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I. Hyperbolic Geometry

(Escher/Jos Leys)
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Möbius transformations

The upper half-plane H = {Im z > 0} has a large group of conformal

automorphisms, consisting of Möbius transformations of the form

z 7→ az + b

cz + d
,

where a, b, c, d ∈ R and ad− bc > 0.

These symmetries form the group

PSL(2, R) := SL(2, R)/{±I}
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Hyperbolic metric

Under the PSL(2, R) action, H has an invariant metric,

ds2 =
dx2 + dy2

y2
,

often called the Poincaré metric.

This metric is hyperbolic, meaning that the Gauss curvature is −1.

We have a corresponding measure

dA(z) =
dx dy

y2
,

and distance function

d(z, w) = log
|z− w̄|+ |z− w|
|z− w̄| − |z− w|



Hyperbolic geometry Fuchsian groups Spectral theory Selberg trace formula Arithmetic surfaces

Geometry in H

The hyperbolic metric is conformal to the Euclidean metric, so angles

are computed as in Euclidean geometry.

Geodesics are arcs of generalized circles intersecting ∂H := R ∪ {∞}
orthogonally.
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The Gauss-Bonnet theorem gives a formula for areas of triangles with

geodesic sides.

α

α

β
β

γ

γ

Area(ABC) = π − α− β − γ.
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Fixed points

Elements of PSL(2, R) are classified according to their fixed points.

For g ∈ PSL(2, R), the fixed point equation z = gz is quadratic:

cz2 + (d − a)z− b = 0

For each g there are exactly 2 solutions in C ∪∞.

1. elliptic: one fixed point in H. (The other must be the complex

conjugate.) An elliptic transformation is a rotation centered at the

fixed point.
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2. parabolic: a single degenerate fixed point (must lie on ∂H.) Any
parabolic transformation is conjugate to the map z 7→ z + 1.

3. hyperbolic: two distinct fixed points in ∂H. A hyperbolic

transformation is conjugate to the map z 7→ eℓz for some ℓ ∈ R.
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II. Fuchsian groups

A Fuchsian group is a discrete subgroup Γ ⊂ PSL(2, R) (“discrete” in

the matrix topology, equivalent to Euclidean R4.)

This is equivalent to the condition that Γ acts properly discontinuously

on H, meaning that each orbit Γz are locally finite.
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Quotients

The quotient Γ\H is a surface whose points correspond to the orbits of

Γ in H. For Fuchsian Γ, the quotient inherits a hyperbolic metric from
H.

In general, Γ\H is an orbifold. The quotient is a smooth surface iff Γ
has no elliptic elements.

A fundamental domain for Γ is a closed region F such that the

translates of F under Γ tesselate H.

F
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Automorphic forms

A function f on Γ\H is equivalent to a function on H satisfying

f(gz) = f(z) for g ∈ Γ.

The latter is called an automorphic function for Γ.

An automorphic form of weight k satisfies

f(gz) = (cz + d)kf(z).

(These are sections of the k-th power of the canonical line bundle over

Γ\H.)

Warning: in some contexts automorphic forms are required to be

meromorphic or even entire.
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Uniformization

[Koebe & Poincaré, 1907]: For any smooth complete Riemannian
metric on a surface, there is a conformally related metric of constant

curvature. (By scaling, we can restrict this curvature to the values

−1, 0, 1.)

Up to isometry, the only simply connected possibilities are the sphere

S2, Euclidean R
2, and the hyperbolic plane H

2.

All of the surfaces with Euler characteristic χ < 0 (i.e. most surfaces)
are uniformized by hyperbolic quotients Γ\H.
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Riemann surfaces

The term hyperbolic refers to curvature = −1. But because the
hyperbolic isometries of H are the same as the conformal

automorphisms, any quotient Γ\H has a natural complex structure.

A Riemann surface is a one-dimensional complex manifold.

Uniformization implies that any Riemann surface can be realized as a

quotient of the Riemann sphere C ∪ {∞}, the complex plane C, and

the upper half-plane H.
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Limit set

The limit set Λ(Γ) of Γ ⊂ PSL(2, R) is the collection of limit points of
orbits of Γ, in the Riemann sphere topology.

In fact, it suffices to take the orbit of any single point that’s not an

elliptic fixed point.

