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Introduction

The Method of Particular Solutions is a numerical method for
finding eigenvalues and eigenfunctions of the Laplacian on a
Euclidean domain.

We choose an energy E > 0, and then look for a solution
to the Helmholtz equation (∆− E)u = 0 that approximately
satisfies the boundary condition.

We look for estimates telling us how close E is to the
spectrum, in terms of the boundary condition error.

Want estimates that are sharp for E → ∞.

Dirichlet BC: Barnett, Barnett-Hassell arXiv:1006.3592v1.
Neumann BC: Barnett-Hassell (in progress).
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In this section I will consider the Dirichlet Laplacian ∆ on a
smooth, bounded domain Ω in R

n. As is well known, ∆ is
self-adjoint on the domain H2(Ω) ∩ H1

0(Ω), and has an
orthonormal basis of real eigenfunctions uj ∈ L2(Ω) with
eigenvalues Ej = λ2

j of finite multiplicity:

0 < λ1 < λ2 ≤ · · · → ∞.

By definition, the Dirichlet eigenfunctions uj vanish when
restricted to the boundary. Let ψj denote the normal derivative
of uj at the boundary, taken with respect to the exterior unit
normal n:

ψj = dnuj
∣

∣

∂Ω
∈ C∞(Ω).
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Let’s prove that there are upper and lower bounds

C−1λj ≤ ‖ψj‖L2(∂Ω) ≤ Cλj (1)

where C depends only on Ω. These are easily proved using
Rellich-type identities, involving the commutator of ∆ with a
suitably chosen vector field V . The basic computation is

〈u, [∆,V ]u〉 =

∫

Ω

(

((∆ − λ2)u)(Vu) − u(V (∆ − λ2)u)
)

+

∫

∂Ω

(

(dnu)(Vu) − u(dn(Vu))
)

. (2)

If u = uj is a Dirichlet eigenfunction with eigenvalue λ2
j , then

three of the terms on the RHS vanish, and we obtain

〈u, [∆,V ]u〉 =

∫

∂Ω
(dnu)(Vu).
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〈u, [∆,V ]u〉 =

∫

∂Ω
(dnu)(Vu).

If we choose V equal to the exterior unit normal then the RHS
is precisely ‖ψj‖2. The left hand side is 〈u,Qu〉 where Q is a
second order differential operator and is O(λ2

j ), yielding the

upper bound ‖ψj‖2 = O(λ2
j ).

On the other hand, if we take V to be the vector field
∑

i xi∂xi ,
then [∆,V ] = 2∆. Then the LHS is exactly equal to 2λ2

j , while
the RHS is no bigger than (max∂Ω |x |)‖ψj‖2, yielding the lower
bound λ2

j = O(‖ψj‖2).
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It turns out that there is a very useful generalization of the
upper bound in (1), proved recently by Barnett and the speaker,
that applies to a whole O(1) frequency window:

Theorem

Let Ω ⊂ R
n be a smooth bounded domain and let ψi be defined

as above. Then the operator norm of
∑

λi∈[λ,λ+1]

ψi〈ψi , ·〉 : L2(∂Ω) → L2(∂Ω) (3)

is bounded by Cλ2, where C depends only on Ω.
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This is quite a strong estimate, since there is a lower
bound of the form cλ2 on the operator norm of any one
term in the sum.

This is closely related to the phenomenon of
‘quasi-orthogonality’ of ψi and ψj , when |λi − λj | is small.
Indeed, this estimate implies that when |λi − λj | ≤ 1, then
the inner product 〈ψi , ψj〉 is usually small compared with λ2.

It is closely related to an identity of Bäcker, Fürstberger,
Schubert and Steiner (2002).
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Theorem 1 is proved as follows: first, we prove the upper bound
‖dnu‖L2(∂Ω) ≤ Cλ‖u‖L2(Ω) is valid not just for eigenfunctions,
but for approximate eigenfunctions u ∈ dom ∆ such that

‖(∆ − λ2)u‖L2(Ω) = O(λ).

