Descents on quasi-Stirling permutations

Sergi Elizalde

Dartmouth College

UMass Amherst Discrete Math Seminar, March 5, 2020
Let $\pi = \pi_1 \pi_2 \ldots \pi_r$ be a sequence of positive integers. i is a descent of π if $\pi_i > \pi_{i+1}$ or $i = r$.

Definition
Descents

Definition

Let \(\pi = \pi_1 \pi_2 \ldots \pi_r \) be a sequence of positive integers.

\(i \) is a **descent** of \(\pi \) if \(\pi_i > \pi_{i+1} \) or \(i = r \).

\(\text{des}(\pi) = \) number of descents of \(\pi \).
Descents

Definition

Let \(\pi = \pi_1\pi_2 \ldots \pi_r \) be a sequence of positive integers.

\(i \) is a descent of \(\pi \) if \(\pi_i > \pi_{i+1} \) or \(i = r \).

\(\text{des}(\pi) = \) number of descents of \(\pi \).

Example

\(\text{des}(36522131) = 5 \)
Eulerian polynomials

\[S_n = \text{set of permutations of } \{1, 2, \ldots, n\}. \]
Eulerian polynomials

\[S_n = \text{set of permutations of } \{1, 2, \ldots, n\}. \]

Definition

Eulerian polynomials:

\[A_n(t) = \sum_{\pi \in S_n} t^{\text{des} (\pi)} \]

These polynomials appear in work of Euler from 1755.
Eulerian polynomials

\[S_n = \text{set of permutations of } \{1, 2, \ldots, n\}. \]

Definition

Eulerian polynomials:

\[A_n(t) = \sum_{\pi \in S_n} t^{\text{des}(\pi)} \]

Example

\[A_1(t) = t \]
\[A_2(t) = t + t^2 \]
\[A_3(t) = t + 4t^2 + t^3 \]
\[A_4(t) = t + 11t^2 + 11t^3 + t^4 \]

These polynomials appear in work of Euler from 1755.
Eulerian polynomials

$S_n = \text{set of permutations of } \{1, 2, \ldots, n\}.$

Definition

Eulerian polynomials:

$A_n(t) = \sum_{\pi \in S_n} t^{\text{des}(\pi)}$

Example

$A_1(t) = t$

$A_2(t) = t + t^2$

$A_3(t) = t + 4t^2 + t^3$

$A_4(t) = t + 11t^2 + 11t^3 + t^4$

These polynomials appear in work of Euler from 1755.
Eulerian polynomials

\begin{align*}
\alpha &= \frac{1}{1(p-1)} \\
\beta &= \frac{p + 1}{1.2 (p-1)^2} \\
\gamma &= \frac{pp + 4p + 1}{1.2.3 (p-1)^3} \\
\delta &= \frac{p^3 + 11p^2 + 11p + 1}{1.2.3.4 (p-1)^4} \\
\varepsilon &= \frac{p^4 + 26p^3 + 66p^2 + 26p + 1}{1.2.3.4.5 (p-1)^5} \\
\zeta &= \frac{p^5 + 57p^4 + 302p^3 + 302p^2 + 57p + 1}{1.2.3.4.5.6 (p-1)^6} \\
\eta &= \frac{p^6 + 120p^5 + 1191p^4 + 2416p^3 + 1191p^2 + 120p + 1}{1.2.3.4.5.6.7 (p-1)^7}
\end{align*}

L. Euler, 1755.

Eulerian Polynomials

\[\frac{A_n(p)}{p^{n!}(p-1)^n} \quad (1 \leq n \leq 7) \]
Euler was considering the series

\[
\sum_{m \geq 0} m t^m = \frac{t}{(1-t)^2}
\]

\[
\sum_{m \geq 0} m^2 t^m = \frac{t + t^2}{(1-t)^3}
\]

\[
\sum_{m \geq 0} m^3 t^m = \frac{t + 4t^2 + t^3}{(1-t)^4}
\]

\[
\sum_{m \geq 0} m^4 t^m = \frac{t + 11t^2 + 11t^3 + t^4}{(1-t)^5}
\]
Euler was considering the series

\[\sum_{m \geq 0} m t^m = \frac{t}{(1 - t)^2} \]

\[\sum_{m \geq 0} m^2 t^m = \frac{t + t^2}{(1 - t)^3} \]

\[\sum_{m \geq 0} m^3 t^m = \frac{t + 4t^2 + t^3}{(1 - t)^4} \]

\[\sum_{m \geq 0} m^4 t^m = \frac{t + 11t^2 + 11t^3 + t^4}{(1 - t)^5} \]

In general,

\[\sum_{m \geq 0} m^n t^m = \frac{A_n(t)}{(1 - t)^{n+1}}. \]
Stirling numbers

Definition

The Stirling number of the second kind $S(n, k)$ is the number of partitions of the set $\{1, 2, \ldots, n\}$ into k blocks.

What are the polynomials in the numerator?
Stirling numbers

Definition

The Stirling number of the second kind $S(n, k)$ is the number of partitions of the set \{1, 2, \ldots, n\} into k blocks.

In 1978, Gessel and Stanley were interested in the series

\[
\sum_{m \geq 0} S(m + 1, m) \ t^m = \frac{t}{(1 - t)^3}
\]

\[
\sum_{m \geq 0} S(m + 2, m) \ t^m = \frac{t + 2t^2}{(1 - t)^5}
\]

\[
\sum_{m \geq 0} S(m + 3, m) \ t^m = \frac{t + 8t^2 + 6t^3}{(1 - t)^7}
\]

\[
\sum_{m \geq 0} S(m + 4, m) \ t^m = \frac{t + 22t^2 + 58t^3 + 24t^4}{(1 - t)^9}
\]
Definition

The Stirling number of the second kind $S(n, k)$ is the number of partitions of the set $\{1, 2, \ldots, n\}$ into k blocks.