Λ(Γ) is a closed, Γ-invariant subset of ∂H = R ∪ {∞}.
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Classification of Fuchsian groups

[Poincaré, Fricke-Klein]: Fuchsian groups are classified as

1. Elementary: Λ(Γ) contains 0, 1, or 2 points;

2. First Kind: Λ(Γ) = ∂H;

3. Second Kind: Λ(Γ) is a perfect, nowhere-dense subset of ∂H.

It turns out that

Γ is of the first kind ⇐⇒ Area(Γ\H) <∞.

All arithmetic surfaces are in this category.
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The cyclic group Γ∞ = 〈z 7→ z + 1〉 is an example of an elementary

group.

The orbits accumulate at Λ(Γ) = {∞}.

Similarly, the hyperbolic cyclic group 〈z 7→ eℓz〉 has Λ(Γ) = {0,∞}.

All other elementary groups are finite elliptic groups.
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Geometric finiteness

A Fuchsian group is geometrically finite if Γ admits a fundamental

domain that is a finite-sided convex polygon.

This coincides with two other notions:

1. topological finiteness of Γ\H, and

2. Γ is finitely generated.

Spectral theory is only tractable in general for geometrically finite Γ.
A theorem of Siegel says that all groups of the first kind are

geometrically finite.
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Geodesics on Γ\H

If g ∈ Γ is hyperbolic, then there is a unique geodesic connecting the

two fixed points of g, called the axis of g. On its axis, g acts by
translation by some fixed length ℓ.

In Γ\H, the axis descends to a closed geodesic of length ℓ. There is a
1-1 correspondence:

closed geodesics←→ conjugacy classes of hyperbolic elements.
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Cusps

The parabolic elements of Γ create cusps in Γ\H.

There is a 1-1 correspondence:

cusps←→ orbits of parabolic fixed points.
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Funnels

When F meets ∂H in an interval, a funnel occurs in Γ\H.
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Conical points

An elliptic fixed point of Γ causes a conical singularity in Γ\H.

There is a 1-1 correspondence:

conical points←→ orbits of elliptic fixed points.



Hyperbolic geometry Fuchsian groups Spectral theory Selberg trace formula Arithmetic surfaces

III. Spectral Theory

Influenced by the work of Maass, Selberg pioneered the study of the

spectral theory of hyperbolic surfaces in the 1950’s. The idea was to
bring techniques from harmonic analysis into the study of

automorphic forms.
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Laplacian

The Laplacian operator on H is

∆ := −y2

(
∂2

∂x2
+

∂2

∂y2

)

Since the Laplacian is invariant under isometries (for any metric),

∆ ◦ g = g ◦∆, for g ∈ PSL(2, R).

Hence the action of ∆ on automorphic functions is well-defined.
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The measure associated to the hyperbolic metric,

dA(z) =
dx dy

y2
,

is invariant under PSL(2, R) and thus defines a measure on Γ\H.

The resulting Hilbert space is L2(Γ\H, dA), with

〈 f , g〉 =

∫

F

f(z) g(z) dA(z),

for any fundamental domain F .

To define ∆ as a self-adjoint operator acting on L2(Γ\H, dA), we apply
the Friedrichs extension to ∆ on the domain

D :=
{

f ∈ C∞
0 (Γ\H) : f and ∆f ∈ L2(Γ\H, dA)

}
.

(Our sign convention is ∆ ≥ 0.)
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Eigenvalues

An eigenvalue of ∆ on Γ\H is λ such that

∆φ = λφ,

where φ ∈ L2(Γ\H, dA).

In the context of automorphic forms, eigenvectors of the Laplacian are
called Maass forms.

If Γ\H is compact, then the eigenvalues fill out the spectrum. There is
an orthonormal basis of eigenfunctions {φj}, and the corresponding

eigenvalues satisfy

0 = λ0 < λ1 ≤ λ2 ≤ · · · → ∞.
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Resolvent

If Γ\H is non-compact, then we understand the spectrum by studying

the resolvent (∆− λ)−1

Stone’s formula gives spectral projectors in terms of limits of as λ
approaches [0,∞) from above and below.

Pα,β = lim
ε→0

1

2πi

∫ β

α

[
(∆− λ− iε)−1 − (∆− λ + iε)−1

]
dλ
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In H,

∆ys = s(1− s)ys,

suggesting that λ = s(1− s) is a natural substitution for the spectral
parameter.

