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Concentration of Eigenfunctions

Let uj be a L2 normalised eigenfunction of the Laplace-Beltrami
Operator on a n dimensional smooth compact manifold M.

−∆uj = λ2
j uj

√
−∆uj = λjuj

Concentrated Dispersed



Eigenfunction Estimates

Concentrated eigenfunctions usually have large Lp norm for
p > 2.

Suggests we study the Lp norms of eigenfunctions.

Seek estimates of the form

||uj ||Lp . f (λj , p) ||uj ||L2

Not easy to study eigenfunctions directly. Therefore we will
study sums (clusters) of eigenfunctions.



Spectral Windows

We study norms of spectral clusters on windows of width w

Eλ =
∑

λj∈[λ−w ,λ+w ]

Ej

Ej projection onto λj eigenspace.

Obviously include eigenfunctions but also can include sums of
eigenfunctions if w is large enough.



Spectral Window of Size One

Easier to work with an approximate spectral cluster.
Pick χ smooth such that χ(0) = 1 and χ̂ is supported in [ε, 2ε].
We will study

χλ = χ(
√
−∆− λ)

Write

χλ =

∫ 2ε

ε
e it
√
−∆e−itλχ̂(t)dt

If we can write e it
√
−∆ as an integral operator with kernel

e(x , y , t) we can write

χλu =

∫ 2ε

ε

∫
M
e(x , y , t)e−itλχ̂(t)u(y)dtdy



Half Wave Kernel Method

The operator e it
√
−∆ is the fundamental solution to{

(i∂t +
√
−∆)U(t) = 0

U(0) = δy

We can build a parametrix for this propagator and write its kernel
as

e(x , y , t) =

∫ ∞
0

e iθ(d(x ,y)−t)a(x , y , t, θ)dθ

where a(x , y , t, θ) has principal symbol

θ
n−1

2 a0(x , y , t)



Expression for χλ

Substituting into the expression for χλ

χλu =

∫ 2ε

ε

∫
M

∫ ∞
0

e iθ(d(x ,y)−t)e−itλθ
n−1

2 ã(x , y , t, θ)u(y)dθdydt

Change of variables θ → λθ

χλu = λ
n+1

2

∫ 2ε

ε

∫
M

∫ ∞
0

e iλθ(d(x ,y)−t)e−itλθ
n−1

2 ã(x , y , t, θ)u(y)dθdydt

Now use stationary phase in (t, θ). Nondegenerate critical points
when

d(x , y) = t θ = 1

χλ = λ
n−1

2

∫
M
e iλd(x ,y)a(x , y)u(y)dy

where a(x , y) is supported away from the diagonal.



Sogge’s Result

Sogge’s result on windows of width 1 gives a complete sharp (for
clusters) set of Lp estimates.

||χλu||Lp . λδ(n,p) ||u||L2

δ(n, p) =

{
n−1

2 −
n
p

2(n+1)
n−1 ≤ p ≤ ∞

n−1
4 −

n−1
2p 2 ≤ p ≤ 2(n+1)

n−1



Sharpness for clusters

Estimates sharp for spectral clusters and also sharp on the sphere.
Two regimes for sharp estimates

Point
Tube



Sharpness for Eigenfunctions

Can find spherical harmonics for both regimes. However geodesic
flow on a sphere is the antithesis of chaotic.

Sphere has many stable invariant sets under the flow.

Every point has a conjugate point.

Large multiplicity of eigenvalues so a width one window is
efficient.

Expect improvements on multiplicities and eigenfunction
estimates for “chaotic” systems

For n = 2 and negative curvature conjectured Cελ
ε growth.



Bérard’s Remainder Estimate

Case where M has no conjugate points. Bérard proved a log λ
improvement on counting function remainder. This implies a
better L∞ estimate.

||u||L∞ .
λ

n−1
2

(log λ)1/2
||u||L2

This is achieved by shrinking the spectral window by a factor of
log λ.

Means that we need to run propagator for log λ time.