In 1978, Gessel and Stanley were interested in the series

$$\sum_{m \geq 0} S(m + 1, m) \, t^m = \frac{t}{(1 - t)^3}$$

$$\sum_{m \geq 0} S(m + 2, m) \, t^m = \frac{t + 2t^2}{(1 - t)^5}$$

$$\sum_{m \geq 0} S(m + 3, m) \, t^m = \frac{t + 8t^2 + 6t^3}{(1 - t)^7}$$

$$\sum_{m \geq 0} S(m + 4, m) \, t^m = \frac{t + 22t^2 + 58t^3 + 24t^4}{(1 - t)^9}$$

What are the polynomials in the numerator?
Definition (Gessel–Stanley ’78)

A *Stirling permutation* is a permutation of the multiset \(\{1, 1, 2, 2, \ldots, n, n\}\) that avoids the pattern 212.

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_2 = {1122, 1221, 2211})</td>
</tr>
</tbody>
</table>

We have \(|Q_n|\) = \((2n-1)!! = (2n-1) \cdot (2n-3) \cdot \ldots \cdot 3 \cdot 1\), since every permutation in \(Q_n\) can be obtained by inserting \(nn\) into one of the \(2n-1\) spaces of a permutation in \(Q_{n-1}\).
Definition (Gessel–Stanley ’78)

A Stirling permutation is a permutation of the multiset \(\{1, 1, 2, 2, \ldots, n, n\}\) that avoids the pattern 212.

In other words, Stirling permutations \(\pi_1\pi_2\ldots\pi_{2n}\) satisfy that, if \(i < j < k\) and \(\pi_i = \pi_k\), then \(\pi_j > \pi_i\).
Definition (Gessel–Stanley ’78)

A Stirling permutation is a permutation of the multiset \{1, 1, 2, 2, \ldots, n, n\} that avoids the pattern 212.

In other words, Stirling permutations \(\pi_1 \pi_2 \ldots \pi_{2n}\) satisfy that, if \(i < j < k\) and \(\pi_i = \pi_k\), then \(\pi_j > \pi_i\).

\(Q_n = \) set of Stirling permutations of \{1, 1, 2, 2, \ldots, n, n\}.
Definition (Gessel–Stanley ’78)

A **Stirling permutation** is a permutation of the multiset \(\{1, 1, 2, 2, \ldots, n, n\} \) that avoids the pattern 212.

In other words, Stirling permutations \(\pi_1 \pi_2 \ldots \pi_{2n} \) satisfy that, if \(i < j < k \) and \(\pi_i = \pi_k \), then \(\pi_j > \pi_i \).

\(Q_n = \text{set of Stirling permutations of } \{1, 1, 2, 2, \ldots, n, n\} \).

Example

\[Q_2 = \{1122, 1221, 2211\} \]
Definition (Gessel–Stanley ’78)

A Stirling permutation is a permutation of the multiset \{1, 1, 2, 2, \ldots, n, n\} that avoids the pattern 212.

In other words, Stirling permutations \(\pi_1 \pi_2 \ldots \pi_{2n}\) satisfy that, if \(i < j < k\) and \(\pi_i = \pi_k\), then \(\pi_j > \pi_i\).

\(Q_n = \) set of Stirling permutations of \{1, 1, 2, 2, \ldots, n, n\}.

Example

\[Q_2 = \{1122, 1221, 2211\}\]

We have \(|Q_n| = (2n - 1)!! = (2n - 1) \cdot (2n - 3) \cdots 3 \cdot 1\), since every permutation in \(Q_n\) can be obtained by inserting \(nn\) into one of the \(2n - 1\) spaces of a permutation in \(Q_{n-1}\).
Stirling polynomials

Definition (Gessel–Stanley ’78)

Stirling polynomials:

\[Q_n(t) = \sum_{\pi \in Q_n} t^{\text{des}(\pi)} \]

Example

\[Q_1(t) = t \]
\[Q_2(t) = t + 2t^2 \]
\[Q_3(t) = t + 8t^2 + 6t^3 \]

Theorem (Gessel–Stanley ’78)

\[\sum_{m \geq 0} S(m+n, m) t^m = Q_n(t)(1 - t)^{2n+1} \]
Definition (Gessel–Stanley ’78)

Stirling polynomials:
\[Q_n(t) = \sum_{\pi \in Q_n} t^{\text{des}(\pi)} \]

Example

\[Q_1(t) = t \]
\[Q_2(t) = t + 2t^2 \]
\[Q_3(t) = t + 8t^2 + 6t^3 \]
Stirling polynomials

Definition (Gessel–Stanley ’78)

Stirling polynomials:

\[Q_n(t) = \sum_{\pi \in Q_n} t^{\text{des}(\pi)} \]

Example

\[Q_1(t) = t \]
\[Q_2(t) = t + 2t^2 \]
\[Q_3(t) = t + 8t^2 + 6t^3 \]

Theorem (Gessel–Stanley ’78)

\[\sum_{m \geq 0} S(m + n, m) t^m = \frac{Q_n(t)}{(1 - t)^{2n+1}}. \]
There is an extensive literature on Stirling permutations. Some work relevant to this talk:

- **Bóna '08**: \(Q_n(t) \) also gives the enumeration of \(Q_n \) by the number of plateaus, that is, positions \(i \) such that \(\pi_i = \pi_{i+1} \).
There is an extensive literature on Stirling permutations. Some work relevant to this talk:

- **Bóna '08**: $Q_n(t)$ also gives the enumeration of Q_n by the number of plateaus, that is, positions i such that $π_i = π_{i+1}$.
- **Brenti '89, Bóna '08**: $Q_n(t)$ has only real roots, and the distribution of des on Q_n is asymptotically normal.

Sergi Elizalde
Descents on quasi-Stirling permutations
There is an extensive literature on Stirling permutations. Some work relevant to this talk:

- **Bóna '08**: $Q_n(t)$ also gives the enumeration of Q_n by the number of plateaus, that is, positions i such that $\pi_i = \pi_{i+1}$.
- **Brenti '89, Bóna '08**: $Q_n(t)$ has only real roots, and the distribution of des on Q_n is asymptotically normal.
- **Janson '08**: The joint distribution of ascents, descents and plateaus on Q_n is asymptotically normal.
There is an extensive literature on Stirling permutations. Some work relevant to this talk:

- **Bóna '08**: $Q_n(t)$ also gives the enumeration of Q_n by the number of plateaus, that is, positions i such that $\pi_i = \pi_{i+1}$.
- **Brenti '89, Bóna '08**: $Q_n(t)$ has only real roots, and the distribution of des on Q_n is asymptotically normal.
- **Janson '08**: The joint distribution of ascents, descents and plateaus on Q_n is asymptotically normal.
- **Haglund and Visontai '12**: The multivariable polynomials tracking these 3 statistics are stable (i.e., they don’t vanish when all the variables have a positive imaginary part).
There is an extensive literature on Stirling permutations. Some work relevant to this talk:

- **Bóna ’08**: $Q_n(t)$ also gives the enumeration of Q_n by the number of plateaus, that is, positions i such that $\pi_i = \pi_{i+1}$.
- **Brenti ’89, Bóna ’08**: $Q_n(t)$ has only real roots, and the distribution of des on Q_n is asymptotically normal.
- **Janson ’08**: The joint distribution of ascents, descents and plateaus on Q_n is asymptotically normal.
- **Haglund and Visontai ’12**: The multivariable polynomials tracking these 3 statistics are stable (i.e., they don’t vanish when all the variables have a positive imaginary part).
- The coefficients of $Q_n(t)$ are sometimes called second-order Eulerian numbers.
\[
\mathcal{I}_n = \text{set of increasing edge-labeled plane rooted trees with } n \text{ edges.}
\]
Stirling permutations and trees

\[\mathcal{I}_n = \text{set of increasing edge-labeled plane rooted trees with } n \text{ edges.} \]

\[
\begin{array}{c}
\begin{array}{cccc}
4 & 1 & 2 \\
6 & 7 & 5 & 3
\end{array}
\end{array}
\]

\[\varphi \quad 4664112775885332 \]

Theorem (Janson ’08)

There is a bijection \(\varphi : \mathcal{I}_n \longrightarrow \mathcal{Q}_n \) obtained by traversing the edges of the tree along depth-first walk from left to right, and recording their labels.
\(\mathcal{I}_n \) = set of increasing edge-labeled plane rooted trees with \(n \) edges.

Theorem (Janson ’08)

There is a bijection \(\varphi : \mathcal{I}_n \rightarrow \mathcal{Q}_n \) obtained by traversing the edges of the tree along depth-first walk from left to right, and recording their labels.

If we remove the increasing condition on the trees, what is the image of \(\varphi \)?
\begin{itemize}
 \item \(T_n = \) set of edge-labeled plane rooted trees with \(n\) edges.
\end{itemize}
\(\mathcal{T}_n = \) set of edge-labeled plane rooted trees with \(n \) edges.

\[
\begin{array}{c}
1 & 7 & 5 & 2 \\
 & 4 & 6 & 3 \\
 & & & 8 \\
\end{array}
\]

\(\varphi \rightarrow 4114663775885223 \)
Quasi-Stirling permutations and trees

\[\mathcal{T}_n = \text{set of edge-labeled plane rooted trees with } n \text{ edges.} \]

Definition (Archer–Gregory–Pennington–Slayden ’19)

A quasi-Stirling permutation is a permutation of the multiset \{1, 1, 2, 2, \ldots, n, n\} that avoids the patterns 1212 and 2121.
Quasi-Stirling permutations and trees

\[T_n = \text{set of edge-labeled plane rooted trees with } n \text{ edges.} \]

Definition (Archer–Gregory–Pennington–Slayden ’19)

A quasi-Stirling permutation is a permutation of the multiset \{1, 1, 2, 2, \ldots, n, n\} that avoids the patterns 1212 and 2121. In other words, it does not have four positions \(i < j < k < \ell \) with \(\pi_i = \pi_k \) and \(\pi_j = \pi_\ell \) (i.e., it is non-crossing).
Quasi-Stirling permutations

\(\overline{Q}_n \) = set of quasi-Stirling permutations of \(\{1, 1, 2, 2, \ldots, n, n\} \).

Example

\(\overline{Q}_2 = \{1122, 1221, 2211, 2112\} \)
Quasi-Stirling permutations

\(\overline{Q}_n \) = set of quasi-Stirling permutations of \(\{1, 1, 2, 2, \ldots, n, n\} \).

Example

\[\overline{Q}_2 = \{1122, 1221, 2211, 2112\} \]

Theorem (Archer–Gregory–Pennington–Slayden ‘19)

\(\varphi \) is a bijection between \(T_n \) and \(\overline{Q}_n \).
Quasi-Stirling permutations

\(\overline{Q}_n = \) set of quasi-Stirling permutations of \(\{1, 1, 2, 2, \ldots, n, n\} \).

Example

\[\overline{Q}_2 = \{1122, 1221, 2211, 2112\} \]

Theorem (Archer–Gregory–Pennington–Slayden ’19)

\(\varphi \) is a bijection between \(T_n \) and \(\overline{Q}_n \).

The number of unlabeled plane rooted trees with \(n \) edges is the Catalan number \(C_n \).
Quasi-Stirling permutations

$\overline{Q}_n =$ set of quasi-Stirling permutations of $\{1, 1, 2, 2, \ldots, n, n\}$.

Example

$\overline{Q}_2 = \{1122, 1221, 2211, 2112\}$

Theorem (Archer–Gregory–Pennington–Slayden ’19)

φ is a bijection between T_n and \overline{Q}_n.

The number of unlabeled plane rooted trees with n edges is the Catalan number C_n.

It follows that

$|\overline{Q}_n| = n! C_n = \frac{(2n)!}{(n+1)!}$.
Conjecture (Archer–Gregory–Pennington–Slayden ’19)

The number of $\pi \in \mathcal{Q}_n$ with des(π) = n is equal to $(n + 1)^{n-1}$.
Conjecture (Archer–Gregory–Pennington–Slayden ’19)

The number of $\pi \in \overline{Q}_n$ with $\text{des}(\pi) = n$ is equal to $(n + 1)^{n-1}$.

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set of $\pi \in \overline{Q}_3$ with $\text{des}(\pi) = 1$: ${112233}$</td>
</tr>
<tr>
<td>with $\text{des}(\pi) = 2$:</td>
</tr>
<tr>
<td>${112332, 113223, 113322, 122133, 122331, 133122, 211233, 221133, 223113, 223311, 233112, 311223, 331122}$</td>
</tr>
<tr>
<td>with $\text{des}(\pi) = 3$:</td>
</tr>
<tr>
<td>${123321, 132231, 133221, 211332, 213312, 221331, 231132, 233211, 311322, 312213, 321123, 322113, 322311, 331221, 332112, 332211}$</td>
</tr>
</tbody>
</table>
Conjecture (Archer–Gregory–Pennington–Slayden ’19)

The number of $\pi \in \overline{Q}_n$ with $\text{des}(\pi) = n$ is equal to $(n + 1)^{n-1}$.

