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1. Introduction

(Mn; g) is a closed Riemannian manifold,

∆g = ¡ 1p
det g

nX

i;j=1

@

@xi
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det g gij @

@xj

¶

Sp (∆g) = f0 = ‚0 < ‚1 • ‚2 • ¢ ¢ ¢ • ‚k ! +1g
To which extent are the geometry and topology of

a Riemannian manifold determined by the eigen-

value spectrum of its Laplacian?

M. Kac [1966]: Can one hear the shape of a

drum?

Osgood–Philips–Sarnak [1988]: a Riemannian man-

ifold is said to be audible, if it is determined by

its spectrum uniquely up to an isometry.
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2. Finiteness and compactness results.

Finiteness conjecture

McKean [1974]: Within the class of two-dimensional

Riemannian manifolds of constant negative Gaus-

sian curvature, every isospectral family is finite if

isometric surfaces are identified.

Osgood–Philips–Sarnak [1988]: Every isospectral

set of metrics on a two-dimensional manifold is

precompact in the C1-topology if isometric met-

rics are identified.

A similar compactness theorem for negatively curved

3-manifolds is proved by Brooks–Perry–Petersen

[1992].

Conjecture 1 Every isospectral family of metrics

of negative Gaussian curvature on a compact ori-

entable surface of genius ‚ 2 is finite if isometric

metrics are identified.
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3. Local audibility

In virtue of the above-mentioned compactness

theorem, the conjecture is equivalent to some

local uniqueness statement. In connection with

this, we introduce the following

Definition 2 A Riemannian manifold (M; g) is said

to be locally audible if there exists a neighborhood

V of the metric g in the C1-topology such that

every metric belonging to V and isospectral to g

is isometric to g.

Conjecture 1 is equivalent to the local audibility

of a two-dimensional manifold of negative Gaus-

sian curvature. To our opinion, the question on

the local audibility of some Riemannian metric

is of independent interest regardless to Conjec-

ture 1. The main result of the present article is

the following

Theorem 3 A locally symmetric Riemannian man-

ifold of negative sectional curvature is locally au-

dible.
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4. Solenoidal tensor fields
While investigating the local audibility of a metric
g, one has first of all to eliminate metrics that are
isometric and close to g but do not coincide with
g. Note that there are very many such metrics.
Indeed, if a diffeomorphism ’ : M ! M is close to
the identity then the metric g0 = ’⁄g is isometric
to g and close to it.

Given a Riemannian manifold (M; g), let C1(S2¿ 0
M)

be the space of smooth symmetric rank two co-
variant tensor fields on M . The divergence –g :
C1(S2¿ 0

M) ! C1(¿ 0
M) is defined in coordinates

by the equality (–gf)i = gjkrjfik, where r is the
covariant derivative of the metric g. A tensor field
f is said to be solenoidal if –gf = 0. The above-
mentioned elimination of “unnecessary” metrics
is implemented with the help of the following

Lemma 4 Croke–Dairbekov–Sh [2000] Let (M; g)
be such that there exists at least one geodesic
that is dense in the sphere bundle (this is true for
a negatively curved manifold). For every k ‚ 2
and 0 < fi < 1, there exists a neighborhood
V ‰ Ck;fi(S2¿ 0

M) of the metric g such that, for
every metric g0 2 V , there exists a diffeomor-
phism ’ of the manifold M onto itself such that
the tensor field ’⁄g0 is solenoidal in the metric g,
i.e., –g(’⁄g0) = 0. Moreover, the diffeomorphism
’ can be chosen to be Ck;fi-close to the identity
and ’ is uniquely determined by the latter condi-
tion.
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In virtue of the lemma, Definition 2 takes the

following equivalent form.

Proposition 5 A negatively curved manifold (M; g)

is locally audible if and only if the following state-

ment is true. If gk (k = 1; 2; : : : ) is a sequence of

metrics on M converging to g in the C1-topology

and such that every gk is isospectral to g and sat-

isfies –ggk = 0 then gk = g starting with some

k0.

The latter statement is proved for negatively curved

metrics if the sequence gk ! g is replaced with

with a smooth one-parameter family gt (¡" < t <

"; g0 = g), as is presented on the next slide.
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5. Spectral rigidity

Definition 6 A family gt (¡" < t < "; g0 = g) of

metrics on a manifold M is called an isospectral

deformation of the metric g if Sp(∆gt) = Sp(∆g).

The deformation is trivial if there exists a family

of diffeomorpisms ’t : M ! M such that gt = ’⁄
t g.

A Riemannian manifold is said to be spectrally

rigid if it does not admit a nontrivial isospectral

deformation.

Theorem 7 (Guillemin–Kazhdan [1980] for 2D-

case, Croke-Sh [1998] in the general case)

A negatively curved Riemannian manifold is spec-

trally rigid.

Theorem 8 Croke–Sh [1998]: If a solenoidal ten-

sor field F 2 C1(S2¿ 0
M) on a negatively curved

manifold integrates to zero over every closed geo-

desic, then F · 0.

