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Abstract. Let V be a polarized variation of Hodge structure over a smooth complex
quasi-projective variety S. In this paper, we give a complete description of the typical
Hodge locus for such variations. We prove that it is either empty or equidistributed
with respect to a natural di�erential form, the pull-push form. In particular, it is always
analytically dense when the pull-push form does not vanish. When the weight is 2,
the Hodge numbers are (q, p, q) and the dimension of S is least rq, we prove that the
typical locus where the Picard rank is at least r is equidistributed in S with respect to
the volume form crq, where cq is the qth Chern form of the Hodge bundle. We obtain
also several equidistribution results of the typical locus in Shimura varieties: a criterion
for the density of the typical Hodge loci of a variety in Ag, equidistribution of certain
families of CM points and equidistribution of Hecke translates of curves and surfaces in
Ag.

These results are proved in the much broader context of dynamics on homogeneous
spaces of Lie groups which are of independent interest. The pull-push form appear in
this greater generality and we provide several tools to determine it and we compute it
in many examples.
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1. Introduction

Let G be a semi-simple Lie group and let Γ ⊂ G be a lattice. Homogeneous dynamics is
traditionally interested in the equidistribution properties of the orbits of a Lie subgroup
H acting on Γ\G by right multiplication and, dually, on the dynamics of the left action of
Γ on G/H. Classifying the closure of orbits of such actions is the subject of an extensive
literature with far reaching applications to number theory and ergodic theory.
In this paper, our �rst purpose is to provide a fairly general answer to the following

question:

Question. Assume that a sequence of closed H-orbits is equidistributed in Γ\G. Can
we deduce an equidistribution result for the intersection of these H-orbits with a �xed
analytic subvariety V ⊂ Γ\G?

We consider more generally the following setting: let G be a real semi-simple Lie group,
Γ a lattice in G, H a semi-simple subgroup of G, K a compact subgroup of G (which is not
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assumed to be maximal), and L = H ∩K. Denote by p the projection map G/L→ G/H
and by π the projection map G/L→ G/K. We �x compatible choices of invariant volume
forms ωG, ωG/H and ωH on G, G/H and H respectively (see Section 2.3).
Let (On)n∈N be a sequence of �nite unions of closed H-orbits in Γ\G. Since H is semi-

simple, On has �nite volume with respect to the volume form ωH along H-orbits for every
n ∈ N . We say that the sequence (On)n∈N is equidistributed in Γ\G if the normalized
integration measure1 on (On, ωH) converges weakly to the Haar measure ωG on Γ\G.
Let now S be a real analytic subvariety of Γ\G/K of codimension dim(H/L) whose

smooth locus is oriented. Denote by µS∩π(On) the transverse intersection measure of V and
On, which counts (with an orientation sign and multiplicity) the transverse intersection
points between S and π(On) (see Section 3.2 for precisions). We prove the following:

Theorem 1.1. Assume that the sequence (On)n∈N is equidistributed in Γ\G. Then the
sequence of signed measures 1

Vol(On)
µS∩π(On) on S converges weakly to the restriction of

the G-invariant form
1

Vol(Γ\G/L)
π∗p

∗ωG/H .

This general result has countless potential applications, some of which will be detailed
in the paper. What is interesting about this theorem is that the pull-push form π∗p

∗ωG/H

is not easy, in general, to determine precisely and depends greatly on the subgroup H.
These forms were studied extensively by the second author in [Tho15] with a very di�erent
motivation. Building on this previous work, we will give tools to analyze this pull-push
form and characterize it in various examples.

It sometimes happens that the form π∗p
∗ωG/H vanishes (this vanishing played an im-

portant role in [Tho15]). In that case, our theorem only asserts that positive and negative
intersection points �cancel each other� asymptotically.
The theorem is stronger when G/K, H/L and S are complex analytic. Then, all inter-

sections are counted positively and the form π∗p
∗ωG/H does not vanish (see Corollary 4.6).

It vanishes in restriction to S if and only if all the intersections S ∩On have �exceptional
dimension� (i.e. complex dimension ≥ 1).
In the applications we develop in the next sections, H/L ⊂ G/K will be Mumford�Tate

domains of Hodge structures and S → Γ\G/K is the period map of a polarized variation
of Hodge structure. In Proposition 5.9, we give an algebraic characterization of when the
form π∗p

∗ωG/H is non-zero in restriction to some analytic variation of Hodge structure.

1.1. Equidistribution of typical Hodge loci. One of the main motivations of The-
orem 1.1 is its application to the equidistribution of Hodge loci of variations of Hodge
structure. In fact, the present paper is a continuation of the �rst author's previous
work [Tay20], which studied the particular case of the Noether�Lefschetz locus of a one-
parameter family of K3 surfaces.
Let V = {VZ,F•V , B} be a polarized variation of Hodge structure (Z-PVHS) of weight

2k over a complex quasi-projective algebraic variety S of dimension d ≥ 1 (see Section 5).
The group of Hodge classes Hdg(s) at a point s is the free abelian group VZ,s∩FkVs. An
important class of examples of Z-PVHS is provided by those of geometric origin: starting
from a smooth projective morphism f : X → S where S is a smooth complex quasi-
projective variety, the 2kth cohomology groups of the �bers, modulo torsion, endowed
with their Hodge structure give rise to a Z-PVHS of weight 2k on S, see [Voi02, Partie
III] for more details.

1See De�nition 2.11 for our convention on the normalization of this measure.
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More generally, let V⊗ be the countable direct sum of of Z-PVHS
⊕

a,b≥0Va ⊗ (V∨)b,
where V∨ is the dual Z-PVHS. Then the Hodge locus HL(S,V⊗) is de�ned as the subset
s ∈ S where Vs has more Hodge tensors than the very general �ber Vs′ . It is a countable
union of algebraic subvarieties by [CDK95, BKT20].
In this paper, we give a precise description of the typical part of this Hodge locus. More

precisely, let G be the generic Mumford�Tate group of the variation. The Hodge locus
can also be seen as the locus of points of S where the Mumford�Tate group is strictly
contained in G.
For H ⊂ G a sub-Mumford�Tate group, the typical Hodge locus for H is the set of

points s ∈ HL(S,V⊗) whose Mumford�Tate group is contained in H and such that
π∗p∗ωG/H,s ̸= 0. The typical Hodge locus is then the union of typical Hodge loci over all
Mumford�Tate subgroups H.
We prove then the following theorem, see Proposition 5.9.

Theorem 1.2. The following statements are equivalent:

(1) There exists H ⊆ G such that the typical Hodge locus for H is equidistributed with
respect to π∗p

∗ωG/H and in particular analytically dense.
(2) There exists H ⊆ G and one point s ∈ S such that π∗p

∗ωG/H is non-zero at x.
(3) The typical Hodge locus is non-empty.

Remark 1.3. The equidistribution assertion in the above theorem as well as in all the
subsequent ones in this article, when not explicitly speci�ed, should be understood in the
sense of Theorem 1.1.

Remark 1.4. In the case of the Noether�Lefschetz loci, the above theorem is a strength-
ening of the classical criterion of Green, see [Voi02, Prop. 17.20].

The following proposition gives a criterion for the emptiness of the typical Hodge locus,
see Proposition 5.11.

Proposition 1.5. If for every sub-Mumford�Tate group H ⊆ G the Hodge structure g/h
satis�es:

(g/h)−p,p ̸= 0 for some |p| ≥ 2,

then the typical Hodge locus is empty.

Theorem 1.2 will be applied to situations where we know how to compute the form
π∗p

∗ωG/H . These applications will be explained in the next section.

Theorem 1.2 and Proposition 1.5 have also been independently studied by Baldi�
Klingler�Ullmo in [BKU21], see also the prior work of Klingler�Otwinowska [KO21].
Moreover, the authors prove in [BKU21, Theorem 2.3] that the condition in Proposi-
tion 1.5 is always satis�ed whenever V has level more than 3.

1.2. Applications. We explain now further applications of our main theorem. They
correspond to situations where we know how to compute the pull-push form and they are
hence far from exhaustive.

1.2.1. Re�ned Noether�Lefschetz loci. Let V be a polarized variation of Hodge structure
of weight 2 over a complex quasi-projective algebraic variety S of dimension d ≥ 1. Let
(q, p, q) be the Hodge numbers.
Without loss of generality, one can assume that the Z-PVHS is simple, so that the group

of Hodge classes at a generic point is 0. The Noether�Lefschetz locus is then de�ned as
the subset of elements of S which admit non-trivial Hodge classes. More generally, we
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de�ne the re�ned Noether�Lefschetz locus of rank r as the subset where the group of
Hodge classes has rank at least r, and denote it by NL≥r(S).
Let (VZ, B) be the �ber of V at a point s ∈ S. The period domain associated to V is

the homogeneous space D = G/K, where G is the real group SO(B) and K the stabilizer
of the Hodge structure at s, and S has a period map to the quotient Γ\D, where Γ is the
subgroup of G preserving VZ. For our purposes, we will assume that V has generically
immersive period map. Otherwise, we can replace S by its image by the period map,
which still has an algebraic structure by [BBT18].
The re�ned Noether�Lefschetz locus of rank r is a countable union of algebraic subva-

rieties which are the intersection of S with certain Mumford�Tate subdomains obtained
as projections of right H-orbits for the subgroup H of G stabilizing a set of r integral
elements in VZ with positive intersection matrix. Applying Theorem 1.1 in this setting,
we obtain equidistribution results for re�ned Noether�Lefschetz loci.
For all n ∈ N>0, de�ne NL≥r(n) as the set of points s such that (Hdg(s), B) contains a

primitive sublattice of rank r in restriction to which B has discriminant at most n. The
set NL≥r(n) is an algebraic subvariety of S. It has expected dimension d − rq but can
contain higher dimensional components.

Theorem 1.6. Let {VZ,F•V , B} be a simple Z-PVHS of weight 2 and Hodge numbers
(q, p, q) over a complex analytic variety S of dimension d = rq and which has generically
immersive period map. If r ≤ p, then there is a constant λ > 0 such that, for every
relatively compact open subset Ω ⊂ S with boundary of measure 0, we have

n− p+2q
2 |{(s, P ), s ∈ Ω, P ⊆ Hdg(s), rank(P ) = r, disc(P ) ≤ n}| −→

n→+∞
λ

∫
Ω

cq(F2V)r ,

where cq denotes the q
th Chern form of the bundle F2V endowed with the Hodge metric.

This theorem relies on an �elementary� equidistribution result for positive de�nite sub-
lattices of a quadratic lattice that we prove in Section 6.1. Using a more re�ned equidis-
tribution result of Eskin�Oh [EO06b] based on Ratner theory, one can get a more precise
equidistribution theorem for the locus where the Néron�Severi group is a �xed quadratic
lattice. For a positive de�nite matrix M , we denote by µ1(M) the square-root of the
smallest non-zero value integrally represented by M . Say also that M is primitively rep-
resented by (VZ, B) if there exists a primitive sublattice of VZ of rank r having a basis
with intersection matrix equal to M .

Theorem 1.7. Let {VZ,F•V , B} be a simple Z-PVHS of weight 2 and Hodge numbers
(q, p, q) over a complex analytic variety S of dimension d = rq and which has generically
immersive period map. Assume that p, 2q ≥ 2 and rq < p.
Let (Mn)n∈N be a sequence of positive de�nite integral matrices of rank r which are

primitively represented by (VZ, B) and such that µ1(Mn) → ∞, as n → ∞. Then there
exists a sequence (a(Mn))n∈N of positive real numbers such that, for every relatively com-
pact open subset Ω ⊂ S with boundary of measure 0, we have:

1

a(Mn)
|{(s, λ1, · · · , λr)) ∈ Ω× Vr

Z,s, (B(λi.λj)) =Mn, λi ∈ Hdg(s)}| −→
n→∞

∫
Ω

cq(F2V)r.