Indeed, if we write the resolvent as

RH(s) := (∆− s(1− s))−1,

for Re s > 1
2
, the corresponding integral kernel is

RH(s; z, w) =
1

4π

Γ(s)2

Γ(2s)
cosh

−s(d/2) F
(
s, s; 2s; cosh

−1(d/2)
)
,

where d := d(z, w).
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Meromorphic continuation

The same picture holds for Γ\H: the resolvent R(s) = (∆− s(1− s))−1

admits a meromorphic continuation to s ∈ C.

The set λ ∈ [0,∞) corresponds to s ∈ [ 1
2
, 1] ∪ {Re s = 1

2
}.

0 1

sλ

1
4

1
2

From the behavior of R(s) as s approaches the critical line, we can

understand the spectral projectors.
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How do we continue the resolvent? By constructing a parametrix.

1. Use R(s0) for large Re s0 in the interior.

2. In cusps and funnels, use model resolvents for cylindrical

quotients to construct R0(s).

3. Paste these together using cutoffs χj, to get the parametrix

M(s) := χ2R(s0)χ1 + (1− χ0)R
0(s)(1 − χ1),

and compute the error

(∆− s(1− s))M(s) = I − K(s).

4. Show that K(s) is compact on a weighted L2 space, and use the

Analytic Fredholm Theorem to invert

R(s) = M(s)(I − K(s))−1.
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Spectrum of ∆

From the structure of the resolvent, we can deduce basic spectral

information.

1. For Γ\H compact, ∆ has discrete spectrum in [0,∞).

2. For Γ\H non-compact, ∆ has absolutely continuous spectrum
[ 1

4
,∞) and discrete spectrum contained in [0,∞).

3. If Γ\H has infinite-area, then there are no embedded eigenvalues,

i.e. the discrete spectrum is finite and contained in (0, 1
4
).
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Resonances

The poles of the meromorphically continued resolvent R(s) are called
resonances.

These include points with Re s ≥ 1
2

for which λ = s(1− s) is a discrete

or embedded eigenvalues, and possibly other points with Re s < 1
2
.

-10

10

-10
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Cusp forms

For simplicity, assume that Γ\H has finite area with a single cusp. We

can assume that the cusp corresponds to the point∞ ∈ H, with
Γ∞ := 〈z 7→ z + 1〉 ⊂ Γ and F bounded by |Re s| = 1

2
.

1
2

− 1
2

The cusp forms are defined by

Hcusp :=

{
f ∈ L2(F , dA) :

∫ 1

0

f dx = 0 for a.e. y > 0

}
.
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In other words, if we expand f in a Fourier series

f(z) =
∑

cn(y)e
2πinx,

the n = 0 coefficient vanishes for y > 0.

For solutions of (∆− s(1− s))f = 0 the coefficient c0(y) behaves like ys

or y1−s as y→∞, while the non-zero modes are Bessel functions that
either grow or decay exponentially in y.

This fact implies that the restriction of ∆ to Hcusp has purely discrete
spectrum.
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Maass cusp forms

The eigenvectors of the restriction of ∆ to Hcusp are called Maass cusp

forms.

Embedded eigenvalues (λ ≥ 1
4
) are automatically cusp forms. For

λ < 1
4
, eigenvalues may or may not be cusp forms.

Selberg showed that certain arithemetic surfaces have an abundance

of Maass cusp forms. But Phillips and Sarnak showed that these
disappear when the arithmetic surface is deformed to an ordinary

hyperbolic surface. They conjectured that Hcusp is small or empty for a

general cofinite Fuchsian group.
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Eisenstein series

(We continue to assume one cusp at∞ with Γ∞ ⊂ Γ.)

Since ys solves the eigenvalue equation and is invariant under Γ∞, we

can try to solve the eigenvalue equation on Γ\H by averaging

E(s; z) :=
∑

g∈Γ∞\Γ

(Im gz)s

=
∑

g∈Γ∞\Γ

ys

|cz + d|2s
.

This is called an Eisenstein series. It converges for Re s > 1, but by

connecting it to R(s), we can show that it extends meromorphically to

s ∈ C.

Eisenstein series give a way to parametrize the continuous spectrum.
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Spectral decomposition

The residual spectrum consists of eigenvalues with λ < 1
4

which do not

come from cusp forms. The span of such eigenvectors is denoted Hres.