Example

Set of $\pi \in \overline{Q}_3$ with $\text{des}(\pi) = 1$: \{112233\}

with $\text{des}(\pi) = 2$:
\{112332, 113223, 113322, 122133, 122331, 133122, 211233, 221133, 223113, 223311, 233112, 311223, 331122\}

with $\text{des}(\pi) = 3$:
\{123321, 132231, 133221, 211332, 213312, 221331, 231132, 233211, 311322, 312213, 321123, 322113, 322311, 331221, 332112, 332211\}

One can show that $\text{des}(\pi) \leq n$ for all $\pi \in \overline{Q}_n$.

Sergi Elizalde Descents on quasi-Stirling permutations
Conjecture (Archer–Gregory–Pennington–Slayden ’19)

The number of $\pi \in \overline{Q}_n$ with $\text{des}(\pi) = n$ is equal to $(n + 1)^{n-1}$.

Example

Set of $\pi \in \overline{Q}_3$ with $\text{des}(\pi) = 1$: \{112233\} 1

with $\text{des}(\pi) = 2$:
\{112332, 113223, 113322, 122133, 122331, 133122, 211233, 221133, 223113, 223311, 233112, 311223, 331122\} 13

with $\text{des}(\pi) = 3$:
\{123321, 132231, 133221, 211332, 213312, 221331, 231132, 233211, 311322, 312213, 321123, 322113, 322311, 331221, 332112, 332211\} 16

One can show that $\text{des}(\pi) \leq n$ for all $\pi \in \overline{Q}_n$.

To prove this conjecture, we look at how descents are transformed by the bijection φ.
Lemma

If $T \in \mathcal{T}_n$ and $\pi = \varphi(T) \in \overline{Q}_n$, then

$$\text{des}(\pi) = \text{cdes}(T),$$

where $\text{cdes}(T)$ is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Example

\[\begin{array}{cccccccc}
4 & 6 & 7 & 3 & 2 & 5 & 8 & 1 \\
\end{array} \rightarrow \\
\begin{array}{cccccccc}
4 & 1 & 1 & 4 & 6 & 6 & 3 & 7 & 7 & 5 & 8 & 8 & 5 & 2 & 2 \end{array} \]

$\text{des}(\pi) = 6$

$\text{cdes}(T) = 1 + 2 + 1 + 2 = 6$
Lemma

If $T \in \mathcal{T}_n$ and $\pi = \varphi(T) \in \mathcal{Q}_n$, then

$$\text{des}(\pi) = \text{cdes}(T),$$

where $\text{cdes}(T)$ is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Example

![Graph Diagram](image)
Descents on quasi-Stirling permutations

Lemma

If $T \in \mathcal{T}_n$ and $\pi = \varphi(T) \in \mathcal{Q}_n$, then

$$\text{des}(\pi) = \text{cdes}(T),$$

where $\text{cdes}(T)$ is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Example

$$\text{cdes}(T) = 1 + 2 + 1 + 2 = 6$$

$$\pi = 4114663775885223$$

$$\text{des}(\pi) = 6$$
Lemma

If \(T \in T_n \) and \(\pi = \varphi(T) \in Q_n \), then

\[
\text{des}(\pi) = \text{cdes}(T),
\]

where \(\text{cdes}(T) \) is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of \(T \).

Example

\[
\begin{align*}
\text{cdes}(T) &= 1 + 2 + 1 + 2 = 6 \\
\text{des}(\pi) &= 6
\end{align*}
\]
Descents on quasi-Stirling permutations

Lemma

If \(T \in \mathcal{T}_n \) and \(\pi = \varphi(T) \in \overline{Q}_n \), then

\[
des(\pi) = cdes(T),
\]

where \(cdes(T) \) is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of \(T \).

Example

\[
\begin{align*}
\varphi & \quad \rightarrow \\
4 & \rightarrow 1 & 2 \rightarrow 4114663775885223 \\
6 & \rightarrow 3 & \text{des}(\pi) = 6 \\
3 & \rightarrow 5 & cdes(T) = 1 + 2 + 1 + 2 = 6
\end{align*}
\]
Lemma

If $T \in T_n$ and $\pi = \varphi(T) \in Q_n$, then

$$\text{des}(\pi) = \text{cdes}(T),$$

where $\text{cdes}(T)$ is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Example

$$\varphi \quad \rightarrow \quad 4114663775885223$$

cdes$(T) = 1 + 2 + 1 + 2 = 6$

des$(\pi) = 6$
Lemma

If $T \in T_n$ and $\pi = \varphi(T) \in \overline{Q}_n$, then

$$\text{des}(\pi) = \text{cdes}(T),$$

where $\text{cdes}(T)$ is obtained by adding the number of cyclic descents of the edge labels counterclockwise around each vertex of T.

Example

![Diagram](image)

$$\text{cdes}(T) = 1 + 2 + 1 + 2 = 6$$

$$\text{des}(\pi) = 6$$
The number of $\pi \in \overline{Q}_n$ with $\text{des}(\pi) = n$ is equal to $(n + 1)^{n-1}$.

Proof sketch. Equivalent to counting $T \in T_n$ with $\text{cdes}(T) = n$, i.e., trees where the number of cyclic descents around each vertex equals its number of children. Such trees are in bijection with unordered trees:

\[
\begin{array}{cccccccc}
4 & 6 & 2 & 3 & 7 & 5 & 8 & 1 \\
\end{array}
\]

By Cayley’s formula, there are $(n + 1)^{n-1}$ such trees.
Theorem

The number of $\pi \in \overline{Q}_n$ with $\text{des}(\pi) = n$ is equal to $(n + 1)^{n-1}$.

Proof sketch.

Equivalent to counting $T \in \mathcal{T}_n$ with $c\text{des}(T) = n$,
The number of $\pi \in \mathcal{Q}_n$ with $\text{des}(\pi) = n$ is equal to $(n + 1)^{n-1}$.

Proof sketch.