8



6. A compactness estimate implies the local

audibility

We use the following basic facts for negatively

curved manifolds:

(1) Every free homotopic class contains a unique

closed geodesic. The geodesic minimized the en-

ergy functional in its homotopic class.

(2) If eigenvalue spectra of two manifolds coin-

cide, then their length spectra coincide too.

(3) If a solenoidal tensor field integrates to zero

over every closed geodesic, then it is identical

zero.
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Let (M; g) be a Riemannian manifold of negative

sectional curvature and gm (m = 1; 2; : : : ) be a

sequence of Riemannian metrics on M converging

to g in the C1-topology. Assume every gm to be

isospectral to the metric g and solenoidal, i.e.,

–ggm = 0. In virtue of Proposition 5, we have

to prove that gm coincides with g starting with

some m0. We assume this false and try to get

a contradiction. Passing to a subsequence, we

can assume the tensor field fm = gm ¡ g to be

not identically equal to zero for every n. Let °

be a closed geodesic of the metric g and °m be

the closed geodesic of the metric gm in the same

free homotopy class as °. Then °m converges

uniformly to ° as n ! 1. Since °m minimizes the

energy functional Egm in its homotopy class, we

can write
I

°

fm=
I

°

(gm¡g)=Egm(°)¡Eg(°) ‚ Egm(°m) ¡ Eg(°)=0:

The last equality of the chain holds for a suffi-

ciently large m since the metrics gm and g have

coincident length spectra.
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Thus, for every closed geodesic ° of the metric g,
I

°

fm ‚ 0 for m > m0(°) (1)

Swopping the roles of g and gm, we infer also that
I

°m

fm • 0: for m > m0(°) (2)

We normalize the tensor field fm by setting Fm =

fm=kfmkHk with an appropriately chosen k. In-

equalities (1.4)–(1.5) hold for Fm as well
I

°

Fm ‚ 0;

I

°m

Fm • 0 for m ‚ m0(°): (3)

Assume for a moment the sequence Fm to con-

verge in the Hk-norm: kFm ¡F kHk ! 0 as n ! 1:

Passing to the limit in (3), we have
I

°

F = 0 (4)

for every closed geodesic ° of the metric g. Of

course, F is a solenoidal tensor field. By Theorem

8, F · 0. This contradicts to the equality

kF kHk = 1.
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The problem is thus reduced to the question:

does the sequence Fm contain a subsequence con-

verging in Hk? Since the embedding Hk+1 ‰
Hk is compact, it suffices to prove the bound-

edness of the sequence Fm in the Hk+1-norm,

kFmkHk+1 • C. This means in terms of the se-

quence gm that

kgm ¡ gkHk+1 • Ckgm ¡ gkHk: (5)

Compactness estimates like (5) appeared already

in spectral geometry. Such an estimate (for k =

0) serves as a base for main results of Sh–Uhlmann

[2000] and Dairbekov–Sh [2003] that are devoted

to the spectral rigidity of Riemannian manifolds

with the geodesic flow of Anosov type. Let [g]

be the set of all differences g0 ¡ g, where a met-

ric g0 is isospectral to g and satisfies –gg0 = 0.

Roughly speaking, estimate (5) means that [g]\V

is a finite-dimensional set for a sufficiently small

neighborhood of the origin V ‰ C1(S2¿ 0
M). For

example, if [g]\V ‰ W for some finite-dimensional

space W ‰ C1(S2¿ 0
M), then (5) holds since any

two norms on W are equivalent.
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7. Deriving a compactness estimate from heat

invariants for a constant curvature metric

Let (M; g) be a Riemannian manifold and let f 2
C1(S2¿ 0

M) be a sufficiently small solenoidal ten-

sor field. Assume the metrics g and g + f to

be isospectral. Then, first of all, their volumes

coincide. Equating the volumes, we obtain the

estimate flflflfl
Z

M
trf dV0

flflflfl • Ckfk2
L2 (6)

Next, we equate heat invariants

ak+1(M; g + f) ¡ ak+1(M; g) = 0: (7)

We use the following representation of heat in-

variants Gilkey [1989]: for k ‚ 1,

ak+1(M; g) =
Z

M

µ
ckjr(k¡1)Sj2 + c0

kjr(k¡1)Riccj2

¡ Pk(g; r; R)
¶

dV;

where Pk(g; r; R) is some invariant polynomial in

the variables r(l)R (l • k ¡ 2). It is a homoge-

neous polynomial of degree 2k + 2 in r and R if

the degree of homogeneity of r is assumed to be

equal to one and the degree of homogeneity of

R, to two.

We expand the left-hand side of (7) into Tailor

series in f and obtain with the help of Gilkey’s

representation
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ckkfk2
Hk+1 =

Z

M
Pk(R; f) dV; (8)

with some constant ck > 0, where Pk(R; f) is a

power series in the curvature tensor R and tensor

f and their covariant derivatives up to order k.