On Hcusp ⊕Hres we have an complete eigenbasis {φj, λj} for ∆.

To complete our decomposition, define the continuous Hilbert space
Hcont = (Hcusp ⊕Hres)

⊥, so that

L2(Γ\H, dA) = Hcusp ⊕Hres ⊕Hcont.
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The spectrum of ∆ on Hcont is purely continuous, and Eisenstein series

give the spectral decomposition on this subspace.

This means that general f ∈ L2(Γ\H, dA) can be writen

f(z) =

∫ ∞

−∞

E( 1
2

+ ir; z)a(r) dr +
∑

bjφj(z),

where

a(r) :=

∫

F

E( 1
2

+ ir; z)f(z) dA(z),

bj := 〈φj, f〉.

E(s; z) is the cusp analog of a plane wave.
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Scattering matrix

As y→∞,
E(s; z) = ys + ϕ(s)y1−s + O(y−∞),

for a meromorphic function ϕ(s) called the scattering matrix (or

scattering determinant, in this one-cusp case).

The poles of ϕ(s) are the scattering poles. These include points where
λ = s(1− s) is in the residual spectrum.

Cusp are resonances but not scattering poles.
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resonances = scattering poles + cusp resonances

-1.0 -0.5 0.5 1.0

-20

-10
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Multiple cusps

If there are many cusps, for each cusp we consider a model where the

corresponding parabolic fixed point is moved to∞. The y coordinate
for the j-th cusp is denoted yj.

For cusp forms, the vanishing condition applies separately to each
cusp.

For cusp i, the Eisenstein series Ei(s; z) is defined as an average of yi

over Γ. We then consider the asymptotic expansion in the j-th cusp:

Ei(s; z) ∼ δijy
s + ϕij(s)y

1−s
j .

The scattering matrix is now an actual matrix [ϕij], with scattering
determinant ϕ(s).
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Infinite-area case

The presence of a single funnel means there can be no cusp forms. In
particular, the discrete spectrum is finite and contained in (0, 1

4
).

There are no embedded eigenvalues.

We can still parametrize the continuous spectrum by the analog of

Eisenstein series. These analogs are now called Poisson operators.

Asymptotic expansions of Poisson operators define the scattering

matrix, for which the funnel components are pseudodifferential
operators.
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IV. Selberg trace formula

The central result in the spectral theory of hyperbolic surfaces is the
Selberg trace formula.

To any f ∈ C∞[0,∞) we can try to define an operator Kf with integral
kernel

Kf (z, w) :=
∑

g∈Γ

f(d(z, gw)).

(The sum will only converge if f decays sufficiently at∞.)

The Selberg trace formula computes the trace of Kf in two different

ways.
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Traces in the compact case

Suppose Γ\H is compact, with spectrum {λj} and eigenvectors {φj}.

Since Kf is a smoothing operator on Γ\H, the trace could be written as

tr Kf =

∫

Γ\H

Kf (z, z) dA(z).

On the other hand, if the eigenvalues of Kf are {κj}, then

tr Kf =
∑

j

κj.
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Spectral trace computation

Many geometric operators have the same form as Kf , such as the

resolvent and heat operators.

Kf always commutes with ∆ is diagonalized by the basis {φj}.

To compute κj, consider the eigenvalue equation

κjφj(w) =

∫

F

Kf (w, z) φj(z) dA(z)

=
∑

g∈Γ

∫

F

f(d(w, gz)) φj(z) dA(z)

=

∫

H

f(d(w, z)) φj(z) dA(z)
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Now set w = i and sj =
√

λj − 1/4.

We can exploit the fact that ysj solves the same eigenvalue equation as

φj,

(∆− λj)y
sj = 0,

to prove

κjφj(i) =

∫

H

f(d(i, z)) φj(z) dA(z) = φj(i)

∫

H

f(d(w, z)) ysj dA(z).

This gives κj in terms of f ,

κj =

∫

H

f(d(i, z)) ysj dA(z)
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Length trace computation

Assume now that Γ\H is smooth and compact. This means that Γ
contains only hyperbolic elements. Recall that closed geodesics of Γ\H
correspond to conjugacy classes of hyperbolic elements.

The length trace computation starts from

tr Kf =

∫

F

Kf (z, z) dA(z)

=
∑

g∈Γ

∫

F

f(d(z, gz)) dA(z).