Remark 1.8. In the above theorems, one needs to exclude the points belonging to excep-
tional components of NL≥r(S) of dimension ≥ 1 from the counting, i.e., the non-typical
ones. The precise versions of these theorems are given in Section 6.1.3.

Remark 1.9. The Siegel�Weil formula gives an arithmetic expression for the asymptotic
behaviour of the sequence a(Mn) in Theorem 1.7. The precise expression and how it
grows with det(Mn) are discussed in Lemma 6.7.
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Remark 1.10. A base of dimension rq is the minimal dimension for which a re�ned
Noether�Lefschetz locus is expected to exist for dimension reasons. If the dimension
of the base S is greater than rq, then Theorem 1.7 gives the equidistribution of NL≥r(S)
towards cq(F2V)r in terms of currents (see Theorem 3.7).

Remark 1.11. As soon as q ≥ 2, Gri�ths' transversality combined with the integrability
condition of the tangent space to S imply that the dimension of S is at most pq

2
by [Car86,

Theorem 1.1].

Remark 1.12. The above theorems are already interesting when r = 1, for which they
give the equidistribution of the Noether�Lefschetz locus. The case r = q = 1 was treated
by the �rst author in [Tay20].

Remark 1.13. If the base S of the variation V is a complex projective variety, one can
apply Theorem 1.1 to Ω = S and get an asymptotic estimate of the �growth� of the
Noether�Lefschetz locus of S. We conjecture that the same estimate holds when S is
quasi-projective of arbitrary dimension (which implies that

∫
S
cq(F2V)r < +∞). The

case q = r = 1 has been settled in [Tay20]. One could hopefully obtain this global
estimate by working with the cohomology of an appropriate compacti�cation of Γ\G/K.
This raises more general questions that are beyond the scope of this paper.

Theorem 1.1 applies to families of algebraic varieties whenever one has a generic local
Torelli theorem. This holds for families of abelian varieties, K3 surfaces, hyperkähler
manifolds and for projective hypersurfaces by the general result of [Don83], which yields
the following examples:

• Smooth quintic surfaces in P3 have Hodge numbers

h2,0 = 4 , h1,1 = 45 .

The moduli space of quintic surfaces has dimension 40 and satis�es a generic
Torelli theorem by [Don83]. Thus Theorems 1.6 and 1.7 give equidistribution re-
sults for the re�ned Noether�Lefschetz loci on the moduli space of quintic surfaces
up to r = 10.

• Cubic hypersurfaces in P7 have Hodge numbers

h6,0 = h5,1 = 0 , h4,2 = 8 , h3,3 = 178

So their cohomology in degree 6 is a Hodge structure of weight 2. The moduli
space of cubic hypersurfaces in P7 has dimension 56 and satis�es the generic
Torelli theorem [Don83]. Thus again Theorems 1.6 and 1.7 give equidistribution
results for re�ned Hodge loci on the moduli space of cubic hypersurfaces of P7 up
to r = 7.

1.2.2. Hodge loci in Shimura varieties. For g ≥ 2, let Ag be the moduli space of prin-
cipally polarized complex abelian varieties of dimension g. It is well-known that the
smallest codimension of a special subvariety is g − 1 and it is realized for example by
Ag−1 × A1. It is then expected, see [BKU21, Remark 2.16], that the Hodge locus is
analytically dense in any Hodge generic subvariety of dimension at least g − 1.
As a partial answer, we have the following results. Let F1 → Ag be the Hodge bundle

and let (cn(F1))0≤n≤g be its Chern forms with respect to the Hodge metric. For 1 ≤ k ≤ g,
de�ne 2

sk = det
(
((−1)j−icg−k+j−i(F1))1≤i,j≤k

)
.

Then sk is a semi-positive form. We prove then the following result.

2This is a particular example of a Schur polynomial.
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Theorem 1.14. Let X ⊆ Ag be a smooth subvariety. If the restriction of sk to X is
non-zero, then the locus of elements in X parameterizing abelian varieties containing a
sub-abelian variety of dimension k is analytically dense and equidistributed with respect
to sk. In particular, if X is compact and has dimension at least (g−1)(g−2)

2
, then the Hodge

locus is analytically dense in X.

If k = 1, then the above theorem yields that the Hodge locus is dense if cg−1 is non-zero
by restriction to X. This prompts the following question.

Question 1.15. Let X be a Hodge generic subvariety of Ag of dimension at least g − 1.
Is the restriction of cg−1 to X always non-zero?

Remark 1.16. The assumption of Hodge genericity is necessary. Indeed, if X = A2 ×
{pt} ⊆ A4. Then X has dimension 3 ≥ 4 − 1 = 3 but the the restriction of c3 to X
vanishes. Indeed, the restriction of the vector bundle F1 to X splits as a direct sum of
two vector bundles of rank 2, one of them being trivial. Hence c3 vanishes on X.

Theorem 1.14 admits the following generalization.

Theorem 1.17. Let S be a connected Shimura variety associated to a connected Shimura
datum (G,D). Assume that there exists a Shimura sub-datum (H,DH) such that π∗p

∗ωG/H

is positive of type (k, k). Then the Hodge locus is dense in any subvariety of dimension
at least k and equidistributed with respect to π∗p

∗ωG/H . In particular, if G is absolutely
simple and has a Shimura curve associated to a Shimura subgroup H, then the Hodge
locus is dense in any hypersurface and equidistributed w.r.t π∗p

∗ωG/H .

In particular, for unitary Shimura varieties, we obtain the following.

Corollary 1.18. Let S be a Shimura variety of unitary type (n, 1). Then the typical
Hodge locus is dense and equidistributed in any subvariety of S of positive dimension.

Let S be a Shimura variety associated to a connected Shimura datum (G,DH) and let
k be the minimal integer for which there exists a sub-Shimura datum (H,DH) such that
π∗p

∗ωG/H is of type (k, k). Then Question 1.15 has the following generalization.

Question 1.19. Let X ⊂ S be a Hodge generic subvariety of dimension at least k. Is
the restriction of π∗p

∗ωG/H to X always non-zero?

1.2.3. Equidistribution of families of CM points in Shimura varieties. Another applica-
tion of Theorem 1.1 is an equidistribution result for families of CM points in some Shimura
varieties. Several results about the equidistribution of CM points are known, see for ex-
ample [Duk88, Zha05, Kha19] and in general, the following conjecture is widely open, see
[Yaf17, Conjecture 2.6] for more details on this conjecture.

Conjecture 1.20. Let S be a Shimura variety over Q and let (xn)n∈N be a generic
sequence of CM points in S. Then the sequence of Galois orbits Aut(Q/Q) ·xn is equidis-
tributed in S(C).

In what follows, we will state the result we prove in the simplest case of Siegel Shimura
varieties, referring to Theorem 6.17 for the most general statement.
Let g ≥ 1. A polarized isogeny f : (A1, ω1) → (A2, ω2) of similitude factor N ≥ 1

between two principally polarized abelian varieties of dimension g is an isogeny which
satis�es f ∗ω2 = N ω1. If A1 = A2, we say moreover that f is regular if the centralizer
of the homological realization of f in GSp2g(H

1(A,R)) is a torus. This implies that A1

is a CM abelian variety3, meaning that End(A)Q is a commutative algebra of degree 2g

3Short for �abelian variety with complex multiplication�
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over Q, i.e., the maximal possible dimension. Conversely, every CM polarized Abelian
variety admits a regular self-isogeny (Lemma 6.16). An equivalent characterization of
CM abelian varieties is that their Mumford�Tate group MT (A) (which is contained in
the centralizer of the isogeny f) is a torus, see De�nition 6.12.
Let ω be the �rst Chern form of the Hodge bundle on Ag. It is well know that ω is a

Kähler form. If A is a principally polarized abelian variety, we denote by † : End(A)Q →
End(A)Q the Rosati involution. As an application of Theorem 1.1, and of the main result
of [COU01] (see also [EO06a]), we get an equidistribution result for CM abelian varieties
admitting self-isogenies of �xed degree.

Theorem 1.21. There exists a sequence b(N) such that, for every relatively compact
open subset Ω ⊂ Ag with boundary of measure 0, we have:∣∣{(A, f), A ∈ Ω, f ∈ End(A), f † ◦ f = NId, and f regular}

∣∣ ∼
N→+∞

b(N)

∫
Ω

ω
g(g+1)

2 .

This theorem does not answer Conjecture 1.20 because, as N grows, our equidistribut-
ing sets are the union of an increasing number of Galois orbits. It is however sharper than
other more elementary equidistribution results. For comparison, in the case of g = 1,
Conjecture 1.20 is answered positively by Duke's equidistribution theorem for CM ellip-
tic curves with fundamental discriminant N [Duk88, Thereom 1] and by Clozel�Ullmo in
general [CU04, Théorème 2.4], while an elementary counting argument easily gives the
equidistribution of CM curves with discriminant ≤ N . Our theorem lies in-between: it
asserts that the set of CM elliptic curves with discriminant of the form N − 4a2 for all
integers 0 ≤ a ≤

√
N is equidistributed when N goes to +∞.

1.2.4. Equidistribution of Hecke translates. We mention two further applications of The-
orem 1.1 that we obtain. The �rst one is related to the dynamics of Hecke translates in
Ag.
Let S and D be two subvarieties of Ag of complimentary dimensions such that S has

dimension d ≤ 2. Let ω be as before the �rst Chern form of the Hodge bundle on Ag.
Also, if (s, d) ∈ S × D, with corresponding abelian varieties As and Ad, we denote by
IsogN(As, Ad) the set of isogenies from As to Ad of similitude factor N . An isogeny
f : As → Ad is said to be transverse, if it does not admit �rst order deformation in
S ×D. Then we prove the following, see Section 6.3 for more details.

Theorem 1.22. There exists a sequence (c(N))N≥1 of positive real numbers such that
for every relatively compact open subsets Ω ⊂ S, Ω′ ⊂ D with boundary of measure 0, we
have:

|{(s, d, f)| (s, d) ∈ Ω× Ω′, f ∈ IsogN(As, Ad) regular}| ∼
N→∞

c(N)

∫
Ω

ωd

∫
Ω′
ω

g(g+1)
2

−d .

In particular, the locus of points in S isogenous to a point in D is analytically dense and
equidistributed in S.

We have the following corollary.

Corollary 1.23. Let S ⊂ A4 be a curve. Then the locus of points in S isogenous to the
Jacobian of a curve is analytically dense and equidistributed in S.

1.2.5. Equidistribution in cohomology. Theorem 1.1 yields that cohomology classes of
Γ\G/K represented by an equidistributing sequence of locally homogeneous submanifolds
converge after normalization to the cohomology class of a locally invariant form. (See
Corollary 2.9 for a precise statement.)
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To illustrate this in a speci�c example, we use the same notation as in Section 1.2.1.
Then we have a family of special cycles in Γ\G/K ≃ Γ\D where D is the period domain,
de�ned as follows : for r ≥ 1, λ0 ∈ V r

Z , H = Stab(λ0), M ∈Mr(Z) semi-positive de�nite

matrix with rank r(M), and VM
def
= {λ ∈ V r

Z , (B(λi.λj))1≤i,j≤r =M}, let

Z(M)
def
= Γ\ (∪λ∈VM

{x ∈ D, x⊥λi, ∀i = 1, . . . , r}) ↪→ Γ\D.
Let cq(F2V) be as before the top Chern form of the vector bundle F2V .