We distinguish linear in f terms in Pk(R; f)

Pk(R; f) = Lk(R; f) + P 0
k(R; f);

where Lk(R; f) is a linear form in r(l)f (l • k),

and the series P 0
k(R; f) does not contain linear in f

terms. For a sufficiently small f , the latter series

admits the estimate
Z

M
P 0

k(R; f) dV • Ckkfk2
Hk

and we obtain from (8)

kfk2
Hk+1 • Ckkfk2

Hk +
Z

M
Lk(R; f) dV: (9)
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The main difficulty of our approach relates to es-

timating the linear in f term
R
M Lk(R; f) dV in (9).

We can do this in the case of a constant curva-

ture metric only. In this case, the linear form

Lk(R; f) = Lk(f) consists of summands that are

obtained from derivatives

rl1:::l2m
fij (2m • k)

by raising a half of indices with the help of the

tensor gij followed by the contraction in all indices

grouped in pairs. For m > 0, every such summand

has obviously a divergent form and gives the zero

contribution into integral (9). For m = 0, we have

the unique summand trf that is estimated by (6).

Thus, (8) implies the compactness estimate

kfk2
Hk+1 • Ckfk2

Hk: (8)

Lemma 9 Let (M; g) be a Riemannian manifold

of constant sectional curvature. For every k ‚ 2,

there exists a Ck+1-neighborhood V of the metric

g such that the compactness estimate

kg0 ¡ gkHk+1 • Ckg0 ¡ gkHk

holds for every g0 2 V satisfying the conditions

–gg0 = 0, Vol(M; g) = Vol(M; g0) and ak+1(M; g) =

ak+1(M; g0).
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8. Why our approach does not work in the case

of nonconstant negative curvature?

Given a Riemannian manifold (M; g) and tensor

field f 2 C1(S2¿ 0
M), the first variation of the

spectral invariant ak in the direction f is defined

by

ȧk(M; g)f = dak(M; g + tf)=dtjt=0:

If the metric g has constant sectional curvature

then

ȧk(M; g)f = 0 (10)

for every f satisfying

2ȧ0(M; g)f =
Z

M

tr f dV = 0: (11)

This is a crucial fact for our approach. Indeed, in

this case the difference

ak(M; g + f) ¡ ak(M; g) (12)

can be represented as a power series in f which

does not contain linear terms. Leading terms of

the series are quadratic in f that allows us to de-

rive estimate The presence of linear in f terms

in (12) stands as a stumbling block for our ap-

proach.
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The author sees only one opportunity to fight

with linear terms of series (3): the use of a linear

combination of several invariants. Indeed, if a

linear combination

a(M; g) = c0a0(M; g) + ¢ ¢ ¢ + ckak(M; g) (ck 6= 0)

(13)

with appropriately chosen constant coefficients

turned out to have the zero first variation then

we would be able to use the difference a(M; g +

f) ¡ a(M; g) instead of (3). Unfortunately, a gen-

eral metric g seems to have no linear combination

like (13) satisfying ȧ(M; g) = 0. But if the curva-

ture tensor of the metric g satisfies some natural

differential equation, then such linear combina-

tions probably may be found. In such a way, an

opportunity arises for proving the local audibility

of metrics belonging to some natural classes that

are wider than the class of hyperbolic metrics.

The simplest of such equations is rR = 0 that

characterizes locally symmetric metrics. For such

a metric, the first variations ȧk(M; g) (k = 1; 2 : : : )

live in a finite dimensional space and therefore

they are linearly dependent. We thus obtain

Theorem 10 A locally symmetric Riemannian man-

ifold of negative sectional curvature is locally au-

dible.
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In the above arguments, we have used only a finite

subsystem of the system

Fk(f) · ak+1(M; g+f)¡ak+1(M; g) = 0 (k = 1; 2; : : : ):

(14)

Can the infinite system (14) be used for deriving

a compactness estimate?

As we have seen, there is no problem if the gra-

dients F 0
k(0) (k = 1; 2; : : : ) are linearly depen-

dent. So, let us assume the gradients to be lin-

early independent. In such a case, solutions of

any finite subsystem of (14) constitute locally (in

a neighborhood of the origin) a submanifold in

C1(S2¿ 0
M). Is the same true for the infinite sys-

tem (14)?

Problem 11 Does the linear independence of gra-

dients F 0
k(0) (k = 1; 2; : : : ) imply that solutions

to system (14) constitute locally (in a neighbor-

hood of the origin) a smooth submanifold in the

Frechét space C1(S2¿ 0
M)?
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The set of solutions to system (14) is a locally

compact subset of C1(S2¿ 0
M). This can be proved

by the well known bootstrap argument. Thus, if

the answer to Problem 11 is “yes”, then the sub-

manifold must be of a finite dimension. With

the help of above arguments (choosing a conver-

gent subsequence of Fk = (gk ¡ g)=kgk ¡ gk), this

proves the local audibility of an arbitrary nega-

tively curved manifold.

Probably some other spectral invariants, different

of heat invariants, should be used for deriving a

compactness estimate.

Presented results are published in [Sh, 2010].
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