Moduli spaces of sheaves on a K3 surface and Galois representations

Sarah Frei
University of Oregon

Arithmetic of Algebraic Curves Conference
University of Wisconsin, Madison
April 8, 2018

Moduli spaces of sheaves on a K3 surface
Overview

Outline

(2) Motivating Example
(3) Moduli spaces

Overview

- Given a K3 surface S defined over an arbitrary field k, we can form various moduli spaces of sheaves \mathcal{M} / k
- Consider the base change $\overline{\mathcal{M}}:=\mathcal{M} \times{ }_{k} \bar{k}$, which has a natural action of $\operatorname{Gal}(\bar{k} / k)$
- For $\sigma \in \operatorname{Gal}(\bar{k} / k)$, we can study the induced action on cohomology:

$$
\sigma^{*}: H^{i}\left(\overline{\mathcal{M}}, \mathbb{Q}_{\ell}\right) \rightarrow H^{i}\left(\overline{\mathcal{M}}, \mathbb{Q}_{\ell}\right)
$$

Question: Given two moduli spaces $\mathcal{M}_{1}, \mathcal{M}_{2}$, how are the resulting Galois representations related?

Background

Definition

A K3 surface S / k is a smooth projective variety of dimension 2 such that $\omega_{S}=\mathscr{O}_{S}$ and $H^{1}\left(S, \mathscr{O}_{S}\right)=0$.

Examples:

(1) $S=\left\{(x: y: z: w) \in \mathbb{P}_{k}^{3}: x^{4}+y^{4}+z^{4}+w^{4}=0\right\}$ for chark $\neq 2$
(2) Any smooth quartic $S=V(f) \subset \mathbb{P}_{k}^{3}$

Remark: Abelian varieties also have $\omega_{X}=\mathscr{O}_{X}$, so you can think of K3 surfaces as 2-dimensional generalizations of elliptic curves.
Fact: / \mathbb{C},

$$
H^{i}(S, \mathbb{Z})= \begin{cases}\mathbb{Z} & i=0 \\ \mathbb{Z}^{22} & i=2 \\ \mathbb{Z} & i=4\end{cases}
$$

Moduli spaces of sheaves on a K3 surface
Motivating Example

Outline

(2) Motivating Example

(3) Moduli spaces

The Hilbert scheme of points

Definition

The Hilbert scheme of points on S, $\operatorname{Hilb}^{n} S=S^{[n]}$ parameterizes 0 -dimensional subschemes $Z \subset S$ of length n, i.e. $\operatorname{dim} H^{0}\left(Z, \mathscr{O}_{Z}\right)=n$.

Example: Points of $S^{[2]}$ are of the following form:

- If $k=\bar{k}$:
- pairs of points $p_{1}, p_{2} \in S$
- a point $p \in S$ with a tangent direction
- If $k \neq \bar{k}$, there are more points:

$$
\text { e.g. if } k=\mathbb{F}_{q} \text {, also have } p \in S\left(\mathbb{F}_{q^{2}}\right) \backslash S\left(\mathbb{F}_{q}\right)
$$

Question: What is $H^{*}\left(S^{[n]}\right)$?
Answer: (Göttsche, '90) Use the Weil Conjectures

Zeta functions and the Weil Conjectures

Definition

For X a smooth projective variety over \mathbb{F}_{q}, the zeta function of X is

$$
Z(X, t):=\exp \left(\sum_{r \geq 1} \# X\left(\mathbb{F}_{q^{r}}\right) \frac{t^{r}}{r}\right)
$$

The Weil conjectures state that $Z(X, t)$ is a rational function, it satisfies a functional equation, it has prescribed zeros, and gives a comparison to singular cohomology
Aside: Can also define $\zeta_{X}(s):=\prod_{x \in X \text { closed }} \frac{1}{1-|k(x)|^{-s}}$, and then

- $\zeta_{X}(s)=Z\left(X, q^{-s}\right)$
- If $X=\operatorname{Spec} \mathbb{Z}$, then $\zeta_{X}(s)=\zeta(s)$, the Riemann zeta function

Connection to cohomology

Let $F: \bar{X} \rightarrow \bar{X}$ be the absolute Frobenius morphism ($q^{\text {th }}$ power map on the structure sheaf).