Proposition 1.24. Let (Mn)n∈N be a sequence of positive de�nite matrices primitively
represented by (VZ, B) such that µ1(Mn) → ∞, as n→ ∞. Then

Z(Mn) ∼
n→∞

a(Mn) cq(F2V)r.

This result is reminiscent of the work of Kudla�Millson on modularity of special cycles,
see [KM90], see also [Gar18] for a recent approach using superconnections. Indeed, in
both these papers, it is proved that the formal generating series:∑

M≥0

Z(M) ∪ cq(F2V)r−r(M)etr(2iπMτ), τ ∈ Hr

is a Siegel modular form valued in H2qr(Γ\D,R). Here Hr is the Siegel upper half space.
Hence the knowledge of the structure of the space of Siegel modular forms allows in
principle to give an asymptotic formula of Z(M) in terms of the constant term cq(F2V)r.
As r grows, the structure of the space of Siegel modular forms becomes complicated
to analyze and much work is needed to derive formulas similar to ours through this
approach. Our method yields a straightforward estimate on the asymptotic growth of
Z(M) without using these results. One might even hope that this asymptotic estimate
could help understand the cusp structure of Kudla�Millson's modular forms.

1.3. Related work. The distribution of the Hodge locus has been investigated indepen-
dently and concomitantly by Baldi�Klingler�Ullmo in [BKU21]. Additionally to striking
results on the atypical Hodge locus (see also [KO21] for prior work), they prove several
properties about the typical Hodge locus that echo the present work, namely that the
typical Hodge locus is either empty or dense, and is always empty when the level is at
least 3.
Several results analogous to Theorem 1.7 for algebraic families parameterized by Shimura

varieties have been settled in arithmetic situations over rings of integers of number �elds
and over curves de�ned over �nite �elds: indeed Charles proved [Cha18] that there are
in�nitely many places where the reduction of two elliptic curves are isogenous ; Shankar
and Tang [ST20] proved that an abelian surface over a number �eld with real multipli-
cation has in�nitely many specializations which are isogenous to the self-product of an
elliptic curve and in collaboration with Maulik in [MST20b] they derive similar results
for ordinary abelian surface over the function �eld of a curve over a �nite �eld. Finally
the analogous statement of Theorem 1.7 for K3 type variations of Hodge structures over
curves has been proved in the number �eld setting in [SSTT19, Tay22] and over curves
over �nite �elds in [MST20a]. It is thus interesting to further explore other analogous
statements of Theorem 1.1, Theorem 1.7 and Theorem 1.22 over number �elds and func-
tion �elds situations.

1.4. Organization of the paper. In Section 2, we introduce the setting of homoge-
neous dynamics and explain how to reformulate an equidistribution theorem in terms
of currents. In Section 3, we deduce our general theorem for transverse intersections of
locally homogeneous subspaces with a �xed analytic subvariety, proving Theorem 1.1.
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Section 4 is devoted to the study of the pull-push form. In particular, we explain how to
interpret its cohomology class via compact duality of homogeneous spaces. In Section 5,
we discuss the pull-push forms in the case of period domains of variations of Hodge
structures and relate them to Chern classes of Hodge bundles, allowing us to compute
these forms explicitly in the setting of a variation of Hodge structure of weight 2 and
Shimura varieties. Finally, in Section 6, we discuss our applications : the study of re�ned
Noether�Lefschetz loci, the equidistribution of some families of CM points in Shimura
varieties and the equidistribution of intersection points of Hecke translates of the Torelli
locus with a curve and a surface in Ag.
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2. Equidistribution in terms of currents

In this section, we recall some background on convergence of measures, currents and
homogeneous spaces. Then we reformulate equidistribution results in homogeneous dy-
namics in terms of weak convergence of currents. Finally, we recall some equidistribution
results from Ratner's work.

2.1. Convergence of measures. Let us start by recalling a few classical facts in mea-
sure theory which will be used mainly in Section 3.
Let S be an analytic subset of dimension d of a manifold M whose smooth locus is

oriented, and let ω be a smooth form of degree d on M . Then the restriction of ω to the
smooth locus of S de�nes a signed Radon measure on S. This measure is regular in the
sense that:

(1) For every open subset U of S and every sequence of compact sets (Cn)n∈N with
Cn ⊂ C̊n+1 and

⋃
n∈NCn = U , we have∫

U

ω = lim
n→+∞

∫
Cn

ω .

(2) For every compact subset C ⊂ S and every sequence of open sets (Un)n∈N with
Ūn+1 ⊂ Un and

⋂
n∈N Un = C, we have∫

C

ω = lim
n→+∞

∫
Un

ω .

In the absence of any precision, we say that a set A ⊂ S has measure 0 if the intersection
of A with the smooth locus of S has Lebesgue measure 0 in any coordinate chart. This
implies that its measure with respect to ω is 0.
Given a sequence of signed Radon measures µn, we have the following equivalent char-

acterizations of the convergence of µn to ω:

(i) for every continuous function f : S → R with compact support,

µn(f) −→
n→+∞

∫
S

fω ,
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(ii) for every relatively compact open subset Ω of S with boundary of measure 0,

µn(Ω) −→
n→+∞

∫
Ω

ω .

We then say that µn converges weakly to ω and we write

µn ⇀
n→+∞

ω.

We will say that µn converges weakly to ω on an open subset U if the restriction of µn

to U converges weakly to the restriction of ω. Equivalently, µn converges weakly to ω on
U if Property (i) above holds for any function with compact support inside U .
The following standard facts will be useful in proving weak convergence of measures:

Proposition 2.1. Let (Ui)i∈I be an open covering of S. Then µn converges weakly to ω
on S if and only if converges weakly to ω on Ui for all i ∈ I.

Proposition 2.2. Let Z be a closed subset of S of measure 0. Assume that µn converges
weakly to ω on Zc. Then the following are equivalent:

(i) µn converges weakly to ω on S,
(ii) for very compact subset C ⊂ Z and every ϵ > 0, there exists an open neighborhood

Uϵ of C such that
lim sup
n→+∞

|µn|(Uϵ) ≤ ϵ .

Here, |µn| = µ+
n + µ−

n denotes the total variation measure of µ.

2.2. Currents on manifolds. For more details on this section, we refer to [GH94, Chap-
ter 3, section 1].
Let M be a real manifold of dimension n. For k ≥ 0, let Ωk

c (M) be the vector space
of C∞ di�erential forms on M of degree k with compact support. It is endowed with its
natural topological space structure making it a Fréchet space.

De�nition 2.3. A current of degree k on M is a continuous linear form on Ωn−k
c (M).

The space of currents of degree k on M is denoted by Dk(M).

Example 2.4. If N ↪→ M is an oriented properly immersed submanifold of codimension
k of M , the integration current TN ∈ Dk(M) is de�ned by

TN(β) =

∫
N

β, β ∈ Ωn−k
c (M).

Example 2.5. A di�erential k-form α induces a k-dimensional current Tα de�ned by

Tα(β) =

∫
M

α ∧ β, β ∈ Ωn−k
c (M).

The exterior derivative d on di�erential forms induces a map

d : Dk(M) → Dk+1(M)

de�ned by
dT (ϕ) = (−1)k+1T (dϕ), ϕ ∈ Ωn−k−1

c (M).

A current T is closed if dT = 0.
The exterior derivative de�nes a cochain complex structure on (D•(M)), and Exam-

ple 2.5 gives a morphism of cochain complexes

(Ω•(M), d) → (D•(M), d).

The previous morphism is in fact a quasi-isomorphism (i.e. it induces isomorphisms at
the level of cohomology groups, see [GH94, p.382]).
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The space Dk(M) is naturally a topological vector space when equipped with the weak
topology: a sequence Tn of degree k currents converges weakly to a current T (which we
write Tn ⇀ T ) if

Tn(β) −→
n→+∞

T (β)

for all β ∈ Ωn−k
c (M).

Assume now thatM is a complex manifold of complex dimension n. Then the complex
D•(M) admits a bigrading

Dk(M) =
⊕

p+q=k

Dp,q(M) ,

where Dp,q(M) is the topological dual of the complex vector space Ωn−p,n−q
c (M).

In particular, if Z ⊆M is a closed complex analytic subvariety of complex codimension
k, we can similarly de�ne a closed integration current TZ ∈ Dk,k(M) by integrating over
(the smooth locus of) Z.

2.3. Homogeneous spaces, orientations and volume forms. In this section, we
introduce the notations that we will be using throughout the paper and recall some facts
on volume forms on Lie groups.
Let G denote a real algebraic semi-simple Lie group. Suppose we are given the following

subgroups of G:

• a lattice Γ,
• a semi-simple Lie subgroup H without compact factor,
• a compact subgroup K.

Let L be the intersection of K and H. This is a compact subgroup of H. The group
H acts on the right on the quotient Γ\G, and we will be interested in the next section in
equidistribution properties of orbits of this action and their projection to Γ\G/K.
Let g, h, k and l denote respectively the Lie algebras of G, H, K, and L. Up to taking

subgroups of index 2, we can assume that the adjoint actions of G, H, K, and L have
determinant 1. We then �x once and for all some orientation of g, h, k and l and orient
accordingly the quotient spaces g/k, g/h, g/l, k/l and h/l. Those orientations induce
orientations on G/K, G/H, G/L, K/L and H/L respectively.
Recall that the Lie algebra g carries a natural symmetric bilinear form called the

Killing form, which is invariant under the adjoint action and non-degenerate since G is
semi-simple. Its restriction to h, k or l is still non-degenerate. We denote by ωG, ωH , ωK

and ωL the volume forms associated to the restricted Killing metric and the prescribed
orientations on g, h, k and l respectively, as well as the induced bi-invariant volume forms
on G, H, K, and L. Finally, we denote by ωG/K , ωG/H , ωG/L, ωK/L and ωH/L the invariant
volume forms on the corresponding homogeneous spaces induced by ωG, ωH , ωK and ωL.
The volume forms ωG and ωG/K respectively factor to volume forms on Γ\G and

Γ\G/K, and we de�ne respectively

Vol(Γ\G) =
∫
Γ\G

ωG , Vol(K) =

∫
K

ωK , Vol(Γ\G/K) =

∫
Γ\G/K

ωG/K .

The compatibility of the volume forms gives the following identity:

Vol(Γ\G) = Vol(Γ\G/K) · Vol(K) .

Similarly, if xH is a closed H-orbit in Γ\G, then ωH , ωL and ωH/L induce volume forms
on xH, L and xH/L. We denote respectively by Vol(xH), Vol(L) and Vol(xH/L) their
total mass, and we have the following identity:

Vol(xH) = Vol(xH/L) · Vol(L) .
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2.4. Equidistribution in terms of currents. In this section, we reformulate equidis-
tribution results of sequences of H-orbits in terms of convergence of currents. As before,
for all n ∈ N, let On be a �nite union of closed H-orbits in Γ\G. The starting point of
our work is the remark that the equidistribution of a sequence {On ⊂ Γ\G, n ∈ N} can
be reformulated as an equidistribution of the currents of integration over On.
To be more precise, let p denote the projection from G/L to G/H and π the projection

from G/L to G/K.

Lemma 2.6. Assume that the sequence (On)n∈N is equidistributed in Γ\G and let T̂On/L

denote the integration current on On/L ⊂ Γ\G/L. Then

1

Vol(On/L)
T̂On/L ⇀

1

Vol(K/L)Vol(Γ\G/K)
p∗ωG/H .

The form p∗ωG/H can be seen as a transverse volume form to the foliation of G/L by
translates of H/L. Note that, by applying the lemma to L = {1G}, we get the following
corollary:

Corollary 2.7. Assume that the sequence (On)n∈N is equidistributed in Γ\G and let TOn

denote the integration current on On. Then

1

Vol(On)
TOn ⇀

1

Vol(Γ\G)
p̂∗ωG/H ,

where p̂ is the projection from G to Γ\G.

