Moduli spaces of sheaves on a K3 surface and Galois representations

Sarah Frei University of Oregon

Arithmetic of Algebraic Curves Conference University of Wisconsin, Madison

April 8, 2018

Moduli spaces of sheaves on a K3 surface

Overview

Outline

2 Motivating Example

(日) (日) (日)

э

Overview

Overview

- Given a K3 surface S defined over an arbitrary field k, we can form various moduli spaces of sheaves M/k
- Consider the base change $\overline{\mathcal{M}}:=\mathcal{M} imes_k \bar{k}$, which has a natural action of $\mathrm{Gal}(\bar{k}/k)$
- For σ ∈ Gal(k/k), we can study the induced action on cohomology:

$$\sigma^* \colon H^i(\overline{\mathcal{M}}, \mathbb{Q}_\ell) \to H^i(\overline{\mathcal{M}}, \mathbb{Q}_\ell)$$

Question: Given two moduli spaces \mathcal{M}_1 , \mathcal{M}_2 , how are the resulting Galois representations related?

Overview

Background

Definition

A K3 surface S/k is a smooth projective variety of dimension 2 such that $\omega_S = \mathcal{O}_S$ and $H^1(S, \mathcal{O}_S) = 0$.

Examples:

•
$$S = \{(x : y : z : w) \in \mathbb{P}^3_k : x^4 + y^4 + z^4 + w^4 = 0\}$$
 for chark $\neq 2$

2 Any smooth quartic
$$S = V(f) \subset \mathbb{P}^3_k$$

Remark: Abelian varieties also have $\omega_X = \mathcal{O}_X$, so you can think of K3 surfaces as 2-dimensional generalizations of elliptic curves. **Fact:** $/\mathbb{C}$,

$$H^{i}(S,\mathbb{Z}) = \begin{cases} \mathbb{Z} & i = 0 \\ \mathbb{Z}^{22} & i = 2 \\ \mathbb{Z} & i = 4 \end{cases}$$

Moduli spaces of sheaves on a K3 surface Motivating Example

Outline

3 Moduli spaces

Moduli spaces of sheaves on a K3 surface

The Hilbert scheme of points

Definition

The Hilbert scheme of points on *S*, $\text{Hilb}^n S = S^{[n]}$ parameterizes 0-dimensional subschemes $Z \subset S$ of length *n*, i.e. $\dim H^0(Z, \mathscr{O}_Z) = n$.

Example: Points of $S^{[2]}$ are of the following form:

• If
$$k = \overline{k}$$
:

- pairs of points $p_1, p_2 \in S$
- a point $p \in S$ with a tangent direction

• If $k \neq \overline{k}$, there are more points: e.g. if $k = \mathbb{F}_q$, also have $p \in S(\mathbb{F}_{q^2}) \setminus S(\mathbb{F}_q)$

Question: What is $H^*(S^{[n]})$?

Answer: (Göttsche, '90) Use the Weil Conjectures

▶ < Ξ >

Zeta functions and the Weil Conjectures

Definition

For X a smooth projective variety over \mathbb{F}_q , the **zeta function of** X is

$$Z(X,t) := \exp\left(\sum_{r \geq 1} \# X(\mathbb{F}_{q^r}) rac{t^r}{r}
ight)$$

The Weil conjectures state that Z(X, t) is a rational function, it satisfies a functional equation, it has prescribed zeros, and gives a comparison to singular cohomology

Aside: Can also define
$$\zeta_X(s) := \prod_{x \in X ext{closed}} rac{1}{1 - |k(x)|^{-s}}$$
, and then

•
$$\zeta_X(s) = Z(X, q^{-s})$$

• If $X = \operatorname{Spec} \mathbb{Z}$, then $\zeta_X(s) = \zeta(s)$, the Riemann zeta function

Connection to cohomology

Let $F : \overline{X} \to \overline{X}$ be the absolute Frobenius morphism (q^{th} power map on the structure sheaf).

By the Lefschetz fixed point theorem,

$$\#X(\mathbb{F}_{q^r}) = \text{fixed points of } F^r = \sum_{i \ge 0} (-1)^i \operatorname{tr} \left(F^{r*}|_{H^i(\overline{X}, \mathbb{Q}_\ell)} \right)$$

This can be plugged into $Z(X, t) = \exp\left(\sum_{r\geq 1} \#X(\mathbb{F}_{q^r})\frac{t^r}{r}\right)$

Moduli spaces of sheaves on a K3 surface Motivating Example

Example: $S^{[2]}$

Let
$$\#S(\mathbb{F}_{q^r}) = N_r = 1 + \sum_{i=1}^{22} \alpha_i^r + q^{2r}$$
 where $|\alpha_i| = q$. Then
 $\#S^{[2]}(\mathbb{F}_{q^r}) = \binom{N_r}{2} + N_r(q^r+1) + \frac{N_{2r} - N_r}{2}$

$$Z(S^{[2]},t) = [(1-t)\prod_{i=1}^{22} (1-\alpha_i t)(1-qt)\prod_{1\leq i\leq j\leq 22} (1-\alpha_i \alpha_j t)\prod_{i=1}^{22} (1-\alpha_i qt)$$
$$\cdot (1-q^2 t)\prod_{i=1}^{22} (1-\alpha_i q^2 t)(1-q^3 t)(1-q^4 t)]^{-1}$$

Conclusion:

$$H^{i}(S^{[2]}, \mathbb{Q}_{\ell}) = \begin{cases} \mathbb{Q}_{\ell} & i = 0, 8 \\ \mathbb{Q}_{\ell}^{23} & i = 2, 6 \\ \mathbb{Q}_{\ell}^{276} & i = 4 \end{cases}$$

Moduli spaces of sheaves on a K3 surface

æ

Generalizations

Fact: $S^{[n]}$ parameterizes rank 1 sheaves on *S*: To a 0-dimensional subscheme $Z \subset S$ we can associate the ideal sheaf $\mathcal{I}_Z \subset \mathscr{O}_S$

Generalize this:

- For other moduli spaces of sheaves on S, what is $Z(\mathcal{M}, t)$?
- Consider S defined over an arbitrary field k, and study the Galois action in place of the Frobenius action

Moduli spaces of sheaves on a K3 surface

Moduli spaces

Outline

2 Motivating Example

Definitions

Fix a K3 surface S defined over an arbitrary field k.