In fact, the proof is almost unchanged; see (2); also Xu. Notice
that this condition applies in particular to a spectral cluster, that
is, for u ∈ range E[λ,λ+1](

√
∆). We then use a TT ∗ argument:
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We define an operator T from range E[λ,λ+1](
√

∆) to L2(∂Ω) by
Tu = dnu|∂Ω. That is,

Tu =
∑

λi∈[λ,λ+1]

〈u,ui〉ψi .

Then we have, by the previous page,

‖T‖ ≤ Cλ.

It follows that TT ∗ : L2(∂Ω) → L2(∂Ω) has operator norm
bounded by C2λ2. But TT ∗ is precisely the operator (3)
appearing in the statement of the theorem.

Andrew Hassell Neumann eigenfunctions at the boundary



Introduction
Dirichlet eigenfunctions

Method of Particular Solutions
Neumann boundary condition

In the method of particular solutions (MPS), one chooses an
energy E = λ2 and then tries numerically to minimize the
quantity

t[u] =
‖u‖L2(∂Ω)

‖u‖L2(Ω)

(4)

over all nontrivial solutions of (∆− λ2)u = 0. Clearly, if t[u] = 0,
then u is a Dirichlet eigenfunction. But this cannot happen
unless λ2 happens to be an exact Dirichlet eigenvalue, so
generally we can only hope to minimize t[u], or more precisely
to find a u for which t[u] is close to inf t .
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Question: If t[u] is small, can we say quantitatively that λ2 is
close to a Dirichlet eigenvalue?
An answer to this question is provided by the Moler-Payne
inclusion bound. This says that

d(λ2, specD) ≤ Cλ2t[u],

where C depends only on Ω. The proof uses very little about
the Dirichlet problem in particular.
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Recently, Alex Barnett, and then Barnett and myself, improved
this bound by a factor of λ:

Theorem

There exist constants c,C depending only on Ω such that the
following holds. Let u be a nonzero solution of (∆ − λ2)u = 0 in
C∞(Ω). Let t[u] = ‖u|∂Ω‖L2(∂Ω)/‖u‖L2(Ω), and let umin be the
Helmholtz solution minimizing t[u]. Then

cλt[umin] ≤ d(λ2, specD) ≤ Cλt[u].
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Proof: The result is trivial if λ2 ∈ specD∆. Suppose that λ2 is
not an eigenvalue, and consider the map Z (λ) that takes
f ∈ L2(∂Ω) to the solution u of the equation

(∆ − λ2)u = 0,u|∂Ω = f .

The u that minimizes t[u] then maximizes ‖u‖L2(Ω) given
‖u‖L2(∂Ω). So

(min t[u])−1 = ‖Z (λ)‖ =⇒ (min t[u])−2 = ‖A(λ)‖,

where the operator A(λ) := Z (λ)∗Z (λ) : L2(∂Ω) → L2(∂Ω) has
the expression (Barnett)

A(λ) =
∑

j

ψj〈ψj , ·〉
(λ2 − λ2

j )
2
. (5)
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(strop) To prove (5), we show that Z (λ) has the expression

Z (λ)f =
∑

i

〈f , ψi 〉ui

λ2 − λ2
i

(6)

from which (5) follows immediately. To express Z (λ), suppose f
is given and u = Z (λ)f . We write u =

∑

aiui as a linear
combination of Dirichlet eigenfunctions. Then

ai = 〈u,ui〉 =
1

λ2 − λ2
i

∫

Ω

(

(∆u)ui − u(∆ui)
)

=
1

λ2 − λ2
i

∫

∂Ω

(

u(dnui) − (dnu)ui
)

=
1

λ2 − λ2
i

∫

∂Ω
fψi

which proves (6).
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The lower bound in Theorem 2 is easy to prove: we note that
A(λ) is a sum of positive operators in (5), so the operator norm
of A(λ) is bounded below by the operator norm

∥

∥A(λ)
∥

∥ ≥
∥

∥

ψj〈ψj , ·〉
(λ2 − λ2

j )
2

∥

∥ ≥ cλ2

d(λ2, specD)2 ,

where λj is the closest eigenfrequency to λ. Since
(min t[u])−2 = ‖A(λ)‖, this proves the lower bound.
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To prove the upper bound, we use Theorem 1. We need to
show that