By the Lefschetz fixed point theorem,

$$
\# X\left(\mathbb{F}_{q^{r}}\right)=\text { fixed points of } F^{r}=\sum_{i \geq 0}(-1)^{i} \operatorname{tr}\left(\left.F^{r *}\right|_{H^{i}\left(\bar{X}, \mathbb{Q}_{\ell}\right)}\right)
$$

This can be plugged into $Z(X, t)=\exp \left(\sum_{r \geq 1} \# X\left(\mathbb{F}_{q^{r}}\right) \frac{t^{r}}{r}\right)$

Example: $S^{[2]}$

Let $\# S\left(\mathbb{F}_{q^{r}}\right)=N_{r}=1+\sum_{i=1}^{22} \alpha_{i}^{r}+q^{2 r}$ where $\left|\alpha_{i}\right|=q$. Then

$$
\# S^{[2]}\left(\mathbb{F}_{q^{r}}\right)=\binom{N_{r}}{2}+N_{r}\left(q^{r}+1\right)+\frac{N_{2 r}-N_{r}}{2}
$$

$$
\begin{aligned}
& Z\left(S^{[2]}, t\right)=\left[(1-t) \prod_{i=1}^{22}\left(1-\alpha_{i} t\right)(1-q t) \prod_{1 \leq i \leq j \leq 22}\left(1-\alpha_{i} \alpha_{j} t\right) \prod_{i=1}^{22}\left(1-\alpha_{i} q t\right)\right. \\
&\left.\cdot\left(1-q^{2} t\right) \prod_{i=1}^{22}\left(1-\alpha_{i} q^{2} t\right)\left(1-q^{3} t\right)\left(1-q^{4} t\right)\right]^{-1}
\end{aligned}
$$

Conclusion:

$$
H^{i}\left(S^{[2]}, \mathbb{Q}_{\ell}\right)= \begin{cases}\mathbb{Q}_{\ell} & i=0,8 \\ \mathbb{Q}_{\ell}^{23} & i=2,6 \\ \mathbb{Q}_{\ell}^{276} & i=4\end{cases}
$$

Generalizations

Fact: $S^{[n]}$ parameterizes rank 1 sheaves on S :
To a 0 -dimensional subscheme $Z \subset S$ we can associate the ideal sheaf $\mathcal{I}_{Z} \subset \mathscr{O}_{S}$

Generalize this:
(1) For other moduli spaces of sheaves on S, what is $Z(\mathcal{M}, t)$?
(2) Consider S defined over an arbitrary field k, and study the Galois action in place of the Frobenius action

Moduli spaces of sheaves on a K3 surface Moduli spaces

Outline

(2) Motivating Example
(3) Moduli spaces

Definitions

Fix a K3 surface S defined over an arbitrary field k.

Definition

For a coherent sheaf \mathscr{F} on S, the Mukai vector of \mathscr{F} is

$$
\begin{aligned}
v(\mathscr{F}) & =\operatorname{ch}(\mathscr{F}) \sqrt{\operatorname{td} S} \\
& =\left(\mathrm{rk} \mathscr{F}, c_{1}(\mathscr{F}), \chi(\mathscr{F})-\mathrm{rk} \mathscr{F}\right)
\end{aligned}
$$

in $H^{0}(S) \oplus H^{2}(S) \oplus H^{4}(S)$.

Definition

For $v \in H^{*}(S)$, the moduli space of stable sheaves on S,
$\mathcal{M}=\mathcal{M}(v)$ parameterizes isomorphism classes of pure sheaves \mathscr{F} on S with $v(\mathscr{F})=v$, satisfying a stability condition.