Equivalent to counting $T \in \mathcal{T}_n$ with $\text{cdes}(T) = n$, i.e., trees where the number of cyclic descents around each vertex equals its number of children.
The number of $\pi \in Q_n$ with $\text{des}(\pi) = n$ is equal to $(n + 1)^{n-1}$.

Proof sketch.
Equivalent to counting $T \in T_n$ with $\text{cdes}(T) = n$, i.e., trees where the number of cyclic descents around each vertex equals its number of children. Such trees are in bijection with unordered trees:

$$\begin{align*}
\text{unordered} & \quad \leftrightarrow \\
\text{having } \text{cdes}(T) = n
\end{align*}$$
The number of $\pi \in \mathcal{Q}_n$ with $\text{des}(\pi) = n$ is equal to $(n + 1)^{n-1}$.

Proof sketch.

Equivalent to counting $T \in \mathcal{T}_n$ with $\text{cdes}(T) = n$, i.e., trees where the number of cyclic descents around each vertex equals its number of children. Such trees are in bijection with unordered trees:

By Cayley’s formula, there are $(n + 1)^{n-1}$ such trees.
More generally, we are interested in the distribution of des on \overline{Q}_n.

Define the quasi-Stirling polynomials $Q_n(t) = \sum_{\pi \in Q_n} t^{\text{des}(\pi)}$.

Example

$Q_1(t) = t$

$Q_2(t) = t + 3t^2$

$Q_3(t) = t + 13t^2 + 16t^3$
More generally, we are interested in the distribution of des on \overline{Q}_n. Define the \textbf{quasi-Stirling polynomials}

$$\overline{Q}_n(t) = \sum_{\pi \in \overline{Q}_n} t^{\text{des}(\pi)}.$$
Quasi-Stirling polynomials

More generally, we are interested in the distribution of des on \overline{Q}_n.

Define the quasi-Stirling polynomials

$$\overline{Q}_n(t) = \sum_{\pi \in \overline{Q}_n} t^{\text{des}(\pi)}.$$

Example

$$\overline{Q}_1(t) = t$$
$$\overline{Q}_2(t) = t + 3t^2$$
$$\overline{Q}_3(t) = t + 13t^2 + 16t^3$$
Quasi-Stirling polynomials

More generally, we are interested in the distribution of des on \overline{Q}_n. Define the quasi-Stirling polynomials

$$\overline{Q}_n(t) = \sum_{\pi \in \overline{Q}_n} t^{\text{des}(\pi)}.$$

Example

$$\overline{Q}_1(t) = t$$
$$\overline{Q}_2(t) = t + 3t^2$$
$$\overline{Q}_3(t) = t + 13t^2 + 16t^3$$

Define their exponential generating function (EGF):

$$\overline{Q}(t, z) = \sum_{n \geq 0} \overline{Q}_n(t) \frac{z^n}{n!}.$$
Recall the Eulerian polynomials

\[A_n(t) = \sum_{\pi \in S_n} t^{\text{des}(\pi)}. \]
Recall the Eulerian polynomials

\[A_n(t) = \sum_{\pi \in S_n} t^{\text{des(}\pi)}. \]

Their EGF

\[A(t, z) = \sum_{n \geq 0} A_n(t) \frac{z^n}{n!} \]
Recall the Eulerian polynomials

\[A_n(t) = \sum_{\pi \in S_n} t^{\text{des}(\pi)}. \]

Their EGF

\[A(t, z) = \sum_{n \geq 0} A_n(t) \frac{z^n}{n!} \]

has a well-known closed form

\[A(t, z) = \frac{1 - t}{1 - te^{(1-t)z}}. \]
Recall the Eulerian polynomials

$$A_n(t) = \sum_{\pi \in S_n} t^{\text{des}(\pi)}.$$

Their EGF

$$A(t, z) = \sum_{n \geq 0} A_n(t) \frac{z^n}{n!}$$

does has a well-known closed form

$$A(t, z) = \frac{1 - t}{1 - te^{(1-t)z}}.$$

Now we are ready to give an expression for $\overline{Q}(t, z)$.
The EGF \(\overline{Q}(t, z) \) for quasi-Stirling permutations by the number of descents satisfies the implicit equation

\[
\overline{Q}(t, z) = A(t, z \overline{Q}(t, z)),
\]

that is,

\[
\overline{Q}(t, z) = \frac{1 - t}{1 - te^{(1-t)z \overline{Q}(t, z)}}.
\]
The EGF $Q(t, z)$ for quasi-Stirling permutations by the number of descents satisfies the implicit equation

$$Q(t, z) = A(t, zQ(t, z)),$$

that is,

$$Q(t, z) = \frac{1 - t}{1 - te^{(1-t)zQ(t,z)}}.$$

Its coefficients satisfy

$$Q_n(t) = \frac{n!}{n+1} [z^n]A(t, z)^{n+1}.$$

Here $[z^n]F(z)$ denotes the coefficient of z^n in $F(z)$.
Proof ideas

By the bijection \(\varphi \),

\[
\overline{Q}(t, z) = \sum_{n \geq 0} \sum_{T \in \mathcal{T}_n} t^{\text{cdes}(T)} \frac{z^n}{n!}.
\]
By the bijection φ,

$$
\overline{Q}(t, z) = \sum_{n \geq 0} \sum_{T \in T_n} t^{\text{cdes}(T)} \frac{z^n}{n!}.
$$

Decompose trees in T_n as

$$
T = \begin{array}{c}
\begin{array}{c}
T_1 \\
T_2 \\
\vdots \\
T_r
\end{array}
\end{array}
$$

$$
a_1 \quad a_2 \quad a_r
$$
Proof ideas

By the bijection φ,

$$
\overline{Q}(t, z) = \sum_{n \geq 0} \sum_{T \in \mathcal{T}_n} t^{\text{cdes}(T)} \frac{z^n}{n!}.
$$

Decompose trees in \mathcal{T}_n as

$T = a_1 a_2 \ldots a_r$

and use that

$$
\text{cdes}(T) = \sum_{i=1}^{r} (\text{cdes}(T_i) - 1) + \text{des}(a_1 a_2 \ldots a_r).
$$
Proof ideas

The EGF for each piece T_i is $zQ(t, z)$.
Proof ideas

The EGF for each piece T_i is $z\overline{Q}(t, z)$.