‖A(λ)‖ ≤ Cλ2

d(λ2, specD)2 . (7)

To show that ‖A(λ)‖ ≤ Cλ2d(λ2, specD)−2, we break up the
sum (5) into the ‘close’ eigenfrequencies in the interval
[λ− 1, λ+ 1] and the rest. The estimate above for the close
eigenvalues is immediate from Theorem 1. The far eigenvalues
are estimated using Theorem 1 together with exploiting the
denominator (λ2 − λ2

j )
2, and make a smaller contribution.
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We want to consider the MPS for computing Neumann
eigenvalues and eigenfunctions. The Neumann boundary
condition is dnu|∂Ω = 0. It seems logical to minimize (cf. (4))

tId[u] =
‖dnu‖L2(∂Ω)

‖u‖L2(Ω)

,

over nontrivial solutions u of (∆ − E)u = 0, since tId[u] = 0
implies that E is a Neumann eigenvalue and u a Neumann
eigenfunction. We could equally well minimize the quantity

tF [u] =
‖F (dnu)‖L2(∂Ω)

‖u‖L2(Ω)

,

for any invertible operator F on L2(∂Ω). It turns out that there is
an essentially optimal choice of F , which is not the identity.
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The form of F is suggested by the local Weyl law for boundary
values of eigenfunctions. This law (Gérard-Leichtnam,
H.-Zelditch) says that the boundary values of eigenfunctions
are distributed in phase space T ∗(∂Ω) (in the sense of
expectation values h2

j 〈ψj ,Ahj
ψj〉 or 〈wj ,Ahj

wj〉) according to

c(1 − |η|2)1/21{|η|≤1} (Dirichlet),

c(1 − |η|2)−1/21{|η|≤1} (Neumann).
(8)

Here η ∈ T ∗(∂Ω) and we adopt the semiclassical scaling, that
is the frequencies at eigenvalue λ2

j are scaled by h = hj = λ−1
j

so that they are rescaled to have length 1 in the interior, and
therefore length ≤ 1 restricted to the boundary.
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The difference can be explained because the ‘boundary value’
of a Dirichlet eigenfunction is the normal derivative, and the
semiclassical normal derivative ihdn has symbol equal to
(1 − |η|2)1/2 on the characteristic variety, since

h2∆ − 1 = −h2d2
n + h2∆∂Ω − 1 + l.o.t.s, at ∂Ω. (9)

Since the boundary values appear quadratically in the
expectation value, it is not surprising that the ratio between the
Dirichlet and Neumann distributions is 1 − |η|2.

Moral: semiclassically, the ‘Neumann’ analogue of u

at the boundary is not dnu, but (1 − h2∆∂Ω)
−1/2
+ dnu,

where ∆∂Ω is the Laplacian on the boundary.

(10)
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To see what is wrong with using the naive measure tId of the
‘boundary condition error’, follow the same reasoning as the
Dirichlet case to show that

(min tId[u])−2 =
∥

∥

∥

∑

j

wj〈wj , ·〉
(µ2 − µ2

j )
2

∥

∥

∥
, E = µ2,

where wj is the restriction of the j th Neumann eigenfunction vj

to the boundary and µ2
j is the eigenvalue. The problem is that

the wj do not behave as uniformly as the ψj (normal derivatives
of Dirichlet eigenfunctions); we have a lower bound

‖wj‖L2(∂Ω) ≥ c, (11)

but the sharp upper bound is (Tataru)

‖wj‖L2(∂Ω) ≤ Cµ1/3
j . (12)
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The reason why, in Theorem 2, we were able to get upper and
lower bounds on d(E , specD) of the same order in E was that
the lower bound on the operator norm of a single term ψj〈ψj , ·〉
was of the same order as the upper bound on the sum
∑

j ψj〈ψj , ·〉 over a whole spectral cluster |λ− λj | ≤ 1. In the
Neumann case, using tId will lead to a gap of at least
µ1/3 = E1/6 between the upper and lower bounds on
d(E , specN).

