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Intro: Can one hear the shape of a drum?

Finiteness and compactness results.
Finiteness conjecture.

LLocal audibility.
Solenoidal tensor fields.
Spectral rigidity.

A compactness estimate implies the local
audibility.

Deriving a compactness estimate from heat
invariants for a constant curvature metric.

Why cannot our approach be applied in the
case of nonconstant negative curvature?



1. Introduction

(M"M:g) is a closed Riemannian manifold,
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To which extent are the geometry and topology of

a Riemannian manifold determined by the eigen-
value spectrum of its Laplacian?

M. Kac [1966]: Can one hear the shape of a
drum?

Osgood—Philips—Sarnak [1988]: a Riemannian man-
ifold is said to be audible, if it is determined by
its spectrum uniquely up to an isometry.



2. Finiteness and compactness results.
Finiteness conjecture

McKean [1974]: Within the class of two-dimensional
Riemannian manifolds of constant negative Gaus-
sian curvature, every isospectral family is finite if
isometric surfaces are identified.

Osgood—Philips—Sarnak [1988]: Every isospectral
set of metrics on a two-dimensional manifold is
precompact in the Cl—topology if isometric met-
rics are identified.

A similar compactness theorem for negatively curved
3-manifolds is proved by Brooks—Perry—Petersen
[1992].

Conjecture 1 Every isospectral family of metrics
of negative Gaussian curvature on a compact ori-
entable surface of genius , 2 is finite if isometric
metrics are identified.



3. Local audibility

In virtue of the above-mentioned compactness
theorem, the conjecture is equivalent to some
local uniqueness statement. In connection with
this, we introduce the following

Definition 2 A Riemannian manifold (M;g) is said
to be locally audible if there exists a neighborhood

V of the metric g in the C1-topology such that

every metric belonging to V and isospectral to ¢

is isometric to (¢.

Conjecture 1 is equivalent to the local audibility
of a two-dimensional manifold of negative Gaus-
sian curvature. To our opinion, the question on
the local audibility of some Riemannian metric
is of independent interest regardless to Conjec-
ture 1. The main result of the present article is
the following

Theorem 3 A locally symmetric Riemannian man-
ifold of negative sectional curvature is locally au-
dible.



4. Solenoidal tensor fields
While investigating the local audibility of a metric

g, one has first of all to eliminate metrics that are
isometric and close to g but do not coincide with
g. Note that there are very many such metrics.
Indeed, if a diffeomorphism * : M ¥ M is close to
the identity then the metric g' = 79 is isometric
to g and close to it.

Given a Riemannian manifold (M;g), let C1(S%},)
be the space of smooth symmetric rank two co-

variant tensor fields on M. The divergence —g :

CL(S2%},) ¥ Cc(¢dy) is defined in coordinates

by the equallty (—gf), = gk rjfix, where r is the

covariant derivative of the metric g. A tensor field

f is said to be solenoidal if -gf = 0. The above-

mentioned elimination of “unnecessary” metrics

is implemented with the help of the following

Lemma 4 Croke—Dairbekov—Sh [2000] Let (M;g)
be such that there exists at least one geodesic
that is dense in the sphere bundle (this is true for
a negatively curved manifold). For every k , 2
and 0 < fi < 1, there exists a neighborhood
V % CKTi(s2:8 ) of the metric g such that, for
every metric ' 2 V, there exists a diffeomor-
phism *> of the manifold M onto itself such that
the tensor field *7q' is solenoidal in the metric g,
i.e., .g(*79") = 0. Moreover, the diffeomorphism
> can be chosen to be CKTl_close to the identity
and ? is uniquely determined by the latter condi-
tion.



In virtue of the lemma, Definition 2 takes the
following equivalent form.

Proposition 5 A negatively curved manifold (M;g)
is locally audible if and only if the following state-
ment is true. If g (k= 1;2;:::) is a sequence of
metrics on M converging to g in the Cl-topology
and such that every gy is isospectral to g and sat-
isfies —ggx = O then gy = g starting with some
Ko.

The latter statement is proved for negatively curved
metrics if the sequence gx ¥ g is replaced with
with a smooth one-parameter family gt (" <t<
"' go =0), as is presented on the next slide.



5. Spectral rigidity

Definition 6 A family gt (i"<t<", go =9) of
metrics on a manifold M is called an isospectral
deformation of the metric g if Sp(Ag;) = Sp(Ayg).
The deformation is trivial if there exists a family
of diffeomorpisms >t : M ¥ M such that gt = *{9.
A Riemannian manifold is said to be spectrally
rigid if it does not admit a nontrivial isospectral
deformation.

Theorem 7 (Guillemin—Kazhdan [1980] for 2D-
case, Croke-Sh [1998] in the general case)

A negatively curved Riemannian manifold is spec-
trally rigid.