Combining the pieces while keeping track of cdes and using the Compositional Formula, we get

$$\overline{Q}(t, z) = A(t, z\overline{Q}(t, z)).$$
Proof ideas

The EGF for each piece T_i is $z\overline{Q}(t, z)$.

Combining the pieces while keeping track of cdes and using the Compositional Formula, we get

$$\overline{Q}(t, z) = A(t, z\overline{Q}(t, z)).$$

Finally, extracting its coefficients using Lagrange inversion gives

$$\overline{Q}_n(t) = \frac{n!}{n+1} [z^n] A(t, z)^{n+1}.$$
Consequences

Recall the formulas:

\[
\sum_{m \geq 0} m^n t^m = \frac{A_n(t)}{(1 - t)^{n+1}} \quad \text{(Eulerian)}
\]
Consequences

Recall the formulas:

\[
\sum_{m \geq 0} m^n t^m = \frac{A_n(t)}{(1 - t)^{n+1}} \quad \text{(Eulerian)}
\]

\[
\sum_{m \geq 0} S(m + n, m) t^m = \frac{Q_n(t)}{(1 - t)^{2n+1}} \quad \text{(Stirling)}
\]
Consequences

Recall the formulas:

\[\sum_{m \geq 0} m^n t^m = \frac{A_n(t)}{(1 - t)^{n+1}} \quad \text{(Eulerian)} \]

\[\sum_{m \geq 0} S(m + n, m) t^m = \frac{Q_n(t)}{(1 - t)^{2n+1}} \quad \text{(Stirling)} \]

\[\sum_{m \geq 0} ??? t^m = \frac{\overline{Q}_n(t)}{(1 - t)^{2n+1}} \quad \text{(quasi-Stirling)} \]
Consequences

Recall the formulas:

\[
\sum_{m \geq 0} m^n t^m = \frac{A_n(t)}{(1 - t)^{n+1}} \quad \text{(Eulerian)}
\]

\[
\sum_{m \geq 0} S(m + n, m) t^m = \frac{Q_n(t)}{(1 - t)^{2n+1}} \quad \text{(Stirling)}
\]

Theorem

\[
\sum_{m \geq 0} \frac{m^n}{n+1} \binom{m+n}{m} t^m = \frac{\overline{Q}_n(t)}{(1 - t)^{2n+1}} \quad \text{(quasi-Stirling)}
\]
Consequences

Recall the formulas:

\[\sum_{m \geq 0} m^n t^m = \frac{A_n(t)}{(1 - t)^{n+1}} \] \quad \text{(Eulerian)}

\[\sum_{m \geq 0} S(m + n, m) t^m = \frac{Q_n(t)}{(1 - t)^{2n+1}} \] \quad \text{(Stirling)}

Theorem

\[\sum_{m \geq 0} \frac{m^n}{n + 1} \binom{m + n}{m} t^m = \frac{\overline{Q}_n(t)}{(1 - t)^{2n+1}} \] \quad \text{(quasi-Stirling)}

Open: Find a combinatorial proof.
Recall: i is a plateau of π if $\pi_i = \pi_{i+1}$,
i is an ascent of π if $\pi_i < \pi_{i+1}$ or $i = 0$.
Recall: i is a plateau of π if $\pi_i = \pi_{i+1}$,
i is an ascent of π if $\pi_i < \pi_{i+1}$ or $i = 0$.

Theorem (Bóna ’08)

On average, Stirling permutations in Q_n have $\frac{2n+1}{3}$ ascents, $\frac{2n+1}{3}$ descents, and $\frac{2n+1}{3}$ plateaus.
Recall: i is a plateau of π if $\pi_i = \pi_{i+1}$,

i is an ascent of π if $\pi_i < \pi_{i+1}$ or $i = 0$.

Theorem (Bóna ’08)

On average, Stirling permutations in Q_n have $(2n + 1)/3$ ascents, $(2n + 1)/3$ descents, and $(2n + 1)/3$ plateaus.

Theorem

On average, quasi-Stirling permutations in \overline{Q}_n have $(3n + 1)/4$ ascents, $(3n + 1)/4$ descents, and $(n + 1)/2$ plateaus.
Theorem (Frobenius)

The roots of the Eulerian polynomials $A_n(t)$ are real, distinct, and nonpositive.
Properties of quasi-Stirling polynomials

<table>
<thead>
<tr>
<th>Theorem (Frobenius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The roots of the Eulerian polynomials $A_n(t)$ are real, distinct, and nonpositive.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Brenti’89, Bóna’08)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The same holds for the Stirling polynomials $Q_n(t)$.</td>
</tr>
</tbody>
</table>

Corollary: The coefficients of $Q_n(t)$ are unimodal and log-concave.

The distribution of the number of descents on Q_n converges to a normal distribution as $n \to \infty$.
The roots of the Eulerian polynomials $A_n(t)$ are real, distinct, and nonpositive.

The same holds for the Stirling polynomials $Q_n(t)$.

The same holds for the quasi-Stirling polynomials $\overline{Q}_n(t)$.
The roots of the Eulerian polynomials $A_n(t)$ are real, distinct, and nonpositive.

The same holds for the Stirling polynomials $Q_n(t)$.

The same holds for the quasi-Stirling polynomials $\overline{Q}_n(t)$.

The coefficients of $\overline{Q}_n(t)$ are unimodal and log-concave.
Properties of quasi-Stirling polynomials

Theorem (Frobenius)

The roots of the Eulerian polynomials $A_n(t)$ are real, distinct, and nonpositive.

Theorem (Brenti’89, Bóna’08)

The same holds for the Stirling polynomials $Q_n(t)$.

Theorem

The same holds for the quasi-Stirling polynomials $\overline{Q}_n(t)$.

Corollary

- The coefficients of $\overline{Q}_n(t)$ are unimodal and log-concave.
- The distribution of the number of descents on \overline{Q}_n converges to a normal distribution as $n \to \infty$.
Proving real-rootedness of $\overline{Q}_n(t)$ is more complicated than for $A_n(t)$ or $Q_n(t)$, because for quasi-Stirling permutations there is no simple recursive description relating \overline{Q}_n and \overline{Q}_{n-1}.
Properties of quasi-Stirling polynomials

Proving real-rootedness of $\overline{Q}_n(t)$ is more complicated than for $A_n(t)$ or $Q_n(t)$, because for quasi-Stirling permutations there is no simple recursive description relating \overline{Q}_n and \overline{Q}_{n-1}.