The trick is to organize the sum over Γ as a sum over conjugacy

classes, and then express these in terms of lengths of closed geodesics.
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Decomposition of Γ

Let Π be a complete list of inconjugate primitive elements of Γ. Then
we can write

Γ− {I} =
⋃

g∈Π

⋃

k∈N

⋃

h∈Γ/〈g〉

{hgkh−1}.

Associated to each g ∈ Π is a primitive closed geodesic of Γ\H, and

the corresponding lengths form the primitive length spectrum:

L(Γ) := {ℓ(g) : g ∈ Π}.

(Note that g and g−1 are not conjugate; this is the ‘oriented’ length
spectrum.)
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Sum over Γ

Using the conjugacy class decomposition of Γ, we write the trace as

tr Kf = f(0) Area(Γ\H) +
∑

g∈Π

∑

k∈N

∑

h∈Γ/〈g〉

∫

F

f(d(z, hgkh−1z)) dA(z)

By a change of variables, we can write

∫

F

f(d(z, hgkh−1z)) dA(z) =

∫

hF

f(d(z, gkz)) dA(z)

The union of hF over Γ/〈g〉 is a fundamental domain for the cyclic

group 〈g〉. We could replace this by any other fundamental domain, so

∑

h∈Γ/〈g〉

∫

F

f(d(z, hgkh−1z)) dA(z) =

∫

F〈g〉

f(d(z, gkz)) dA(z).
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We can conjugate g to z 7→ eℓz and take F〈g〉 = {1 ≤ y ≤ eℓ}, so that

∑

h∈Γ/〈g〉

∫

F

f(d(z, hgkh−1z)) dA(z) =

∫

{1≤y≤eℓ}

f(d(z, ekℓz)) dA(z).

The integral evaluates to

ℓ

sinh(kℓ/2)

∫ ∞

kℓ

f(cosh t)√
2 cosh t− 2 cosh kℓ

sinh t dt.
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With this computation, we have

tr Kf = f(0) Area(Γ\H)

+
∑

ℓ∈L(Γ)

∑

k∈N

ℓ

sinh(kℓ/2)

∫ ∞

kℓ

f(cosh t)√
2 cosh t− 2 cosh kℓ

sinh t dt.

Recall that the spectral computation gave

tr Kf =

∞∑

j=0

h
(√

λj − 1
4

)
,

where

h(r) :=

∫

H

f(d(i, z)) yr dA(z).
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Selberg trace formula (smooth compact case)

In terms of the function h,

∞∑

j=0

h
(√

λj − 1
4

)
=

Area(Γ\H)

4π

∫ ∞

−∞

rh(r) tanh πr dr

+
∑

ℓ∈L(Γ)

∑

k∈N

ℓ

sinh(kℓ/2)
ĥ(kℓ).
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General finite area case

The Trace Formula is somewhat trickier to prove for non-compact

Γ\H, because the operator Kf is not trace class. And the integral

∫

Γ\H

Kf (z, z) dA(z)

diverges!

To prove the trace formula, we must restrict operators to yj ≤ N in

each cusp and then carefully take the limit N →∞.
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On the spectral side, extra ‘scattering’ terms appear to account for the

continuous spectrum:

∑

j

h
(√

λj − 1
4

)
− 1

2π

∫ ∞

−∞

ϕ′

ϕ
( 1

2
+ ir)h(r) dr + 1

2
h(0) tr[ϕij(

1
2
)],

where [ϕij(s)] is the scattering matrix and ϕ(s) the scattering

determinant.
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On the length side, our decomposition of Γ must include conjugacy

classes of primitive elliptic and parabolic elements, as well as

hyperbolic.

For each elliptic fixed point of order m we pick up a term

m−1∑

k=1

1

m sin(πk/m)

∫ ∞

−∞

e−2πkr/m

1− e−2πr
h(r) dr.

For each cusp, we add a term

−1

π

∫ ∞

−∞

Γ′

Γ
(1 + ir)h(r) dr + 1

2
h(0)− ȟ(0) log 4
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Selberg zeta function

Many applications of the theory come through the Selberg zeta

function,

Z(s) :=
∏

ℓ∈L(Γ)

∞∏

k=1

(
1− e−(s+k)ℓ

)
.