Finally, one can push this equidistribution forward by the �bration map from G/L to
G/K. Recall that the map π induces a push-forward map

π∗ : Ω
•(G/L) → Ω•−dim(K/L)(G/K)

which is by de�nition Poincaré dual to the pull-back map π∗, i.e.∫
G/K

(π∗α) ∧ β =

∫
G/L

α ∧ (π∗β)

for all β with compact support (for more details, see Section 4.1 or [BT82, p.37]). We
still denote by π and π∗ the factorization of those maps by the left action of Γ.

Theorem 2.8. Assume the sequence (On)n∈N equidistributes in Γ\G and let TOn/L denote
the integration current on On/L ⊂ Γ\G/K. Then

1

Vol(On/L)
TOn/L ⇀

1

Vol(K/L)Vol(Γ\G/K)
π∗p

∗ωG/H .

Proof. Let H denote the foliation of Γ\G/L by the left translates of H/L and TH ⊂
T (Γ\G/L) the tangent distribution to this foliation. The volume form ωH/L on H/L
de�nes a smooth section ωH of ΛmaxT ∗H.
Let α be a form of degree dim(G)−dim(H) with compact support on Γ\G/L, and let f

be the smooth function with compact support such that α|TH = fωH. The compatibility
between the various volume forms gives

α ∧ p∗ωG/H = fωG/L .
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Let p0 denote the projection from Γ\G to Γ\G/L. We have

1

Vol(On/L)

∫
On/L

α =
1

Vol(On/L)

∫
On/L

f ωH

=
1

Vol(On)

∫
On

f ◦ p0 ωH

−→
n→+∞

1

Vol(Γ\G)

∫
Γ\G

f ◦ p0 ωG

and
1

Vol(Γ\G)

∫
Γ\G

f ◦ p0 ωG =
1

Vol(Γ\G/L)

∫
Γ\G/L

f ωG/L

=
1

Vol(Γ\G/L)

∫
Γ\G

α ∧ p∗ωG/H .

This shows that 1
Vol(On/L)

T̂On/L converges weakly to 1
Vol(Γ\G/L)

ωG/H . □

Proof of Theorem 2.8. We push forward the equidistribution of Lemma 2.6 to Γ\G/K.
Note that we have TOn/L = π∗T̂On/L.
Let α be a form of degree dim(H/L) with compact support on Γ\G/K. We then have

1

Vol(On/L)
⟨TOn/L, α⟩ =

1

Vol(On/L)
⟨T̂On/L, π

∗α⟩

→ 1

Vol(Γ\G/L)

∫
Γ\G/L

π∗α ∧ p∗ωG/H

=
1

Vol(Γ\G/L)

∫
Γ\G/K

α ∧ π∗p∗ωG/H (by de�nition of π∗).

□

For n ∈ N, the integration current TOn/L is closed since On/L has empty boundary.
It thus has a well de�ned cohomology class [On/L] ∈ HdH (Γ\G/K,R) where dH is the
codimension of H/L in G/K.

Corollary 2.9. Assume that the sequence (On) is equidistributed in Γ\G and let [On/L]
denote the corresponding cohomology class in HdH (Γ\G/K,R). Then

1

Vol(On/L)
[On/L] →

n→∞

1

Vol(K/L)Vol(Γ\G/K)
[π∗p

∗ωG/H ] .

2.5. Ratner theory and its consequences. In this �nal section, we recall some equidis-
tribution results à la Ratner of homogeneous orbits in locally homogeneous spaces. These
results will be used when studying the re�ned Noether�Lefschetz locus in Section 6.1.
We place ourselves in an arithmetic setting. Though this is not a requirement of Ratner

theory, it is the source of its most remarkable consequences and will be su�cient for our
applications.
We thus assume that we are given an inclusion H ⊂ G of semi-simple algebraic groups

over Q such that
• G is a subgroup of GR containing G0

R,
• H = G ∩HR,
• Γ is commensurable to ρ−1(GL(n,Z)), for some faithful representation ϕ : G →
GL(n) over Q.4

4The commensurability class of ρ−1(GL(n,Z)) is independent of the representation ρ.
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By a lemma of Chevalley (see [Ben08, Proposition 4.6]), we can �nd a free Z-module
VZ and an embedding G ↪→ GL(VQ) such that H is the stabilizer in G of a vector
v0 ∈ VZ. We can moreover assume that the G-orbit of v0 is Zariski closed and that Γ
preserves VZ. For every λ ∈ R>0, we can now identify the homogeneous space G/H with
the G-orbit of λv0 in VR.
The following classical result of homogeneous dynamics establishes the equivalence

between closed H-orbits in Γ\G and discrete Γ-orbits in G/H.

Lemma 2.10. Let g be an element in G, let x be its projection to Γ\G and v = gv0 its
projection to Gv0 = G/H. Then the following are equivalent:

• the set ΓgH is closed in G,
• the right H-orbit of x is closed in Γ\G,
• the left Γ-orbit of v is discrete in G/H,
• the group Γ ∩ gHg−1 is a lattice in gHg−1,
• there exists λ ∈ R>0 such that λv ∈ VZ.

Now, let now Vn be a �nite union of discrete Γ-orbits in G/H and let On be the
corresponding �nite union of closed H-orbits in Γ\G. The volume form ωH induces an
H-invariant measure νn on Γ\G, supported by On, whose total mass Vol(On) is �nite.

De�nition 2.11. We say that the sequence (On)n∈N is equidistributed in Γ\G if the
sequence of probability measures

1

Vol(On)
νn

converges weakly to
1

Vol(Γ\G)
ωG .

We say that the sequence (Vn)n∈N is equidistributed in G/H if the discrete measure

1

Vol(On)

∑
x∈Vn

δx

converges weakly to ωG/H .

Recall the following classical lemma from [EO06b, Proposition 2.2]

Lemma 2.12. The sequence (Vn)n∈N is equidistributed in G/H if and only if the sequence
(On)n∈N is equidistributed in Γ\G.

In [EO06b], Eskin and Oh give an equidistribution criterion for �nite unions of closed
orbits which relies on Ratner's groundbreaking work on unipotent dynamics as well as
further developments by Mozes�Shah [MS95] and Dani-Margulis [DM93, DM93].
Let On =

⋃ln
i=1 xi,nH be a �nite union of closed H-orbits in Γ\G and let Vn =

⋃ln
i=1 Γvi,n

be the corresponding union of discrete Γ-orbits in G/H.

De�nition 2.13. We say that the sequence (On)n∈N has no loss of mass if for all compact
subsets C of G/H,

1

Vol(On)

 ∑
i

xi,nH∩C=∅

Vol (xi,nH)

 −→
n→+∞

0 .
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De�nition 2.14. The sequence (On) is called focused if there exists g ∈ G and a subgroup
H ′ of G containing gHg−1 and de�ned over Q such that

lim sup
n→+∞

1

Vol(On)

 ∑
i

Γvi,n⊂ΓH′gZ(H)v0

Vol(xi,nH)

 > 0 .

It is called non-focused otherwise.

Remark 2.15. Eskin�Oh's original de�nition of being non-focused combines both de�ni-
tions 2.13 and 2.14. It is more convenient to us to separate them, since we shall verify
both conditions independently.

Theorem 2.16 (Theorem 1.13 from [EO06b] ). Assume that H is a semi-simple subgroup
of G without compact factors. Then the sequence (Vn)n∈N is equidistributed in G/H if
and only if it is non-focused and has no loss of mass.

Note that a sequence of closed H-orbits of Γ\G leaving every compact subset can only
exist if H is contained in a proper parabolic subgroup of G. We thus have the following
proposition which results from Proposition 3.2 and 3.4 in [EO06b].

Proposition 2.17. If H is not contained in a proper parabolic subgroup of G, then any
sequence of �nite unions of closed H-orbits of Γ\G has no loss of mass.

3. Equidistribution of intersection points

We consider as before a sequence (On)n∈N of �nite unions of closed H-orbits of Γ\G
which is assumed to be equidistributed. In this section, we want to pass from the equidis-
tribution in terms of currents to an equidistribution of the intersection points of On with
a subvariety of Γ\G/K of dimension dH . Though this kind of result can be expected to
follow from Theorem 2.8, some work is needed to deal with the locus where this intersec-
tion is not transverse. This will require in particular a �niteness result for maps de�ned
in an o-minimal structure.

3.1. Moderate geometry of locally symmetric spaces. We recall in this section
notions from o-minimal geometry in the context of locally symmetric spaces following
[BKT20] and the structure of de�nable maps. For a general introduction to o-minimal
structures, we refer to [Dri98].
A structure S on R expanding the real �eld R is by de�nition a collection (Sn)n∈N×

where each Sn is a set of subsets of Rn, called the de�nable sets, which is a Boolean
sub-algebra of the subsets of Rn containing all the algebraic subsets and which satisfy
the following properties:

(1) If A ∈ Sn, B ∈ Sm, then A×B ∈ Sn+m;
(2) if p : Rn+1 → Rn is the projection on the �rst n-coordinates, A ∈ Sn+1, then

p(A) ∈ Sn.
The structure is called o-minimal5 if any element of S1 is a �nite union of points and
intervals. Given an o-minimal structure, one can de�ne the following notions:

(1) a map f : A→ B between two de�nable sets is de�nable if its graph Γf ⊂ A×B
is de�nable ;

(2) a S-de�nable manifold is a manifold having a �nite atlas of charts (ϕi : Ui →
Rn)i∈I such that the intersections ϕi(Ui ∩ Uj) ⊂ Rn are de�nable and the change
of coordinates maps ϕi ◦ ϕ−1

j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) are S-de�nable maps.

5Order-minimal.
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Intuitively, de�nable manifolds in an o-minimal structure have reasonable geometry lo-
cally and at in�nity, complex algebraic varieties being an example of de�nable manifolds.
The �rst example of an o-minimal structure is the one given by semi-algebraic subsets
denoted by Ralg. More examples of o-minimal structures have been studied during recent
years and the ones relevant to Hodge theory are:

(1) Ran: the smallest o-minimal structure expanding Ralg and for which restricted
analytic functions are de�nable, see [Gab68].

(2) Rexp : the smallest o-minimal structure expanding Ralg and for which the real
exponential map is de�nable, [Wil96].

(3) Ran,exp: the smallest o-minimal structure expanding the two previous structures,
[vdDM94, vdDM96].

One of the main theorems of [BKT20, Theorem 1.1] asserts that locally symmetric
spaces can be endowed with a semi-algebraic structure which is compatible in Ran with
the analytic structure on the Borel-Serre compacti�cation, see loc. cit. for more details.
More precisely, let G be a real connected semi-simple group which has a Q-structure, Γ
a torsion-free arithmetic subgroup of G and K ⊂ G a compact sub-group.

Theorem 3.1. [BKT20, Theorem 1.1] The quotients G/K, Γ\G/K have Ralg structures
such that

(1) G→ G/K is de�nable in Ralg;
(2) there exists a de�nable fundamental domain F ⊂ G/K for the action of Γ such

that F → Γ\G/K is de�nable in Ralg.

Moreover, this structure is functorial in the triple (G,K,Γ).

One last ingredient we need from o-minimal geometry is the structure of de�nable
maps: a de�nable map f : M → N between de�nable sets has a de�nable trivialization
if there exists a pair (F, λ) where F is a de�nable set and λ :M → F is a de�nable map
which induces a de�nable homeomorphism M → F × N compatible with maps to N .
The following theorem is from [Dri98, Chapter 9,Th 1.2].