Background

Examples:

(1) $\mathcal{M}(1,0,1-n) \cong S^{[n]}$
(2) $\mathcal{M}(0,1, d+1-g)$: the general element is a degree d line bundle on a genus g curve in S

Facts:

(1) For v geometrically primitive, $\mathcal{M}(v)$ is a smooth projective variety
(2) If $\operatorname{dim} \mathcal{M}(v)=2$, then $\mathcal{M}(v)$ is again a K3 surface
(3) If $\operatorname{dim} \mathcal{M}(v)=2 n$, then $\mathcal{M}(v)$ is deformation equivalent to $S^{[n]}$, but it need not be birational to it

Results

Theorem (F., '18)

Let S be a K3 surface defined over a finite field. Let $\mathcal{M}\left(v_{1}\right)$ and $\mathcal{M}\left(v_{2}\right)$ be moduli spaces of stable sheaves on S with v_{1}, v_{2} geometrically primitive such that $\operatorname{dim} \mathcal{M}\left(v_{1}\right)=\operatorname{dim} \mathcal{M}\left(v_{2}\right)$. Then

$$
Z\left(\mathcal{M}\left(v_{1}\right), t\right)=Z\left(\mathcal{M}\left(v_{2}\right), t\right)
$$

Theorem (F., '18)

Let S be a K3 surface defined over an arbitrary field. Let $\mathcal{M}\left(v_{1}\right)$ and $\mathcal{M}\left(v_{2}\right)$ be moduli spaces of stable sheaves on S with v_{1}, v_{2} geometrically primitive such that $\operatorname{dim} \mathcal{M}\left(v_{1}\right)=\operatorname{dim} \mathcal{M}\left(v_{2}\right)$. Then $H^{i}\left(\overline{\mathcal{M}\left(v_{1}\right)}, \mathbb{Q}_{\ell}\right) \cong H^{i}\left(\overline{\mathcal{M}\left(v_{2}\right)}, \mathbb{Q}_{\ell}\right)$ as Galois representations for all $i \geq 0$.

A key tool in the proof: Lifting to characteristic zero

Definition

For k perfect with char $k=p>0$, the ring of Witt vectors $W(k)$ is a complete discrete valuation ring of characteristic zero with residue field k.

Examples:

- If $k=\mathbb{F}_{p}$, then $W(k)=\mathbb{Z}_{p}$
- If $k=\overline{\mathbb{F}}_{p}$, then $W(k)$ is the ring of integers in $\operatorname{Frac}\left(\widehat{\mathbb{Q}_{p}^{\text {un }}}\right)$, the completion of the maximal unramified extension of \mathbb{Q}_{p}

A key tool in the proof: Lifting to characteristic zero

Proposition (Charles, '16)

Let S / k be a K3 surface over an algebraically closed field with char $k=p>0$, and let L_{1}, \ldots, L_{r} be line bundles on S with L_{1} ample. If $r \leq 10$, then there exists a complete $D V R W(k) \subset W^{\prime}$, finite over $W(k)$, and a smooth projective relative K3 surface $\mathcal{S} \rightarrow$ Spec W^{\prime} such that

- $\mathcal{S}_{0} \cong S$, and
- The image of the specialization map $\operatorname{Pic}(\mathcal{S}) \rightarrow \operatorname{Pic}(S)$ contains L_{1}, \ldots, L_{r}.

Lifting to characteristic zero

For S / k a K3 surface with char $k=p>0$, we can lift \bar{S} to characteristic zero:

Let η be the generic point of $\operatorname{Spec} W^{\prime}$. Then we have

Upshot: \mathcal{S}_{η} is a K3 surface defined over a field of characteristic zero, at which point Hodge theory and results over \mathbb{C} become accessible.

Lifting the moduli space as well

- Get a lift of an ample class from \bar{S} to \mathcal{S}, which is needed for the stability condition
- Get a lift of the Mukai vector from \bar{S} to \mathcal{S}, so can form the relative moduli space of stable sheaves on $\mathcal{S} \rightarrow$ Spec W^{\prime}, whose generic fiber is again defined in characteristic zero
- These moduli spaces have been studied extensively over \mathbb{C}, as they are primary examples of holomorphic symplectic manifolds

References

- Charles, François. "Birational boundedness for holomorphic symplectic varieties, Zarhin's trick for $K 3$ surfaces, and the Tate conjecture." Ann. of Math. (2), 184(2):487-526, 2016.
- Göttsche, Lothar. "The Betti numbers of the Hilbert scheme of points on a smooth projective surface." Math. Ann., 286(1-3):193-207, 1990.
- Eyal Markman. "Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces." Journal fur die reine und angewandte Mathematik, pages 61-82, 2002.
- Eyal Markman. "On the monodromy of moduli spaces of sheaves on K3 surfaces." J. Algebraic Geom., 17(1):29-99, 2008.