• If we take our Moral, (10), seriously, then we could expect
to find good upper and lower bounds on the quantity
(1 − h2

j ∆∂Ω)
1/2
+ wj instead. Indeed, this is the case:
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Theorem

Let Ω ⊂ R
n be a smooth bounded domain, and let wj be the

restriction to ∂Ω of the jth L2-normalized Neumann
eigenfunction vj . Then there are constants c,C such that

(i) ‖(1 − h2
j ∆∂Ω)

1/2
+ wj‖L2(∂Ω) ≥ c, hj = µ−1

j ;

(ii) the operator norm of
∑

µj∈[µ,µ+1]

(1 − h2∆∂Ω)
1/2
+ wj

〈

(1 − h2∆∂Ω)
1/2
+ wj , ·

〉

, h = µ−1,

is bounded by C.
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Example: for the unit disc, eigenfunctions have the form

v(r , θ) = ceinθJn(µn,l r), J ′
n(µn,l) = 0,

and from (2) we derive

2µ2
n,l =

∫

∂Ω
(µ2

n,l − n2)|v |2 =⇒ ‖(1 − ∆∂Ω/µ
2
j )

1/2
+ wj‖ =

√
2.

Note that when l = 1, µn,1 ∼ n + cn1/3, and then ‖wj‖ ∼ µ
1/3
j .

These are ‘whispering gallery modes’.
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The proof of the upper bound is as follows. We return to (2),
and deduce from it that

∫

∂Ω
vjd

2
n vj = O(µ2

j ).

It follows, using (∆ − µ2
j )vj = 0 at ∂Ω, and (9), that

∫

∂Ω
wj((1 − h2

j ∆∂Ω)wj) = O(1).

That is,

‖(1 − h2
j ∆∂Ω)

1/2
+ wj‖2

L2(∂Ω) − ‖(h2
j ∆∂Ω − 1)

1/2
+ wj‖2

L2(∂Ω) = O(1).

So it remains to show that the term

‖(h2
j ∆∂Ω − 1)

1/2
+ wj‖2

L2(∂Ω) is O(1) (cf. (8)).
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This can be proved by using the characterization wj = −2Dtwj

where D is the double layer potential at energy µ2
j , and using

the characterization of D from H.-Zelditch that D is an FIO of
order zero in the hyperbolic region, namely where |η| ≤ 1, and
a pseudodifferential operator of order −1 in the elliptic region
{|η| > 1}, where η ∈ T ∗(∂Ω).
• Our argument requires some use of symbol classes which
are not coordinate invariant.
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Using this theorem as a crucial tool we propose the following
MPS for Neumann eigenfunctions: we minimize the quantity

tF [u] =
‖F (∆∂Ω)(dnu)‖L2(∂Ω)

‖u‖L2(Ω)

, (13)

where (cf. Moral) (10); also cf. (12)

F (∆∂Ω) =

{

(

1 − ∆∂Ω

µ2

)−1/2
, ∆∂Ω ≤ µ2 − µ4/3

µ1/3, ∆∂Ω ≥ µ2 − µ4/3.
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This leads to the identity

(min tF [u])−2 =
∥

∥

∥

∑

j

F (∆∂Ω)−1wj〈F (∆∂Ω)−1wj , ·〉
(µ2 − µ2

j )
2

∥

∥

∥
, (14)

and since F (∆∂Ω)−1 is essentially (1 − h2∆∂Ω)
1/2
+ , we can use

Theorem 3 (together with (12)) to prove the following:

Theorem

There exist constants c,C depending only on Ω such that the
following holds. Let u be a nonzero solution of (∆ − µ2)u = 0 in
C∞(Ω). Let tF [u] be as in (13), and let umin be the Helmholtz
solution minimizing tF [u]. Then

ctF [umin] ≤ d(µ2, spec) ≤ CtF [u].
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A few words about why (14) holds. As before, (min tF [u])−1 is
the operator norm of the composite function g 7→ f 7→ u, where
f = F (∆∂Ω)−1g and u is the Helmholtz solution with dnu = f .
We have

u =

∑

j 〈f ,wj〉vj

µ2 − µ2
j

=

∑

j 〈F (∆∂Ω)−1g,wj〉vj

µ2 − µ2
j

=

∑

j 〈g,F (∆∂Ω)−1wj〉vj

µ2 − µ2
j

.

Then a T ∗T argument gives (14).
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