Theorem 3.2. Let f : M → N be a continuous de�nable map between de�nable sets in
an o-minimal structure S. Then there exists a �nite partition (Ni)i by de�nable subsets
of N such that f : f−1(Ni) → Ni is de�nably trivial.

An easy corollary is that the number of connected components of the �bers of a de�n-
able map is �nite and uniformly bounded.

3.2. Counting intersection points. In this section, we explain our conventions for
counting points of intersection of varieties mapping to the quotient Γ\G/K with closed
H-orbits. We adopt the same notations as in Section 2.3 to which we refer. From now
on, S will be a �xed o-minimal structure which extends Ralg.
Let S ⊂ Γ\G/K be a de�nable real analytic subvariety of dimension dH = dim(G/K)−

dim(H/L), and assume that the smooth locus of S is oriented. Let O be a �nite union
of closed H-orbits in Γ\G. Recall that we denote by O/L its projection to Γ\G/L and
by π(O/L) its projection to Γ\G/K.
In general, π|O/L is not an embedding, which is why it is more convenient to count

intersection at the level of Γ\G/L, where O/L is a �nite union of closed leaves of the
foliation H introduced in Section 2.4.
Let (Γ\G/L)S be the preimage of S by the �bration π : Γ\G/L → Γ\G/K. By

assumption on S, (Γ\G/L)S and O/L have complementary dimension in Γ\G/L. A
point y ∈ (Γ\G/L)S ∩O/L is a transverse intersection point if (Γ\G/L)S is smooth at y
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(equivalently, if S is smooth at π(y)) and

Ty(Γ\G/L)S ⊕ Ty (O/L) = Ty(Γ\G/L) . (3.2.1)

For y ∈ (Γ\G/L)S ∩ O, we set ϵ(y) = 0 if y is not a transverse intersection point,
and ϵ(y) = 1 if y is a transverse intersection point such that the direct sum (3.2.1) is
compatible with orientations, and ϵ(y) = −1 otherwise.
We have the following distribution on (Γ\G/L)S given by summing over transverse

intersection points :

T̂ S
O =

∑
x∈(Γ\G/L)S∩O/L

ϵ(x)δx . (3.2.2)

Note that, since (Γ\G/L)S ∩ O/L is de�nable, it has a �nite number of connected
components. Moreover, components of dimension ≥ 1 consist only of non-transverse
intersections points, for which ϵ(y) = 0. Hence T̂ S

O is a �nite signed measure. We can
�nally de�ne:

De�nition 3.3. The transverse intersection measure between S and O/L is the signed
measure

T S
O

def
= π∗T̂

S
O .

Informally, T S
O , counts the transverse intersection points of S and π(O/L), with a

multiplicity corresponding to the (signed) number of branches of π(O/L) meeting S
at a smooth point x. The asymptotic behavior on S of the distributions T S

On
for an

equidistributing sequence On will be discussed in the next section. In particular, we will
prove that they are equidistributed with respect to the form π∗p

∗ωG/H .

Remark 3.4. In general, the intersection S ∩ π(O/L) could have zero dimensional com-
ponents which are not transverse because they are not reduced or are not smooth points
of S. We do not take them into account in T S

O , but we will see in the next section that
they are negligible from the equidistribution point of view.

Remark 3.5. Working in the setting of a moderate geometry allows us to avoid topological
pathologies which do not arise in the applications we intend to give and makes it possible
at the same time to make statements in a more general setting.

3.3. Equidistribution of intersection points. We keep the notations from the pre-
vious section, namely, G is a semi-simple Q-group, Γ ⊂ G is a torsion free arithmetic
subgroup and H ⊂ G is a semi-simple subgroup without compact factor. Let D = G/K
where K ⊂ G is a compact subgroup and L = K ∩H. Let dH be as before the codimen-
sion of H/L in D. Let S be an analytic subvariety of Γ\D of dimension dH and consider
an equidistributing sequence (On)n∈N of �nite unions of closed H-orbits in Γ\G. In this
section, we re�ne Theorem 2.8 into an equidistribution theorem for the measures T S

On

introduced in the previous paragraph, which will imply Theorem 1.1.

Theorem 3.6. Let S be an analytic subspace of Γ\D of dimension dH and let (On)n∈N
be an equidistributing sequence of �nite unions of closed H-orbits in Γ\G. Then

1

Vol(On)
T S
On

⇀
n→+∞

π∗p
∗ωG/H .

Proof. Recall that it is enough to prove the weak convergence on every open subset of
a covering of S by Proposition 2.1. We can thus restrict ourselves to an open relatively
compact de�nable subset Ω ⊂ S that lifts to D. We still denote this lift by Ω. We want
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to prove the equidistribution of the transverse intersection of Ω with π(p−1(Vn)), where
Vn is the �nite union of discrete Γ-orbits in G/H such that On = Γ\π−1(Vn).
Denote by (G/L)Ω the preimage of Ω by π, and consider the following open subsets of

(G/L)Ω:

• The domain Usmooth where (G/L)Ω is smooth,
• the domain Usub where (G/L)Ω is smooth and p|Ω is a submersion (hence a local
di�eomorphism by equality of the dimensions).

By de�nition, the distribution T̂Ω
On

is supported by Usub. We �rst prove that 1
Vol(On)

T̂Ω
On

converges weakly to p∗ωG/H on Usub, then extend the weak convergence successively to
Usmooth and (G/L)Ω using Proposition 2.2. After pushing forward by π, we get the desired
result.

To prove the weak convergence on Usub, it is enough to prove it on every open relatively
compact subset U ′ of Usub such that p|U ′ is a di�eomorphism onto its image (since those
open sets cover Usub). Thus, let f be a continuous function with compact support on
such U ′. Let ϵ(U ′) be 1 if p|U ′ preserves orientation and −1 otherwise. Then

1

Vol(On)
T̂Ω
On

(f) =
ϵ(U ′)

Vol(On)

∑
x∈Vn∩p(U ′)

f ◦ p−1(x)

−→
n→+∞

ϵ(U ′)

∫
p(U ′)

f ◦ p−1(x)ωG/H(x) =

∫
U ′
fp∗ωG/H

since Vn is equidistributed in G/H.
This shows the weak convergence of 1

Vol(On)
T̂Ω
On

on every U ′, hence on Usub.
Let us now extend the weak convergence to (G/L)Ω. Since the projection map p|(G/L)Ω :

(G/L)Ω → G/H is de�nable in the o-minimal structure Ran,exp, it follows from Theo-
rem 3.2 that the number of connected components of its �bers is uniformly bounded by
some number N .
Let �rst C be a compact subset of Usmooth \ Usub. Then, by Sard's lemma, p(C) has

measure 0. Hence, for every ϵ > 0, there exists an open neighborhood U ′ of C in Usmooth

such that ∣∣∣∣∫
p(U ′)

ωG/H

∣∣∣∣ ≤ ϵ .

Since for all x ∈ p(U ′)∩Vn the set p−1(x)∩U ′ has at most N isolated points, we get that

1

Vol(On)
|T̂Ω

On
|(U ′) ≤ N

Vol(On)
|p(U ′) ∩ Vn| ,

hence
1

Vol(On)
|T̂Ω

On
|(U ′) ≤ |

∫
p(U ′)

ωG/H | ≤ Nϵ .

We conclude that 1
Vol(On)

T̂Ω
On

converges weakly on Usmooth by Proposition 2.2.
Finally, the complement of Usmooth in (G/L)Ω is the singular locus, which has dimension

< dH . Since p is de�nable, its image has measure 0, and one can reproduce the previous
argument to show that 1

Vol(On)
T̂Ω
On

converges weakly to p∗ωG/H on (G/L)Ω. □

In the previous theorem, we chose to restrict to dim(S) = dH for simplicity. We
indicate brie�y without proof how these statements should be adapted when dim(S) >
dH : we de�ne the transverse intersection current TOn

S as the integration current over the
transverse intersection locus of S ∩ On with the sign normalizations as in Section 3.2.
Intersecting further with submanifolds of dimension dH and applying our theorem, one
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would obtain the convergence of these intersection currents (after normalization) to the
current π∗p∗ωG/H |S. We thus get the following theorem.

Theorem 3.7. Let S be an analytic subspace of dimension d ≥ dH and let (On)n∈N be
an equidistributing sequence of �nite unions of closed H-orbits in Γ\G. Then for every
β ∈ Ωd−dH

c (S), we have

1

Vol(On)
T S
On

(β) →
n→+∞

π∗p
∗ωG/H ∧ β.

4. The pull-push form

In the equidistribution theorems 2.8 and 2.9, we see appearing the pull-push form
π∗p

∗ωG/H . This form was already studied by the second author with entirely di�erent
motivations [Tho15], while the �rst author proved, in the particular case of G = SO(2, q),
H = SO(2, q− 1) and K = S(O(2)×O(q)), that this form is the G-invariant Kähler form
on G/K.
Here we introduce some tools to better characterize this form, most of which were

already presented in [Tho15].

4.1. Push-forward of forms. Let us �rst recall without any proof the construction of
the push-forward of a form α under a smooth �bration π :M → B with compact oriented
�bers. This construction can be found for instance in [BT82, p.37].
Let r be the dimension of the �bers of π. Let x be a point in B and denote by F the

�ber of π over x. Choose ω a volume form on F compatible with the orientation of the
�ber, and let

X ∈ Λr(TF ) ⊂ ΛrTM

be the multivector such that ω(X) = 1.
Let now α be a smooth p-form on M . The contraction ιXα is a (p − r) form with

kernel TF , which can thus be seen as a section of Λp−r(NF∨), where NF = TM/TF is
the normal bundle to F and NF∨ = {φ ∈ T ∗M | φ|TF = 0} is its dual.
Finally, the di�erential of π along the �ber F induces an isomorphism NF ≃ F ×TxB

and therefore Λp−r(NF∨) = Λp−r(TxB
∨). With these identi�cations, we can now de�ne:

De�nition 4.1. The push-forward of the form α is the (p− r)-form on B given at x by

(π∗α)x =

∫
y∈F

ιX(α)yω .

Let p+ q be the dimension of M . Then we have

Proposition 4.2. The form π∗α is the unique (p−r) form on B such that for any q-form
β on B with compact support, ∫

B

π∗α ∧ β =

∫
M

α ∧ π∗β .

Moreover, the push-forward operation commutes with the exterior derivative. In par-
ticular, the push-forward of a closed form is closed.

4.2. A formula for the pull-push form. Let us now apply the previous general con-
siderations in order to give a formula for the pull-push form π∗p

∗ωG/H at the Lie algebra
level.
Let G/H be a G-homogeneous space and o denote the base point of G/H (that is, the

projection of the unit element of G). Then the tangent space ToG/H with the induced
linear action of H identi�es canonically with g/h endowed with the adjoint action of H.
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This identi�cation induces an isomorphism between the di�erential algebra Ω•(G/H,C)G
of smoothG-invariant forms onG/H with complex coe�cients and the di�erential algebra
Λ•((g/h)∨C)

H of H-invariant exterior forms on g/h, with derivative given by

dα(x1, . . . , xk+1) =
∑
i<j

(−1)i+jα([xi, xj], x1, . . . , x̂i, . . . , x̂j, . . . , xk+1) ,

for α ∈ Λk((g/h)∨C)
H and x1, . . . , xk+1 ∈ g/h.