Theorem 8 Croke—Sh [1998]: If a solenoidal ten-
sor field F 2 C1(S2:},) on a negatively curved
manifold integrates to zero over every closed geo-
desic, then F - 0.



6. A compactness estimate implies the local
audibility
We use the following basic facts for negatively
curved manifolds:

(1) Every free homotopic class contains a unique
closed geodesic. The geodesic minimized the en-
ergy functional in its homotopic class.

(2) If eigenvalue spectra of two manifolds coin-
cide, then their length spectra coincide too.

(3) If a solenoidal tensor field integrates to zero
over every closed geodesic, then it is identical
Zero.



Let (M;g) be a Riemannian manifold of negative
sectional curvature and gm (m = 1;2;:::) be a
sequence of Riemannian metrics on M converging
to g in the Cl-topology. Assume every Om to be
isospectral to the metric g and solenoidal, i.e.,
-ggm = 0. In virtue of Proposition 5, we have
to prove that gm coincides with g starting with
some mg. We assume this false and try to get
a contradiction. Passing to a subsequence, we
can assume the tensor field fm = gm i g to be
not identically equal to zero for every n. Let

be a closed geodesic of the metric g and m be
the closed geodesic of the metric gm in the same
free homotopy class as . Then m converges
uniformly to asn ¥ 1. Since m minimizes the
energy functional Eg,, in its homotopy class, we

can write
| I

fr— (9mi9) =Egn( )iEg( ) » Egm( m) i Eg( ) =0:

The last equality of the chain holds for a suffi-
ciently large m since the metrics gm and g have
coincident length spectra.



Thus, for every closed geodesic of the metric g,
|

fm -, 0 for m>mg( ) (1)

Swopping the roles of g and gm, we infer also that
I

fm=0: for m=>mg( ) (2)

m
We normalize the tensor field fm by setting Fm =
fm=kfmkk with an appropriately chosen k. In-

equalities (1.4)—(1.5) hold for Fm as well
I |

Fm » O; Fm=0 form , mgo( ): (3)

m
Assume for a moment the sequence Fm to con-
verge in the HX-norm: kFm i Fkx ¥ Oasn ¥ 1:

Passing to the limit in (3), we have
|

F=0 (4)

for every closed geodesic  of the metric g. Of
course, F is a solenoidal tensor field. By Theorem
8, F - 0. This contradicts to the equality

kFkyk = 1.



The problem is thus reduced to the question:
does the sequence Fm contain a subsequence con-
verging in HK? Since the embedding HKT1 %,
HK is compact, it suffices to prove the bound-
edness of the sequence Fm in the HXtl-norm,
KFmkik+1 = C. This means in terms of the se-
quence gm that

kgm i gKyk+1 = Ckam i gkyk: (5)

Compactness estimates like (5) appeared already
in spectral geometry. Such an estimate (for k =
0) serves as a base for main results of Sh—Uhlmann
[2000] and Dairbekov—Sh [2003] that are devoted
to the spectral rigidity of Riemannian manifolds
with the geodesic flow of Anosov type. Let [g]
be the set of all differences g0 1 §, where a met-
ric g’ is isospectral to g and satisfies —3g° = 0.
Roughly speaking, estimate (5) means that [g]\V
is a finite-dimensional set for a sufficiently small
neighborhood of the origin V % C1(S2%:},). For
example, if [g]\V % W for some finite-dimensional
space W % C1(S?:},), then (5) holds since any
two norms on W are equivalent.



7. Deriving a compactness estimate from heat
invariants for a constant curvature metric
Let (M;g) be a Riemannian manifold and let £ 2
Cc1(s?:},) be a sufficiently small solenoidal ten-
sor field. Assume the metrics g and g + f to
be isospectral. Then, first of all, their volumes
coincide. Equating the volumes, we obtain the

estimate

Z
‘ Lt dvo‘ - Ckfk?, (6)
Next, we equate heat invariants
ag+1(M;9+T) i agy1(M;g) =0: (7)

We use the following representation of heat in-

variants Gilkey [1989]: for k , 1,
Z

ar1(Mig) = odr TS + gjir i DRicej
il

i Pc(g;r;R) dv;

where Py (g; r;R) is some invariant polynomial in
the variables r(DR (I « k j 2). It is a homoge-
neous polynomial of degree 2k + 2 in r and R if
the degree of homogeneity of r is assumed to be
equal to one and the degree of homogeneity of
R, to two.