Roughly speaking, the logarithmic derivative of Z(s) is what appears

on the length side when we take the trace of the resolvent.

The product converges for Re s ≥ 1, but spectral methods can be used

to prove that Z(s) has a meromorphic extension.

One nice feature of Z(s) is that its zeros are essentially the resonances.
(There are some extra ‘topological’ poles and zeros.)
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Applications of the trace formula

For the finite-area case:

1. The resonance set and the length spectrum determine each other,
and also χ and number of cusps.

2. Prime Geodesic Theorem:

#
{

eℓ ≤ x
}
∼ Li x +

∑
Li(xsj),

where {sj(1− sj)} are the eigenvalues in (0, 1
4
).

3. Weyl-Selberg asymptotic formula

#
{
|λj| ≤ r

}
− 1

4π

∫ √r−1/4

−
√

r−1/4

ϕ′

ϕ
( 1

2
+ it) dt ∼ Area(Γ\H)

4π
r
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V. Arithmetic surfaces

The term arithmetic implies a restriction to integers.

Consider a finite dimensional representation ρ : PSL(2, R)→ GL(n, R).
Restricting to integer entries gives a Fuchsian group,

Γ :=
{

g ∈ PSL(2, R) : ρ(g) ∈ GL(n, Z)
}
.

Such groups, along with their subgroups of finite index, are called
arithmetic Fuchsian groups.
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Modular group

The prototype of an arithmetic Fuchsian group is the modular group

ΓZ := PSL(2, Z).

The group is generated by the elements

T =

(
1 1
0 1

)
, S =

(
0 1
−1 0

)
,

or

T : z 7→ z + 1, S : z 7→ −1

z
.
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The standard fundamental domain for ΓZ is

F =
{

z ∈ H : |Re z| ≤ 1
2
, |z| ≥ 1

}
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Modular surface

The modular surface is X := ΓZ\H.

The generator S fixes i, and the point p = eiπ/3 is fixed by ST−1p.

i
i

p
p

Gauss-Bonnet gives Area(X) = π
3

.
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Congruence subgroups

For N ≥ 1 the principal congruence subgroup of level N is

ΓZ(N) :=
{

g ∈ ΓZ : g ≡ I mod N
}

For example

ΓZ(2) =

{(
odd even
even odd

)
⊂ PSL(2, Z)

}
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The quotients are the modular surfaces,

X(N) := ΓZ(N)\H.

The surface X(2) is a sphere with 3 cusps and area 2π.

The geometry gets more complicated as N increases - the genus of
X(N) is approximately N3 for N large.

Number theorists are particularly interested in Maass cusp forms on
X(N).
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Spectral theory of the modular surface

Let continue with ΓZ and the modular surface X.

Recall that the scattering matrix was defined in terms of the Eisenstein

series

E(s; z) =
∑

Γ∞\ΓZ

ys

|cz + d|2s
.

In this case, we can compute the asymptotic expansion explicitly,
giving the scattering matrix

ϕ(s) =
√

π
Γ(s− 1

2
)

Γ(s)

ζ(2s− 1)

ζ(2s)
,

where ζ(z) is the Riemann zeta function. Meromorphic continuation is
thus clear, and the scattering poles are solutions of ζ(2s) = 0.
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The modular surface also has many cusp forms:

-1.0 -0.5 0.5 1.0

-20

-10

10

20

Cusp eigenvalue λj = 1
4

+ r2
j −→ resonances at s = 1

2
± irj.

Riemann zeros −→ scattering poles on Re s = 1
4
.
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The Selberg trace formula implies that

#
{

cusp resonances with |s− 1
2
| ≤ t

}
∼ t2

6
.

In contrast, the asymptotics of the Riemann zeros gives

#
{

scattering poles with |s− 1
2
| ≤ t

}
∼ 2t log t

π
.

The cusp forms dominate the spectrum.
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Hecke operators

Why makes arithmetic surfaces so special?

They have hidden symmetries, called Hecke operators.

For f ∈ L2(ΓZ\H, dA) and n ∈ N, define

Tn f(z) :=
1√
n

∑

ad=n

d−1∑

b=0

f

(
az + b

d

)
.

It’s clear that Tn commutes with ∆. What is not so obvious is that Tn f

is still invariant under ΓZ.
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As an example, consider

T3 f(z) =
1√
3

[
f(3z) + f

( z

3

)
+ f

(
z + 1

3

)
+ f

(
z + 2

3

)]
.