Spectral Window of 1/ log λ

We need to evaluate ∫
t<log λ

e it
√
−∆e itλdt

Cannot achieve this on any manifold but for manifolds without
conjugate point we can use the universal cover. If M has no
conjugate points its universal cover M̃ is a manifold with infinite
injectivity radius. Therefore we can find a solution for{

(i∂t +
√
−∆M̃)U(t) = 0

U(0) = δy

for all time on M̃





Expression for Propagator Kernel

e it
√
−∆ has kernel

e(x , y , t) =
∑
g∈Γ

ẽ(x , gy , t)

where Γ is the group of automorphisms of the covering π : M̃ → M
and the fundamental solution of{

(i∂t +
√
−∆M̃)U(t) = 0

U(0) = δy

is given by

U(t)u =

∫
M̃
ẽ(x , y , t)u(y)dy



The case of constant negative curvature

We will reduce to the simple case where M is two dimensional and
has constant negative curvature, therefore M̃ is the hyperbolic
plane.
We study

χλ = χ((
√

∆− λ)A)

where A = A(λ) controls the size of the spectral window.
Therefore

χλ =

∫ 2ε

ε
e itA
√
−∆e−itAλχ̂(t)dt

So

χλχ
?
λ =

∫ 2ε

ε

∫ 2ε

ε
e iA(t−s)

√
−∆e−iA(t−s)λχ̂(t)χ̂(s)dtds



We have
e(x , y ,At) =

∑
g∈Γ

ẽ(x , gy ,At)

=
∑
g∈Γ

∫ ∞
0

e iθ(d(x ,gy)−tA)θ1/2a(x , gy , tA, θ)dθ

Away from diagonal x = gy the principal symbol of
a(x , gy , tA, θ) is (sinh(d(x , gy)))−1/2.

Only significant contributions when d(x , gy) = At so sum is
finite

If (t − s) is bounded away from zero can directly substitute

this expression for the kernel of e i(t−s)A
√
−∆.



Small t − s

(χλχ
?
λ)1 =

∫ 2ε

ε

∫ 2ε

ε
e iA(t−s)

√
−∆e−iA(t−s)λχ̂(t)χ̂(s)ζ(A(t−s))dtds

for ζ cut off function supported on [−2ε, 2ε] and ζ = 1 on [ε, ε].

(χλχ
?
λ)1u =

∫
M
K1(x , y)u(y)dy

K1(x , y) =

∫
R2

∫
M
e(x , z ,At)e(z , y ,As)e−iA(t−s)λχ̂(t)χ̂(s)u(y)dzdsdt

=
∑

g ,g ′∈Γ

∫
e iA(θ(d(x ,gz)−t)−η(d(g ′z,y)−s))e iA(t−s)λθ1/2η1/2dΛ

where

dΛ =
b(t, s)ζ(A(t − s))dηdθdzdsdt

(sinh(d(x , gz)))1/2(sinh(d(g ′z , y)))1/2



Scaling θ → λθ and η → λη combined with stationary phase in
(t, θ), (s, η) gives

K1(x , y) =
λ

A2

∑
g ,g ′∈Γ

∫
M
e iλ(d(x ,gz)−d(g ′z,y))dΛ

dΛ =
ã(x , y , z)dz

(sinh(d(x , gz)))−1/2(sinh(d(g ′z , y)))−1/2

and the restriction

d(g ′z , y) ∈ [d(x , gz)− ε, d(x , gz) + ε]

Turn one sum into an integral over H2

K1(x , y) =
λ

A2

∑
g∈Γ

∫
H2

e iλ(d(x ,z)−d(z,gy))d Λ̃



but for g 6= Id zero contribution. So

K1(x , y) =
λ

A2

∫
H2

e iλ(d(x ,z)−d(z,y))d Λ̃

Stationary Phase

Phase is stationary (in
angular variables) when z is
on the geodesic to y from x .

Nondegeneracy depends on
the distance between x and
y .

Pick up one factor of A from
radial integral.