Definition

For a coherent sheaf \mathscr{F} on S, the **Mukai vector** of \mathscr{F} is

$$egin{aligned} & \mathsf{v}(\mathscr{F}) = \mathsf{ch}(\mathscr{F})\sqrt{\mathsf{td}S} \ &= (\mathsf{rk}\,\mathscr{F}, c_1(\mathscr{F}), \chi(\mathscr{F}) - \mathsf{rk}\,\mathscr{F}) \end{aligned}$$

in $H^0(S) \oplus H^2(S) \oplus H^4(S)$.

Definition

For $v \in H^*(S)$, the **moduli space of stable sheaves on** S, $\mathcal{M} = \mathcal{M}(v)$ parameterizes isomorphism classes of pure sheaves \mathscr{F} on S with $v(\mathscr{F}) = v$, satisfying a stability condition.

< ロ > < 同 > < 回 > < 回 >

Background

Examples:

Facts:

- For v geometrically primitive, $\mathcal{M}(v)$ is a smooth projective variety
- 3 If dim $\mathcal{M}(v) = 2$, then $\mathcal{M}(v)$ is again a K3 surface
- If dim $\mathcal{M}(v) = 2n$, then $\mathcal{M}(v)$ is deformation equivalent to $S^{[n]}$, but it need not be birational to it

・ 同 ト ・ ヨ ト ・ ヨ ト

Results

Theorem (F., '18)

Let S be a K3 surface defined over a finite field. Let $\mathcal{M}(v_1)$ and $\mathcal{M}(v_2)$ be moduli spaces of stable sheaves on S with v_1, v_2 geometrically primitive such that dim $\mathcal{M}(v_1) = \dim \mathcal{M}(v_2)$. Then

$$Z(\mathcal{M}(v_1),t)=Z(\mathcal{M}(v_2),t).$$

Theorem (F., '18)

Let S be a K3 surface defined over an arbitrary field. Let $\mathcal{M}(v_1)$ and $\mathcal{M}(v_2)$ be moduli spaces of stable sheaves on S with v_1, v_2 geometrically primitive such that dim $\mathcal{M}(v_1) = \dim \mathcal{M}(v_2)$. Then $H^i(\overline{\mathcal{M}(v_1)}, \mathbb{Q}_{\ell}) \cong H^i(\overline{\mathcal{M}(v_2)}, \mathbb{Q}_{\ell})$ as Galois representations for all $i \ge 0$.

< ロ > < 同 > < 回 > < 回 >

A key tool in the proof: Lifting to characteristic zero

Definition

For k perfect with char k = p > 0, the **ring of Witt vectors** W(k) is a complete discrete valuation ring of characteristic zero with residue field k.

Examples:

- If $k = \mathbb{F}_p$, then $W(k) = \mathbb{Z}_p$
- If k = 𝔽_p, then W(k) is the ring of integers in Frac(𝔇_p^{un}), the completion of the maximal unramified extension of 𝔇_p

A key tool in the proof: Lifting to characteristic zero

Proposition (Charles, '16)

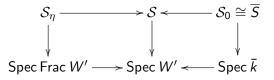
Let S/k be a K3 surface over an algebraically closed field with char k = p > 0, and let $L_1, ..., L_r$ be line bundles on S with L_1 ample. If $r \le 10$, then there exists a complete DVR $W(k) \subset W'$, finite over W(k), and a smooth projective relative K3 surface $S \rightarrow$ Spec W' such that

- $\mathcal{S}_0 \cong S$, and
- The image of the specialization map Pic(S) → Pic(S) contains L₁,..., L_r.

Lifting to characteristic zero

For S/k a K3 surface with char k = p > 0, we can **lift** \overline{S} to characteristic zero:

Let η be the generic point of Spec W'. Then we have



Upshot: S_{η} is a K3 surface defined over a field of characteristic zero, at which point Hodge theory and results over \mathbb{C} become accessible.

Lifting the moduli space as well

- Get a lift of an ample class from \overline{S} to S, which is needed for the stability condition
- Get a lift of the Mukai vector from \overline{S} to S, so can form the **relative moduli space** of stable sheaves on $S \rightarrow \text{Spec } W'$, whose generic fiber is again defined in characteristic zero
- These moduli spaces have been studied extensively over \mathbb{C} , as they are primary examples of holomorphic symplectic manifolds

References

- Charles, François. "Birational boundedness for holomorphic symplectic varieties, Zarhin's trick for K3 surfaces, and the Tate conjecture." Ann. of Math. (2), 184(2):487-526, 2016.
- Göttsche, Lothar. "The Betti numbers of the Hilbert scheme of points on a smooth projective surface." *Math. Ann.*, 286(1-3):193-207, 1990.
- Eyal Markman. "Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces." *Journal fur die reine und angewandte Mathematik*, pages 61-82, 2002.
- Eyal Markman. "On the monodromy of moduli spaces of sheaves on K3 surfaces." *J. Algebraic Geom.*, 17(1):29-99, 2008.