Let us now come back to the setting of the previous section, where H is a semi-simple
subgroup of G, K a compact subgroup of G and L = G/H. At the Lie algebra level,
the pull-back homomorphism p∗ (resp. π∗) identi�es exterior forms on g/h (resp. g/k) to
those exterior forms on g/l having h/l (resp. k/l) in their kernel.
Reinterpreting De�nition 4.1 for G-invariant forms on G/L, we get:

Proposition 4.3. Let α be a G-invariant form on G/L. Then the form π∗α on G/K is
G-invariant and corresponds on g/k to the AdK-invariant form∫

k∈K/L

Adk
∗(ιuα)ωK/L ,

where u ∈ Λmax(k/l) is such that ωK/L(u) = 1.

Remark 4.4. Since k/l and h/l are both AdL-invariant, the form ιuα is L-invariant and its
kernel contains k/l. Therefore, its pull-back by Adk only depends on the class of k in K/L
so that the integral makes sense. Moreover, the resulting form is obviously K-invariant
and has k/l in its kernel, so that is does identify with a K-invariant form on g/k.

Corollary 4.5. Let (α1 . . . , αpr) be an oriented orthonormal basis of {ϕ ∈ (g/k)∨ | ϕ|h/l =
0}. Then there exists a positive constant λ such that

π∗p
∗ωG/H = λ

∫
k∈K/L

Ad∗
k(α1 ∧ . . . ∧ αp−r)ωK/L(k) .

If moreover k/l is orthogonal to h/l in g/l, then λ = 1.

Proof of Proposition 4.3. The G-invariance of π∗α easily follows from Proposition 4.2, so
we only need to compute π∗α at the base point of G/K.
Let o denote the basepoint of G/L and v1, . . . , vp−r be p − r vectors in ToG/L = g/l.

Let k be an element of K. At the point k · o, we have
ιuα(k · v1, . . . , k · vp−r) = ιuα(v1, . . . , vp−r)

by left invariance of ιuα.
Now, the di�erential of π maps a vector k · v ∈ Tk·oG/L to the vector Adk(v) ∈

Tπ(o)G/K = g/k. Applying de�nition 4.1 to π∗α gives the required formula. □

Proof of Corollary 4.5. Complete (α1, . . . , αp−r) into an orthonormal basis (β1, . . . , βr, α1, . . . , αp−r)
of {ϕ ∈ (g/l)∗ | ϕ|h/l = 0}. We then have

p∗ωG/H =
r∧

i=1

βi ∧
p−r∧
i=1

αi ,

hence

ιup
∗ωG/H = λ

p−r∧
i=1

αi

where λ =
∧r

i=1 βi(u), since all the αi vanish on k/l.
If furthermore k/l is orthogonal to h/l, then (β1, . . . , βr) can be chosen as an orthonor-

mal basis of (k/l)∨, so that λ = 1.
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Proposition 4.3 now concludes the proof. □

In practice, using this integral formula to compute the pull-push form quickly leads
to rather involved computations. In [Tho15], the second author used this formula to
give a su�cient vanishing criterion: if there exists k ∈ K such that Adk preserves h/l
and reverses its orientation, then Adk∗(ιuα) = −ιuα, and Proposition 4.3 shows that
π∗p

∗ωG/H vanishes.
In terms of our equidistribution result, this vanishing means that the positive and

negative part of the intersection measure cancel out asymptotically, because a �random�
translate of H/L in G/K can intersect a submanifold S with two opposite equiprobable
orientations.
In contrast, we can prove the following non-vanishing criterion:

Corollary 4.6. If G/K has a G-invariant complex structure such that H/L is a complex
submanifold, then π∗p

∗ωG/H does not vanish.

Proof. Let α1, . . . , α p−r
2

be a complex basis of {ϕ ∈ (g/k)∨ | ϕ|h/l = 0}. Then ιup∗ωG/H is
proportional to

p−r
2∧

i=1

αi ∧ ᾱi .

Which is non-negative on every complex subspace of dimension p−r
2
. By invariance of the

complex structure, the same holds for

Adk
∗

 p−r
2∧

i=1

αi ∧ ᾱi

 .

Finally,
∧ p−r

2
i=1 αi ∧ ᾱi is positive on a complex complement of h/l, and so is∫

k∈K/L

Adk
∗

 p−r
2∧

i=1

αi ∧ ᾱi

ωK/L .

□

4.3. Compact duality. In [Tho15], the second author investigated further the pull-
push form in the case where G/K and H/L are symmetric spaces. There, he proved that
π∗p

∗ωG/H is in some sense �Poincaré dual� to the inclusion H/L ↪→ G/K, a statement
which is made precise by passing to the compact dual of the symmetric space. Since
cohomology classes of compact symmetric spaces are represented by a unique invariant
form, this argument completely characterizes the pull-push forms and provides an e�-
cient way to compute it in practice. The goal of this section is to extend these results to
more general compact subgroups K ⊂ G.

Recall that a Cartan involution of G is an involutive automorphism whose �xed sub-
group is a maximal compact subgroup. All the Cartan involutions of G are conjugated,
and every compact subgroup of G is �xed by a Cartan involution.
In this section, we make the assumption (veri�ed in all the examples we consider in

this paper) that there exists a Cartan involution θ of G �xing K and preserving H. We
denote by Gθ and Hθ the compact subgroups of G and H �xed by θ. The Lie algebras g
and h decompose respectively as

g = gθ ⊕ gθ
⊥
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and
h = hθ ⊕ hθ

⊥
.

We now introduce the dual Lie algebras

gU = gθ ⊕ igθ
⊥ ⊂ gC

and
hU = hθ ⊕ ihθ

⊥ ⊂ hC .

These are respectively the Lie algebras of compact real forms GU and HU of GC and HC,
called the compact duals of G and H.
From GU and HU , one can de�ne compact duals to the homogeneous spaces G/H,

G/L and G/K, respectively given by GU/HU , GU/L and GU/K. The various inclusions
between these groups give the following commutative diagram:

G/L
p //

� r

$$
π

��

G/H � s

%%
G/K � r

$$

GC/LC

��

// GC/HC

GC/KC GU/L
3 S

ee

pU //

πU

��

GU/HU

3 S

ee

GU/K
3 S

ee

Now, the inclusion of G/H into GC/HC induces an isomorphism of di�erential algebras

Ω•(G/H,C)G = Λ•((g/h)∨)H ⊗R C ≃ Λ•
C((gC/hC)

∨)HC = Ω•
C(GC/HC)

GC ,

where Λ•
C and Ω•

C denote the complex of C-multilinear forms. The same holds for all the
inclusions in the above diagram. In other words, the di�erential algebra of real invariant
forms on a homogeneous space and its compact dual are two distinct real forms of the
same complex di�erential algebra.

Proposition 4.7. We have the following commutative diagram of di�erential complexes:

Ω•(G/L,C)G

π∗
��

jj
∼

**

Ω•(G/H,C)G
p∗

oo
jj

∼

**
Ω•−dim(K/L)(G/K,C)G

jj
∼

**

Ω•(GU/L,C)GU

πU∗
��

Ω•(GU/HU ,C)GU

p∗U

oo

Ω•−dim(K/L)(GU/K,C)GU

Proof. The only non-trivial point is that π∗ and πU ∗ are identi�ed as maps from Ω•
C(GC/LC)

GC

to Ω•
C(GC/KC)

GC . But this readily follows from Proposition 4.3 since, at the Lie algebra
level, both maps are given by the contraction with u followed by averaging under the
adjoint action of K. □

Now, ωG/H and ωGU/HU
are both generators of Λmax

C (gC/hC), so they are complex
multiples one of the other. More precisely, we can identify

g/h = gθ/hθ ⊕ gθ
⊥
/hθ

⊥
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with
gU/hU = gθ/hθ ⊕ igθ

⊥
/hθ

⊥

via the morphism
ϕ : (u, v) 7→ (u, iv)

and normalize ωGU/HU
so that

ϕ∗ωGU/HU
= ωG/H .

With this normalization, we have the following equality in Λmax
C (gC/hC)

ωG/H = idim(gθ
⊥
/hθ

⊥
)ωGU/HU

.

Finally, applying Proposition 4.7, we conclude:

Corollary 4.8. The following equality holds in Λ•
C(GC/KC)

KC:

π∗p
∗ωG/H = idim(gθ

⊥
/hθ

⊥
)πU ∗p

∗
UωGU/HU

.

What we gained by switching to the compact dual space GU/K is that we can now talk
about the cohomology class of the pull-push form. The following theorem was proven
in [Tho15] under the assumption that K = Gθ, but the proof easily adapts to our more
general context:

Lemma 4.9. The de Rham cohomology class of the pull-push form 1
Vol(GU/HU )

πU ∗p
∗
UωGU/HU

is Poincaré dual to the homology class of HU/L ⊂ GU/K; that is, for every closed form
β on GU/K of degree dim(HU/L), we have∫

HU/L

β =
1

Vol(GU/HU)

∫
GU/K

πU ∗p
∗
U(ωGU/HU

) ∧ β .

Proof. This is essentially formal. Denote respectively by ι1 and ι2 the inclusions of HU/L
in GU/L and GU/K, so that we have ι2 = πU ◦ ι1 and ι1(HU/L) = p−1

U (o), where o is the
basepoint of GU/HU .
Now, the form 1

Vol(GU/HU )
ωGU/HU

is Poincaré dual to [o] in H•
dR(GU/HU ,R), so its pull-

back under pU is Poincaré dual to [p−1
U (o)] = ι1∗[HU/L]. Finally, let β be a closed form

of degree dim(HU/L) on GU/K. We then have∫
HU/L

ι∗2β =

∫
ι1(HU/L)

π∗
Uβ

=

∫
GU/L

p∗UωGU/HU
∧ π∗

Uβ

=

∫
GU/K

πU ∗p
∗
UωGU/HU

∧ β .

□

4.3.1. The symmetric case. When K = Gθ is a maximal compact subgroup of G, a
theorem of Élie Cartan [Car30] states that all G-invariant forms on G/K are closed.
Hence the exterior derivative is trivial on Ω•(G/K)G and we have isomorphisms:

Ω•(G/K,C)G ≃ Ω•(GU/K,C)GU ≃ H•
dR(GU/K,C) .

In other words, a G-invariant form on G/K is completely characterized by the cohomol-
ogy class of the corresponding form on GU/K.
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This property does not hold for more general homogeneous spaces. In the next section
we will see however that it remains true on Mumford�Tate domains when restricting to
a variation of Hodge structure.

5. Invariant forms on period domains

In this section, we introduce Mumford�Tate domains, Hodge loci and invariant forms
on period domains. Then we relate pull-push forms to Chern classes of Hodge bundles.
Finally, we compute it in various cases of interest.

5.1. Variations of Hodge structure and their period domains. Let us �rst recall
some de�nitions of Hodge theory, merely to �x notations.
Let V be a free Z-module of �nite rank d ∈ N endowed with a bilinear form B :

V × V → Z. Given a �eld K, we write VK = V ⊗Z K and still denote by B the natural
K-bilinear extension of B to VK.
A Hodge structure of weight k on V polarized by B is the data of a �ltration of complex

vector spaces
0 ⊆ F k ⊆ · · · ⊆ F 0 = VC

such that for all 0 ≤ p ≤ k,

(1) VC = F p ⊕ F
k−p+1

,
(2) B(u, v) = 0 for all (u, v) ∈ F p × F k−p+1,
(3) ip−qB(v, v̄) > 0 for all v ∈ (F p ∩ F q

)\{0} with p+ q = k.

Remark 5.1. The existence of a Hodge structure of weight k implies that B is non-
degenerate and antisymmetric for odd k or symmetric for even k.

For p + q = k, de�ne V p,q = F p ∩ F q
. Then V p,q is a complement of F p+1 in F p. In

particular, we have a decomposition

VC =
⊕

p+q=k

V p,q, with V
p,q

= V q,p .