Our proof expresses $\overline{Q}_n(t)$ in terms of r-Eulerian polynomials, defined by Riordan and Foata–Schützenberger.
Proving real-rootedness of $Q_n(t)$ is more complicated than for $A_n(t)$ or $Q_n(t)$, because for quasi-Stirling permutations there is no simple recursive description relating Q_n and Q_{n-1}.

Our proof expresses $Q_n(t)$ in terms of r-Eulerian polynomials, defined by Riordan and Foata–Schützenberger.

In the process, we show that

$$\#\{\pi \in Q_n \text{ with } m + 1 \text{ descents}\} = \#\{\text{injections } [n-1] \to [2n] \text{ with } m \text{ excedances}\}.$$
Proving real-rootedness of $Q_n(t)$ is more complicated than for $A_n(t)$ or $Q_n(t)$, because for quasi-Stirling permutations there is no simple recursive description relating Q_n and Q_{n-1}.

Our proof expresses $Q_n(t)$ in terms of r-Eulerian polynomials, defined by Riordan and Foata–Schützenberger.

In the process, we show that

$$\#\{\pi \in Q_n \text{ with } m + 1 \text{ descents}\} = \#\{\text{injections } [n-1] \to [2n] \text{ with } m \text{ excedances}\}.$$

Open: Find a bijective proof.
Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $[n]$:
Gessel and Stanley proposed the following generalization of Stirling permutations by allowing \(k \) copies of each element in \([n] \):

Definition (Gessel–Stanley ’78)

A **\(k \)-Stirling permutation** is a permutation of the multiset \(\{1^k, 2^k, \ldots, n^k\} \) that avoids the pattern 212.
Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $[n]$:

Definition (Gessel–Stanley ’78)

A k-Stirling permutation is a permutation of the multiset \(\{1^k, 2^k, \ldots, n^k\} \) that avoids the pattern 212.

\(Q^k_n = \text{set of } k\text{-Stirling permutations.} \)
Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $[n]$:

Definition (Gessel–Stanley ’78)

A *k-Stirling permutation* is a permutation of the multiset \(\{1^k, 2^k, \ldots, n^k\} \) that avoids the pattern 212.

\(Q_n^k = \) set of k-Stirling permutations.

Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.
Gessel and Stanley proposed the following generalization of Stirling permutations by allowing \(k \) copies of each element in \([n]\):

Definition (Gessel–Stanley ’78)

A \textit{k-Stirling permutation} is a permutation of the multiset \(\{1^k, 2^k, \ldots, n^k\}\) that avoids the pattern 212.

\(Q^k_n = \text{set of } k\text{-Stirling permutations.}\)

Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.

Definition

A \textit{k-quasi-Stirling permutation} is a permutation of the multiset \(\{1^k, 2^k, \ldots, n^k\}\) that avoids the patterns 1212 and 2121.
Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $[n]$:

Definition (Gessel–Stanley ’78)

A **k-Stirling permutation** is a permutation of the multiset $\{1^k, 2^k, \ldots, n^k\}$ that avoids the pattern 212.

$Q^k_n = \text{set of } k\text{-Stirling permutations}.$

Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.

Definition

A **k-quasi-Stirling permutation** is a permutation of the multiset $\{1^k, 2^k, \ldots, n^k\}$ that avoids the patterns 1212 and 2121.

$Q^k_n = \text{set of } k\text{-quasi-Stirling permutations}.$
k-Stirling and k-quasi-k-Stirling permutations

Gessel and Stanley proposed the following generalization of Stirling permutations by allowing k copies of each element in $[n]$:

Definition (Gessel–Stanley ’78)

A **k-Stirling permutation** is a permutation of the multiset \(\{1^k, 2^k, \ldots, n^k\} \) that avoids the pattern 212.

\[Q_n^k = \text{set of } k\text{-Stirling permutations}. \]

Also studied by Brenti, Park, Janson, Kuba, Panholzer, etc.

Definition

A **k-quasi-k-Stirling permutation** is a permutation of the multiset \(\{1^k, 2^k, \ldots, n^k\} \) that avoids the patterns 1212 and 2121.

\[\overline{Q}_n^k = \text{set of } k\text{-quasi-k-Stirling permutations}. \]

For $k = 1$, \(Q_n^1 = \overline{Q}_n^1 = S_n \). For $k = 2$, \(Q_n^2 = Q_n \) and \(\overline{Q}_n^2 = \overline{Q}_n \).
Enumeration of k-Stirling and k-quasi-Stirling permutations

Counting k-Stirling permutations is easy, since every permutation in Q^k_n can be obtained by inserting the string $n^k = nn\ldots n$ into one of the $(n - 1)k + 1$ spaces of a permutation in Q^k_{n-1}, so

$$|Q^k_n| = (k + 1)(2k + 1)\cdot\cdot\cdot((n - 1)k + 1).$$
Enumeration of k-Stirling and k-quasi-Stirling permutations

Counting k-Stirling permutations is easy, since every permutation in Q_n^k can be obtained by inserting the string $n^k = nn \ldots n$ into one of the $(n - 1)k + 1$ spaces of a permutation in Q_{n-1}^k, so

$$|Q_n^k| = (k + 1)(2k + 1) \cdot \cdots \cdot ((n - 1)k + 1).$$

Theorem

For $n \geq 1$ and $k \geq 1$,

$$|Q_n^k| = \frac{(kn)!}{((k - 1)n + 1)!} = n! \ C_{n,k},$$

where

$$C_{n,k} = \frac{1}{(k - 1)n + 1} \binom{kn}{n}$$

is the nth k-Catalan number.
Gessel’94 & Janson–Kuba–Panholzer’11 describe bijections between k-Stirling permutations and two kinds of decorated increasing trees.

Example

A bijection between compartmented trees and 3-quasi-Stirling permutations:

\[
\begin{array}{cccccccccccccc}
5 & \rightarrow & 622266355537744471113
\end{array}
\]
k-quasi-Stirling permutations and trees

Gessel’94 & Janson–Kuba–Panholzer’11 describe bijections between k-Stirling permutations and two kinds of decorated increasing trees. We have extended them to bijections between k-quasi-Stirling permutations and certain trees.
Gessel’94 & Janson–Kuba–Panholzer’11 describe bijections between k-Stirling permutations and two kinds of decorated increasing trees. We have extended them to bijections between k-quasi-Stirling permutations and certain trees.