Invariance under z 7→ z + 1 is actually obvious.

The other generator is z 7→ −1/z, so consider

T3 f

(
−1

z

)
=

1√
3

[
f

(
−3

z

)
+ f

(
− 1

3z

)
+ f

(
z− 1

3z

)
+ f

(
2z− 1

3z

)]
.

The first 2 terms just switched places:

f

(
−3

z

)
= f

( z

3

)
, f

(
− 1

3z

)
= f(3z).
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For the other terms we can use the matrix identity,

(
1 −1

3 0

)
=

(
1 −1

3 −2

) (
1 2

0 3

)

(note that det

(
1 −1
3 −2

)
= 1!), to see that

f

(
z− 1

3z

)
= f

(
z + 2

3

)
.

Similarly,

f

(
2z− 1

3z

)
= f

(
z + 1

3

)
.
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Why does this work?

Let

Υn := {A ∈ GL(2, Z) : det A = n},
and define an equivalence relation on Υn,

A1 ∼ A2 if A1 ∈ ΓZA2.

List the matrices occurring in the definition of Tn:

An =

{(
a b

0 d

)
: ad = n, 0 ≤ b ≤ d− 1

}
.

Claim: The partition of Υn into distinct equivalence classes is

Υn =
⋃

A∈An

[ A]
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Consider

Tn f(z) =
1√
n

∑

A∈An

f(Az).

Suppose g ∈ ΓZ and A ∈ An. Then det(Ag) = n, so Ag ∈ Υn. Our claim

then says that

Ag = hA′,

for h ∈ ΓZ and A′ ∈ An.

If f is automorphic,

f(Agz) = f(hA′z) = f(A′z),

so

Tn f(gz) =
1√
n

∑

A′∈An

f(A′z) = Tnf(z).
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The full ring of Hecke operators Tn together with ∆ can be
simultaneously diagonalized.

In particular, we can choose a basis of Maass cusp forms such that

∆φj = λjφj, Tnφj = τj(n)φj.

Indeed, it is conjectured that the cusp spectrum of X is simple, which

would imply that Maass cusp forms are automatically Hecke

eigenfunctions.
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What do the Hecke symmetries look like? Here’s a picture for T3.
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Compare to density plots of Maass cusp forms:

(Alex Barnett/Holger Then)
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L-function connection

One primary reason that Maass cusp forms are important in number

theory is the connection to L-functions (series which generalize the
Riemann zeta function).

If φ is a Maass cusp form, with Hecke eigenvalues τ(n), then we can

form a related L-series

L(s, φ) :=
∑

n

τ(n)n−s =
∏

p

1

1− τ(p)p−s − p−2s
.

The L function converges for Re s large, and the modularity of φ is

equivalent to the analytic continuation of L(s, φ), with a functional
relation connecting the values at s and 1− s.
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Many spectral questions about Maass cusp forms are related to

properties of L-functions.

Artin’s conjecture connects two-dimensional representations of Galois
groups, via the associated L-functions, to Maass cusp forms with

eigenvalue 1
4
.

On a related note, the Selberg-Ramanujan conjecture says that X(N)
has no discrete spectrum below 1

4
.
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Quantum ergodicity

On the high-frequency side one of the main questions has been the
asymptotic distribution of cusp forms.

The geodesic flow of a hyperbolic surface is ergodic, meaning that the

only functions invariant under the geodesic flow are constant a.e.

Classical ergodicity is expected to correspond with ‘quantum

ergodicity’, meaning equidistribution of eigenvectors as j→∞.
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Quantum ergodicity is interpreted in terms of probability measures
associated to eigenfunctions:

φj 7→ νφj
= |φj|2 dA.

(There is a related phase space version, µφj
on the unit tangent

bundle, called the microlocal lift).

The conjecture is that νφj
approaches dA in some sense (or µφj

approaches Liouville measure on the unit tangent bundle).

For compact manifolds with ergodic geodesic flow, this is known to be

true for ‘most’ subsequences jk →∞. Quantum unique ergodicity is

the question of whether it holds for all sequences.

For arithmetic surfaces, QUE becomes a problem of estimating certain
special values of L-functions, and it is this connection that has lead to

a proof in this case.
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