The Hodge numbers of the Hodge structure are the numbers hp,q
def
= dimC(V

p,q).
Let S = ResC/RGm denote the Deligne torus, i.e., the restriction of scalars of the

multiplicative group Gm from C to R. Then S(R) = C× seen as an algebraic group over
R. Every Hodge structure on (VZ, B) induces a representation φ : S(R) → GL(VR) given
by

z · u = z−pz̄−qu

on u ∈ V p,q.
Let k ∈ Z and h = (hp,q)p+q=k ∈ Nk+1 be such that hp,q = hq,p and

∑k
p=0 h

p,q = d.
The period domain of Hodge structure of weight k and Hodge numbers (hp,q)p+q=k is the
set D of all �ltrations (F p)0≤p≤k which de�ne a Hodge structure of weight k and Hodge
numbers hp,q on (VZ, B). It is a complex manifold homogeneous under the action of the
group AutR(B), and the stabilizer of a point is a compact subgroup of AutR(B).
The period domain D is an open subset of the compacti�ed period domain D̂ of complex

�ags 0 ⊆ F k ⊆ · · · ⊆ F 0 = VC such that F k−p = F p⊥ and dimC(F
p/F p+1) = hp,k−p for

all p. The compacti�ed period domain is a �ag variety of the group AutC(B) (i.e., a
quotient of AutC(B) by a parabolic subgroup).
Let U denote the trivial complex vector bundle D × VC equipped with the action of

AutR(B) given by the tautological linear action in the �bers. By construction, this bun-
dle admits a AutR(B)-invariant real structure and a complex bilinear pairing B as well
as a universal Hodge decomposition, i.e., a smooth decomposition as a direct sum of
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GR-equivariant complex vector bundles Up,q such that, at a point x, the induced decom-
position of Ux = V ⊗Z C is the Hodge decomposition associated to x.

Let now X be a complex analytic variety. A (polarized) variation of Hodge structure
of weight k over X is the data of:

• A local system VZ of free Z-modules of �nite rank d with a �at bilinear pairing
B : VZ ⊗ VZ → ZX ,

• A decreasing �ltration F•V on V = VZ⊗ZX
OX by holomorphic sub-vector bundles

0 ⊆ FkV ⊆ · · · ⊆ F0V = V ,
Which satisfy the following conditions:

• Hodge property: For every x ∈ X, the �ag 0 ⊆ FkVx ⊆ · · · ⊆ F0Vx
def
= Vx is a

Hodge structure on VZ,x ;
• Gri�ths' transversality: The �at connection ∇ associated on VZ⊗OX satis�es

∇(FpV) ⊆ Fp−1V ⊗ Ω1
X for 0 ≤ p ≤ k .

Let {VZ,F•V , B} be a variation of Hodge structure of weight k over X. Its Hodge
decomposition is the (C∞) decomposition

V =
⊕

p+q=k

Vp,q ,

where Vp,q = FpV ∩ Fk−pV , and its Hodge numbers are the

hp,q = dimC(Vp,q) , p+ q = k .

Let now π : X̃ → X be the universal cover of X and x and arbitrary point in X̃. The
local system π∗VZ is trivial, and one obtains a map

f̃ : X̃ → D
such that f̃(y) is the Hodge structure F•Vy on (π∗VZ)y = VZ,x. This map is equivariant
with respect to the monodromy ρ : π1(X) → GZ = Aut(VZ,x) of the local system and
thus factors to a map

f : X → GZ\D
called the period map of the variation of Hodge structure. There are canonical isomor-
phisms

Vp,q ≃ f ∗Up,q .

In terms of the period map, Gri�ths' transversality condition admits the following
interpretation. Let x be a point in D and let φ : S → GR be the associated representation
of the Deligne torus. Then the Lie algebra gC decomposes under the adjoint action as

gC =
⊕
p

gp,−p,

where
gp,−p = {ξ ∈ g, ξ · V r,s ⊂ V r+p,s−p}.

The subalgebra g0,0 is the Lie algebra of the stabilizer of x, and its complement identi�es
with the complexi�ed tangent space to D at x. The eigenspace of the complex structure
on TxD for i is the subspace

⊕
p<0 g

p,−p.
The subspace g1,−1 ⊕ g−1,1 is the complexi�cation of a well de�ned subspace Wx ⊂

TxD. This de�nes a holomorphic GR-invariant distribution of TxD called the Gri�ths'
distribution. Now, Gri�ths' transversality condition states precisely that the period map
is tangent to the Gri�ths' distribution.
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5.2. Hodge loci and transversality. Let (V,B) be a lattice with an integral bilinear

pairing. A Hodge structure on V induces a Hodge structure on T k,lV
def
= V ⊗k ⊗ V ∨⊗l

for all k, l, whose Hodge decomposition is given by the diagonalisation of the induced
representation φ : S(R) → End(T k,lV ⊗Z C) of the Deligne torus. Let U1 ⊂ S(R) denote
the unit circle.

De�nition 5.2. The Mumford�Tate group MTφ of (V,B) is the smallest Q-algebraic
subgroup of GL(VR) which contains φ(C×). The special Mumford�Tate group is the
smallest Q-algebraic subgroup sMTφ which contains φ(U1).

The algebra of Hodge classes is the bigraded Z-subalgebra Hdg•,•(φ) ⊂ T •,•V �xed by
φ(U1).
Let now v be a vector in T •,•V . The Hodge domain of v is the set of variations of

Hodge structure φ on V such that Hdg•,•(φ) contains v. The connected components
of the Hodge domain of v are homogeneous under the stabilizer of v in GR. They are
called Mumford�Tate domains, and the stabilizer of such components are Mumford�Tate
groups.

Remark 5.3. If Hdg•,•(φ) contains a set A, then it contains the subalgebra spanned by
A. Conversely, for every bigraded subalgebra H•,• of T •,•V , there exists v ∈ H•,• such
that

v ∈ Hdg•,•(φ) ⇐⇒ H•,• ⊆ Hdg•,•(φ) .

In particular, intersections of Hodge or Mumford�Tate domains are again Hodge and
Mumford�Tate domains.

Since Mumford�Tate groups are de�ned over Q, the projection of a Mumford�Tate
domain HR/LR to GZ\GR/KR factors to a proper immersion of HZ\HR/LR.
Let nowX be a connected analytic variety equipped with a variation of Hodge structure

(VZ, B,F•V) of weight k and Hodge numbers (hp,q)p+q=k. We assume that the period
map of X is generically immersive.
Let GR/KR be a Mumford�Tate domain containing X̃. Then the monodromy repre-

sentation takes values in GZ and at every point y ∈ X̃ the algebra Hdg•,•(φ) of Hodge
classes at y contains the subalgebra H•,• �xed by GR.
The variation of Hodge structure X is called Hodge generic in GR/KR if there is no

proper Hodge subdomain of GR/KR containing X̃. In that case, at a generic point of
X, the algebra of Hodge classes is exactly (T •,•V)GR and the Mumford�Tate group is a
rational form of G. We de�ne:

De�nition 5.4. Let GR/KR be the smallest Mumford�Tate domain containing X. The
Hodge locus of X̃ is the set of points at which the algebra of Hodge classes contains
strictly (T •,•V)GR . The Hodge locus of X is its projection under the covering map.

The Hodge locus of X is the intersection of X with the countable union of all the pro-
jections modulo GZ of the Mumford�Tate subdomains of GR/KR. To be more precise, let
GR/KR be any Mumford�Tate domain containing X̃ and let H be an algebraic subgroup
of G de�ned over Q. We de�ne

De�nition 5.5. The Hodge locus of type H is the set of points in X̃ whose Mumford�
Tate group is conjugated over R to a subgroup of H. The Hodge locus of type H in X
is its projection by the covering map.

The Hodge locus of type H is the intersection of X̃ with the union of Mumford�Tate
domains

⋃
g∈GR

gHR/LR, for all g ∈ GR such that gHRg
−1 is Q-subgroup. This leads to

the following de�nition:
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De�nition 5.6. The transverse Hodge locus of type H is the set of smooth points of X
for which there exists g ∈ GR such that gHg−1 is a Q-group and X̃ and gHR/LR intersect
transversally at x.
If X is Hodge generic in D, the transverse Hodge locus (of type H) is called the typical

Hodge locus (of type H).

Since Hodge loci are intersections of X with locally homogeneous sub-spaces of GZ\D,
we can hope to apply our equidistribution result in this setting. However, in order for it
to be e�ective, one needs a generic transversality property between X and H/L:

De�nition 5.7. We say that X is generically transverse to H-orbits at a smooth point
x if there exists g ∈ GR such that gHR/LR and X̃ intersect transversally at (some lift of) x.

We say that X is generically transverse to H-orbits if there exists a smooth point at
which it is generically transverse.

Remark 5.8. If X is generically transverse to H-orbits, then the set of points x at which
it is generically transverse is an open and dense analytic subset of X.

Proposition 5.9. Let x be a point in X. Then X is generically transverse to H-orbits
at x if and only if the pull-push form π∗p

∗ωG/H is non-zero at x.

As the consequence, we get the following density criterion for the transverse Hodge
locus of type H.

Theorem 5.10. The following propositions are equivalent:

(i) the transverse Hodge locus of type H is non-empty,
(ii) the transverse Hodge locus of type H is analytically dense in X,
(iii) X is generically transverse to H-orbits,
(iv) the pull-push form π∗p

∗ωG/H is not identically 0 on X.

Proof of Proposition 5.9. Let d be half of the degree of the form π∗p
∗ωG/H .

Assume that X is generically transverse to H-orbits at x, and let g ∈ G be such that
x ∈ gH/L and

TxX + Tx(gH/L) = TxG/K.

Let u be a multivector as in Proposition 4.3. Since Tx(gH/L)C is in the kernel of ιup∗ωG/H ,
there exists holomorphic vector �elds X1, . . . , Xd on X de�ned on a neighborhood of x
such that

ιup
∗ωG/H(X1, X1 . . . , Xd, Xd) > 0.

For every k ∈ K, we have by Corollary 4.6,

Ad∗k(ιup
∗ωG/H)(X1 ∧X1 . . . ∧Xd ∧Xd) ≥ 0,

and this inequality is strict in an open neighborhood of the base point of K/L. Hence,
by integrating over k and using De�nition 4.1, we get π∗p∗ωG/H ̸= 0 at x.
Conversely, assume that X is not generically transverse at x. Then for every g ∈ G,

we have TxX + Tx(gH/L) ⊊ TxG/K. Hence for every d-uple of C-linearly independent
vectors X1, . . . , Xd in TxX, the intersection of the subspaces spanR(X1, X1, . . . , Xd, Xd)
and Tx(gH/L)C is non-empty. Hence the form ιuωG/H vanishes on the multi-vector X1 ∧
X1 . . . Xd ∧Xd. The same is true for Ad(k)∗(ιup∗ωG/H) for all k ∈ K. By integrating, we
get that π∗p∗ωG/H vanishes at x. Hence the result. □

Proof of Theorem 5.10. The implication (ii) ⇒ (i) and (i) ⇒ (iii) are obvious, and the
equivalence (iii) ⇒ (iv) readily follows from Proposition 5.9. We only have to prove
(iii) ⇒ (i).
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By Remark 5.8, the set of points where X is transverse to H-orbits is open and dense.
Let x be such a point and g ∈ GR such that X̃ and gHR/LR intersect transversally at
x. By Weak Approximation, G(Q) is analytically dense in G(R). Thus there exists a
sequence gn ∈ GQ converging to g. For n large enough, by stability of transversality,
gnHR/LH intersects X̃ transversally at a point xn such that xn −→

n→+∞
x. Since gn ∈ GQ,

gnHg
−1
n is a Q-subgroup of G, hence xn belongs to the transverse Hodge locus of type

H. □

Unfortunately, in many situations, variations of Hodge structure are never generically
transverse to H/L. Indeed, Gri�ths' transversality constrains their tangent space to be
contained in the Gri�th distribution, so that it cannot supplement Tx(H/L) in other
directions.
To be more precise, let H/L ⊂ G/K ⊂ D be Mumford�Tate domains. Let φ : U1 → H

be the restriction of the representation at a point x ∈ H/L of the Deligne torus to the
unit circle. Then both g and h are invariant under the adjoint action of φ. We thus have
decompositions

gC =
k⊕

p=−k

gp,−p , hC =
k⊕

p=−k

hp,−p

with hp,−p ⊆ gp,−p. Note that g0,0 = k and h0,0 = l.

