-

@ Otherwise, let

(Wi, k)ok—1 if we_1 # R and 0x_1 € Di_1 has
oK = fixed points other than wy,
(wk, k —1)ok_1 otherwise,

where (a, b)og_1 is defined by viewing o,_1 as an element of
Dy (where k is fixed), and switching the entries a and b.
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The bijection ¢ : 1,(000) — D, U D, ;

Step 2: Read w from left to right and build a sequence of
permutations o1, 09,...,0,, where o € Dy LDy _1 for all k.

Set 01 = 1 € Dy. Then, for each k from 2 to n:
o lfwy =R, let oy =0k_1 € ﬁk—l-

@ Otherwise, let

(Wi, k)ok—1 if we_1 # R and 0x_1 € Di_1 has
oK = fixed points other than wy,
(wk, k —1)ok_1 otherwise,

where (a, b)og_1 is defined by viewing o,_1 as an element of
Dy (where k is fixed), and switching the entries a and b.

Finally, let ¢(e) = oy,.
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Examples of ¢ : 1,(000) — D, UD,_;

k ek | Wk Tk

110 1

2/ 0| R 1
e=001322 +~ 3|1 | 1] (1,2)123=213

413 | 3| (3,3)2134=2134

52| 3 |(3,5)21345 = 21543

6|2 |R 21543 = ¢(e)
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Examples of ¢ : 1,(000) — D, UD,_;

k
1
2
3
4
5
6

e = 001322

e = 0102230
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(1,2)123 = 213
(3,3)2134 = 2134
(3,5)21345 = 21543
21543 = ¢(e)

Ok

~NOoO OB WN =X

O WINNOFEO

H W XN R =

1
(1,1)12 = 12
(1,3)123 = 321
(2,3)3214 = 2314
2314
(3,5)231456 = 251436
(1,7)2514367 = 2574361 = ¢(e)



Thank you
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