Example

A bijection between compartmented trees and 3-quasi-Stirling permutations:

\[
\begin{array}{ccc}
\text{φ} & \rightarrow & 622266355537744471113 \\
\end{array}
\]
Let asc(\(\pi\)) and plat(\(\pi\)) be the number of ascents and plateaus of \(\pi\).
Ascents, descents and plateaus on k-quasi-Stirling permutations

Let $\text{asc}(\pi)$ and $\text{plat}(\pi)$ be the number of ascents and plateaus of π. Consider the homogenization of the Eulerian polynomials

$$\hat{A}_n(q, t) = \sum_{\pi \in S_n} q^{\text{asc}(\pi)} t^{\text{des}(\pi)},$$

and their EGF

$$\hat{A}(q, t) = \sum_{n \geq 0} \hat{A}_n(q, t) z^n = 1 - q + q(q - t) q^{-te(q - t)} z.$$
Ascents, descents and plateaus on k-quasi-Stirling permutations

Let $\text{asc}(\pi)$ and $\text{plat}(\pi)$ be the number of ascents and plateaus of π. Consider the homogenization of the Eulerian polynomials

$$\hat{A}_n(q, t) = \sum_{\pi \in S_n} q^{\text{asc}(\pi)} t^{\text{des}(\pi)},$$

and their EGF

$$\hat{A}(q, t; z) = \sum_{n \geq 0} \hat{A}_n(q, t) \frac{z^n}{n!} = 1 - q + \frac{q(q - t)}{q - te(q-t)z}.$$
Let $\text{asc}(\pi)$ and $\text{plat}(\pi)$ be the number of ascents and plateaus of π.

Consider the homogenization of the Eulerian polynomials

$$\hat{A}_n(q, t) = \sum_{\pi \in S_n} q^{\text{asc}(\pi)} t^{\text{des}(\pi)},$$

and their EGF

$$\hat{A}(q, t; z) = \sum_{n \geq 0} \hat{A}_n(q, t) \frac{z^n}{n!} = 1 - q + \frac{q(q - t)}{q - te^{q-t}z}.$$

Define the multivariate k-quasi-Stirling polynomials

$$\overline{P}^{(k)}_n(q, t, u) = \sum_{\pi \in \overline{Q}^k_n} q^{\text{asc}(\pi)} t^{\text{des}(\pi)} u^{\text{plat}(\pi)},$$

and their EGF

$$\overline{P}^{(k)}(q, t, u; z) = \sum_{n \geq 0} \overline{P}^{(k)}_n(q, t, u) \frac{z^n}{n!}.$$
This is the most general version of our main result:

Theorem

\[
\overline{P}^{(k)}(q, t, u; z) \text{ satisfies the implicit equation }
\]

\[
\overline{P}^{(k)}(q, t, u; z) = \hat{A}(q, t; z(\overline{P}^{(k)}(q, t, u; z) - 1 + u)^{k-1}).
\]
This is the most general version of our main result:

Theorem

$\overline{P}^{(k)}(q, t, u; z)$ satisfies the implicit equation

$$\overline{P}^{(k)}(q, t, u; z) = \hat{A}(q, t; z(\overline{P}^{(k)}(q, t, u; z) - 1 + u)^{k-1}).$$

Extracting its coefficients using Lagrange inversion,

$$\overline{P}^{(k)}_n(q, t, u) = \frac{n!}{(k - 1)n + 1} [z^n] \left(\hat{A}(q, t; z) - 1 + u \right)^{(k-1)n+1}.$$
This is the most general version of our main result:

Theorem

\[\overline{P}^{(k)}(q, t, u; z) \text{ satisfies the implicit equation} \]

\[\overline{P}^{(k)}(q, t, u; z) = \hat{A}(q, t; z(\overline{P}^{(k)}(q, t, u; z) - 1 + u)^{k-1}). \]

Extracting its coefficients using Lagrange inversion,

\[\overline{P}^{(k)}_n(q, t, u) = \frac{n!}{(k - 1)n + 1} [z^n] \left(\hat{A}(q, t; z) - 1 + u \right)^{(k-1)n+1}. \]

The proof follows ascents, descents and plateaus through the bijection \(\phi \), and it uses a decomposition of compartmented trees.
For k-Stirling permutations, similar ideas give a nice differential equation for the EGF

$$P^{(k)}(q, t, u; z) = \sum_{n \geq 0} \sum_{\pi \in Q_n^k} q^{\text{asc}(\pi)} t^{\text{des}(\pi)} u^{\text{plat}(\pi)} \frac{z^n}{n!}.$$
For k-Stirling permutations, similar ideas give a nice differential equation for the EGF

$$P^{(k)}(q, t, u; z) = \sum_{n \geq 0} \sum_{\pi \in Q_n^k} q^{\text{asc}(\pi)} t^{\text{des}(\pi)} u^{\text{plat}(\pi)} \frac{z^n}{n!}.$$

Theorem

$P(z) := P^{(k)}(q, t, u; z)$ satisfies the differential equation

$$P'(z) = (P(z) - 1 + q)(P(z) - 1 + t)(P(z) - 1 + u)^{k-1},$$

with initial condition $P(0) = 1$.
Proof idea:

- ϕ restricts to a bijection between k-Stirling permutations and \textit{increasing} compartmented trees.
Proof idea:

- ϕ restricts to a bijection between k-Stirling permutations and increasing compartmented trees.
- These trees can be decomposed as

\[
\begin{align*}
T_0 & \quad P - 1 + q \\
T_1 & \quad P - 1 + u \\
\ldots & \quad \ldots \\
T_k & \quad P - 1 + u \\
1 & \quad \ldots \\
T_{k+1} & \quad P - 1 + t
\end{align*}
\]
Ascents, descents and plateaus on k-Stirling permutations

Proof idea: ϕ restricts to a bijection between k-Stirling permutations and increasing compartmented trees. These trees can be decomposed as:

$$T_0 + T_1 + \cdots + T_k + u$$

Sergi Elizalde

Descents on quasi-Stirling permutations