Arrive at

K1(x , y) =
λ

A

e iλd(x ,y)a(x , y)

(1 + λ|x − y |)−1/2

This is true for all A including A = 1 which is the Sogge case.
Therefore

||(χλχ?λ)1u||Lp .
λ2δ(n,p)

A
||u||Lp′

Can make this estimate very small by increasing A however we still
need to address the terms given by (t − s) large. This term will
limit how large we make A.



Use Hadamard parametrix for large t − s

For |t − s| > ε we assume that t > s and use

e iAt
√
−∆e−iAs

√
−∆ = e iA(t−s)

√
−∆

and write

(χλχ
?
λ)2 =

∫
e iA(t−s)

√
−∆e i(t−s)λχ̂(t)χ̂(s)(1− ζ(A(t − s)))dtds

=
1

A2

∫
t,s<εA

e i(t−s)
√
−∆e i(t−s)λb(t, s)(1− ζ((t − s)))dtds

=
1

A2

∑
g∈Γ

∫
t,s<εA

∫
M

∫ ∞
0

e i(θ(d(x ,gy)−(t−s))−(t−s)λ)θ1/2dΛ

dΛ =
ã(x , y , θ, t, s)dθdydtds

(sinh(d(x , gy))−1/2



After the usual scaling θ → λθ and stationary phase in (t, θ) we
obtain

(χλχ
?
λ)2u =

∫
K2(x , y)u(y)dy

K2(x , y) =
λ1/2

A

∑
g∈Γ

(sinh(d(x , gy))−1/2e iλd(x ,gy)

where
ε ≤ d(x , gy) ≤ εA

Because of the exponential growth there are eεR such terms at
distance R + O(1) from x . Therefore

K2(R, x , y) = ζ(d(x , gy)− R)K2(x , y)⇒ |K2(R, x , y)| ≤ λ1/2ecR

A



If

TR
λ u =

∫
K (R, x , y)u(y)dy

then ∣∣∣∣∣∣TR
λ u
∣∣∣∣∣∣
L∞

.
λ1/2ecR

A
||u||L1

As e it
√
−∆ is a unitary operator∣∣∣∣∣∣TR

λ u
∣∣∣∣∣∣
L2

.
1

A
||u||L2

Interpolating ∣∣∣∣∣∣TR
λ u
∣∣∣∣∣∣
Lp

.
λ1/2−1/pecR(1−2/p)

A
||u||Lp′

∣∣∣∣∣∣TR
λ u
∣∣∣∣∣∣
Lp

.
λ2δ(n,p)−1/2+3/pecR(1−2/p)

A
||u||Lp′



Final Result

Finally let A = α log λ

||(χλχ?λ)2u||Lp .
∫ c log λ

ε

∣∣∣∣∣∣TR
λ u
∣∣∣∣∣∣
Lp

dR

.
λ2δ(n,p)−1/2+3/p+cα

α log λ
||u||Lp′

Putting this together with the A|t − s| ≤ ε term we obtain (by
picking α small enough)

||χλu||Lp . Cpf (λ, p) ||u||L2

f (λ, p) =
λ

1
2
− 2

p

(log λ)1/2

for 6 < p ≤ ∞.



Kink Point?

For n = 2, L6 is the
kink point
representing change
in sharpness regimes

We get no
improvement for
p = 6, however we
have no sharp
examples



When we interpolate between∣∣∣∣∣∣TR
λ u
∣∣∣∣∣∣
L2

.
1

A
||u||L2 and

∣∣∣∣∣∣TR
λ u
∣∣∣∣∣∣
L∞

.
λ1/2ecR

A
||u||L1

we do not take into consideration sharpness regimes.

For the t − s small
term we can do this
as there is a strong
relationship
between distance
and time.





Wrapping Up

We have the eigenfunction estimates for p > 6

||χλu||Lp . Cpf (λ, p) ||u||L2

f (λ, p) =
λ

1
2
− 2

p

(log λ)1/2

Sharp examples exist for clusters but Cp does not blow up in
these examples

Thought that eigenfunctions estimates are much better, Cελ
ε

To prove good eigenfunction estimates would need to exploit
some cancellation in the sum∑

g∈Γ

(sinh(d(x , gy)))−1/2e iλd(x ,gy)