We expand the left-hand side of (7) into Tailor
series in T and obtain with the help of Gilkey's
representation



Z
CkFKZ oy 1 = N Pc(R; F)dv; (8)

with some constant ¢, > 0, where P (R;f) is a
power series in the curvature tensor R and tensor
T and their covariant derivatives up to order k.
We distinguish linear in f terms in P (R;f)

Pr(R; ) = Li(R; F) + PL(R; );

where Li(R;f) is a linear form in r(Df (I = k),
and the series Pﬁ(R;f) does not contain linear in f
terms. For a sufficiently small ¥, the latter series

admits the estimate
Z

)/ - 2
PR(RiF)dV = Okl

and we obtain from (8)
Z

KFKZ 1 = CrkFke + y L (R; F)dv:  (9)



The main difficulty of our approach relates to es-
timating the linear in f term \; Lx(R; ) dV in (9).
We can do this in the case of a constant curva-
ture metric only. In this case, the linear form
L (R; ) = Li(Ff) consists of summands that are
obtained from derivatives

| fij (2m = k)

1:::om
by raising a half of indices with the help of the
tensor g! followed by the contraction in all indices
grouped in pairs. For m > 0, every such summand
has obviously a divergent form and gives the zero
contribution into integral (9). For m = 0O, we have
the unique summand trf that is estimated by (6).
Thus, (8) implies the compactness estimate

KFKZ 1 = CKFKZ (8)

Lemma 9 Let (M;g) be a Riemannian manifold
of constant sectional curvature. For every k , 2,
there exists a Ck+1—neighborhood V of the metric
g such that the compactness estimate

kg’ i gkyyk+1 = Cka’ i gk
holds for every @' 2 V satisfying the conditions
~9” = 0, Vol(M; g) = Vol(M; ¢") and a1 1(M;g) =
a+1(M; g0).



8. Why our approach does not work in the case
of nonconstant negative curvature?

Given a Riemannian manifold (M;g) and tensor
field £ 2 C1(S?:},), the first variation of the
spectral invariant ax in the direction f is defined

by
a(M; g)f = dax(M; g + tf )=dtji—o:

If the metric g has constant sectional curvature
then

a(M;g)f =0 (10)
for every T satisfying
Z
2a0(M;g)f = trfdv =0: (11)
M

This is a crucial fact for our approach. Indeed, in
this case the difference

ax(M;g+T) i ax(M;9) (12)

can be represented as a power series in T which
does not contain linear terms. Leading terms of
the series are quadratic in ¥ that allows us to de-
rive estimate The presence of linear in ¥ terms
in (12) stands as a stumbling block for our ap-
proach.



The author sees only one opportunity to fight
with linear terms of series (3): the use of a linear
combination of several invariants. Indeed, if a
linear combination

a(M;g) = cpap(M;g) +ttt+ cax(M;g) (ck & 0)
(13)
with appropriately chosen constant coefficients
turned out to have the zero first variation then
we would be able to use the difference a(M;g +
f) i a(M;g) instead of (3). Unfortunately, a gen-
eral metric g seems to have no linear combination
like (13) satisfying a(M;g) = 0. But if the curva-
ture tensor of the metric g satisfies some natural
differential equation, then such linear combina-
tions probably may be found. In such a way, an
opportunity arises for proving the local audibility
of metrics belonging to some natural classes that
are wider than the class of hyperbolic metrics.

The simplest of such equations is ¥rR = 0 that
characterizes locally symmetric metrics. For such
a metric, the first variations ag(M;g) (k =1;2:::)
live in a finite dimensional space and therefore
they are linearly dependent. We thus obtain

Theorem 10 A locally symmetric Riemannian man-
ifold of negative sectional curvature is locally au-
dible.



In the above arguments, we have used only a finite
subsystem of the system

Fi(f) - akp1(M;g+F)iagr1(M;g) =0 (k=1;2;::0):

(14)
Can the infinite system (14) be used for deriving
a compactness estimate?

As we have seen, there is no problem if the gra-
dients FY(0) (k = 1;2;:::) are linearly depen-
dent. So, let us assume the gradients to be lin-
early independent. In such a case, solutions of
any finite subsystem of (14) constitute locally (in
a neighborhood of the origin) a submanifold in
C1(S2},). Is the same true for the infinite sys-
tem (14)7

Problem 11 Does the linear independence of gra-
dients F)(0) (k = 1;2;:::) imply that solutions
to system (14) constitute locally (in a neighbor-
hood of the origin) a smooth submanifold in the
Frechet space C1(S?:},)7



The set of solutions to system (14) is a locally
compact subset of C1(S?},). This can be proved
by the well known bootstrap argument. Thus, if
the answer to Problem 11 is “yes’, then the sub-
manifold must be of a finite dimension. With
the help of above arguments (choosing a conver-
gent subsequence of Fi, = (gk i 9)=kgk i gk), this
proves the local audibility of an arbitrary nega-
tively curved manifold.

Probably some other spectral invariants, different

of heat invariants, should be used for deriving a
compactness estimate.

Presented results are published in [Sh, 2010].
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