Proposition 5.11. The following are equivalent:

• There exists a smooth variation of Hodge structure in G/K which is generically
transverse to H/L.

• For all |p| ≥ 2, hp,−p = gp,−p and there exists an abelian subalgebra a ⊂ g−1,1 such
that

a+ h−1,1 = g−1,1 .

Proof. Assume that there exists a smooth variation of Hodge structure X ⊂ G/K which
is generically transverse to H/L. Up to left multiplication by some g ∈ G, we can assume
that x ∈ X and that

T 1,0
x X + T 1,0

x H/L = T 1,0
x G/K (5.2.1)

Now, since X is a variation of Hodge structure, T 1,0
x X is an abelian subalgebra of g−1,1,

while T 1,0
w H/L =

⊕
p<0 h

p,−p. The identity (5.2.1) thus implies that

T 1,0
x X + h−1,1 = g−1,1

and
h−p,p = g−p,p

for all p ≥ 2, and by Hodge symmetry, also for p ≤ −2.

Conversely, assume h−p,p = g−p,p for all p ≥ 2 and a−1,1 + h−1,1 = g−1,1 for some
abelian Lie subalgebra a. Let A denote the complex abelian subgroup of GC spanned by
a. Recall that GC acts on the compacti�ed period domain D̄. If U is a su�ciently small
neighbourhood of the identity in A, then

X = {a · x, a ∈ U}

is a smooth holomorphic submanifold contained in D. Since a ⊂ g−1,1 and A is abelian,
X is tangent to the Gri�th distribution at every point. Hence X is a smooth variation
of Hodge structure transverse to H/L at x. □
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Remark 5.12. Baldi�Klingler�Ullmo [BKU21, Prop. 6.5] proved that, when g is simple
and has components gk,−k for k ≥ 3, then a Lie subalgebra h can never contain gk,−k,
k ≥ 3. It follows that the transverse Hodge locus is always empty in that case.

5.3. Chern classes of the Hodge bundles. Let {VZ,F•V , B} be a variation of Hodge
structure of weight k over a complex analytic variety X. Let σ be the antilinear auto-
morphism of V given by

σ|Vp,q : v 7→ ip−qv̄ .

and let h be the Hermitian form

h(v, v) = B(v, σv) .

By de�nition of Hodge structures, h is positive de�nite and the decomposition

V =
⊕

p+q=k

Vp,q

is orthogonal for h.
We have σ2 = (−1)kIdV . De�ne now a new linear connection ∇h on V by

∇h = ∇+
(−1)k

2
σ(∇σ) .

(The connection ∇h is the part of the connection ∇ that preserves σ.) Then ∇h preserves
the metric h and the orthogonal decomposition

V =
⊕

p+q=k

Vp,q .

Let ∇h
p,q denote the induced Hermitian connection on Vp,q. and Θp,q

h denotes its curva-
ture. One can show that Θp,q

h is of type (1, 1).

De�nition 5.13. The Chern forms of Vp,q are the (ℓ, ℓ) forms cℓ(Vp,q), 1 ≤ l ≤ hp,q

de�ned by

det

(
IVp,q +

i

2π
Θp,q

h

)
= 1 +

hp,q∑
ℓ=1

cℓ(Vp,q).

It is well-known that the form cℓ(Vp,q) represents the ℓth Chern class of Vp,q in de Rham
cohomology of X.
These Chern forms turn out to be pull-backs of invariant forms under the period map.

Indeed, σ, h, and ∇h can be de�ned on the universal Hodge decomposition

U =
k⊕

p=0

Up,q

over D. There, these objects are G-equivariant and induce G-invariant Chern forms
cℓ(Up,q). These factor to the quotient GZ\D and, if f : X → GZ\D denotes the period
map, we have

cℓ(Vp,q) = f ∗cℓ(Up,q) .
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5.3.1. Expression at the Lie algebra level. Let us now express the Chern forms cℓ(Up,q)
at the Lie algebra level.
Let us �x a base-point o in D with stabilizer K. The group K decomposes as

K =

⌊ k
2
⌋∏

p=1

Kp,q ,

where Kp,q ≃ U(hp,q) for p > q and Kk′,k′ ≃ O(hk
′,k′) when k = 2k′ is even.

When p ≥ q (resp. p ≤ q), the bundle Up,q is the bundle associated to the linear
representation of K that factors through the standard representation of Kp,q (resp. the
dual representation). Let kp,q denote the Lie algebra of Kp,q. Then, for p ≥ q, the
curvature of Up,q at x is the 2-form on g/k with values in kp,q ⊂ End(Up,q) given by

F p,q
h (u, v) = πp,q([u, v])− [πp,q(u), πp,q(v)] ,

where πp,q : g → kp,q denotes the orthogonal projection for the Killing metric.

5.3.2. Chern forms on the compact dual. Recall from Section 4.3 that we have an iso-
morphism of di�erential algebras

ψ : Ω•(G/K,C)G ∼→ Ω•(GU/K,C)GU

which consists in identifying both spaces with Λ•
C(gC/kC)

KC .
We now wish to identify the invariant forms on GU/K corresponding to the Chern

forms on G/K.
Recall that D̂ = GC/P is the space of complex �ags

0 ⊆ F k ⊆ . . . ⊆ F 0 = VC

such that
F k−p = F p⊥

(where the orthogonal is intended with respect to the bilinear form B) and

dim(F p/F p+1) = hp,q .

Let Û denote the trivial bundle over D̂ equipped with the action of GC given by the
standard linear action in the �bers. The bundle Û admits a tautological �ltration F•Û
by GC-equivariant vector bundles which is given at a point x by the �ag de�ning x.
By construction, the restriction of F•Û to the open domain D is the �ltration F•U of

U given (in C∞) by

FpU =
⊕
p′≥p

Up′,k−p′ .

FpU =
⊕
p′≥p

Up′,k−p′ .

Let us now prove that the dual space GU/K identi�es with D̂.

Proposition 5.14. The group GU is (conjugated to) the subgroup of GC = AutC(B)
commuting with the antilinear automorphism σ.

Proof. Let τ : Vo → Vo be the complex conjugation and θ = στ . Conjugation by τ is the
anti-holomorphic involution of GC �xing G and one veri�es that the conjugation with στ
is a Cartan involution of G �xing K. With respect to this choice of Cartan involution,
the group GU is then the �xed point set of conjugation by σ. □

Corollary 5.15. The group GU acts transitively on D̂, and the stabilizer of o in GU is
K.
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Proof. As a maximal compact subgroup of GC, the group GU acts transitively on the �ag
variety D̂, and the stabilizer K ′ of o preserves the �ag F•Uo. Now, since GU commutes
with σ, it preserves the Hermitian form B(·, σ·). Therefore, K ′ preserves the orthogonal
of Fp+1Uo in FpUo for B(·, σ·), which is precisely Up,q. We conclude that K = K ′. □

The GU -invariant form B(·, σ·) induces a �at GU -invariant Hermitian metric ĥ on Û .
Let Ûp,q denote the ĥ-orthogonal of Fp+1Û in F . Then the the bundle Ûp,q is GU -
invariant and carries a GU -invariant Hermitian connection ∇p,q

ĥ
with curvature form Θp,q

ĥ
.

The Chern forms of this connection de�ne GU -invariant forms

cℓ(Ûp,q)

which represent the Chern classes of Ûp,q ≃ FpÛ/Fp+1Û on D̂.

Proposition 5.16. The isomorphism ϕ : Ω2l(G/K,C)G → Ω2l(GU/K,C)G maps cℓ(Up,q)

to cℓ(Ûp,q) ∈ Ω2l(GU/K,C)G.

Remark 5.17. The isomorphism ϕ is not induced by the identi�cation

ToD = ToD̂
coming from the inclusion D ⊂ D̂ but rather from the diagram in Proposition 4.7.

Proof. For p ≥ q, the bundle Ûp,q is the vector bundle on GU/K associated to the linear
representation of K factoring through the standard representation of Kp,q. Hence its
curvature form at o is given by a formula similar to Section 5.3.1.
Let now πp,q

C denote the orthogonal projection of gC to kp,qC for the complex Killing
form. Then πp,q

C restricts to the orthogonal projection to k on both g and gU .
Therefore, both the curvature forms of Up,q and Ûp,q at o are given by

(u, v) 7→ πp,q
C ([u, v])− [πp,q

C (u), πp,q
C (v)] ,

hence all the symmetric polynomials in those curvature forms are identi�ed by ϕ. □

5.3.3. Characteristic cohomology. As mentioned in 4.3.1, there might be G-invariant
forms on D which are not closed, in which case G-invariant closed forms are not charac-
terized by the corresponding cohomology class in H•(D̂).
In the context of variations of Hodge structure, however, we are ultimately interested

in the restriction of G-invariant forms to submanifolds that are tangent to the Gri�ths'
distribution. This motivates the introduction of the characteristic cohomology of a period
domain, which, roughly speaking, restricts the di�erential algebra of invariant forms to
the Gri�ths' distribution (see [GGK10, III.A]).
We do not de�ne this notion here and only mention the analogous of É. Cartan's

theorem, which comforts the idea that the geometry of period domains is similar to that
of symmetric spaces �in restriction to the Gri�ths' distribution�.

Proposition 5.18. Let X be a complex manifold and f : X̃ → G/K the period map of a
variation of Hodge structure. Then, for every α ∈ Ω•(G/K,C)G, the pull-back form f ∗α
is closed of bidegree (p, p) for some p.

Proof. Let α be a G-invariant form on G/K. Let x be a point in X and φ : C× → GR the
representation of the Deligne torus de�ning the Hodge structure f(x). Then φ(U1) is a
subgroup of Stab(x) ⊂ G and acts on W−1,0 by complex multiplication, where W is the
tangent space at f(x). Since αf(x) is φ(U1)-invariant, it must belong to Λp,p(W ∗

x ) for some
p, and we conclude that f ∗α has bidegree (p, p) since f is holomorphic. In particular f ∗α
has even degree.
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Now, dα is also a G-invariant form and f ∗(dα) = d(f ∗α) has odd degree. By the
previous argument, it must vanish. □

Corollary 5.19. Let α be a closed invariant form on D. Then the pullback of α by any
variation of Hodge structure is completely determined by the cohomology class [ϕ(α)] ∈
H•(D̂).

Proof. Let α′ be another closed G-invariant form on G/K such that ϕ(α − α′) is exact
on GU/K. We can write α−α′ = dβ, where β is G-invariant. Let now f : X → G/K be
a variation of Hodge structure. Then f ∗β is closed by the previous proposition, hence

f ∗α− f ∗α′ = d(f ∗β) = 0 .

□

Remark 5.20. We only mentioned these results for period domains, but one can prove
that they remain true on every Mumford�Tate domain.

5.4. Examples. We now apply the previous considerations to compute the pull-push
form in various examples.

5.4.1. Noether�Lefschetz loci in weight 2. Assume in this section that D is the period
domain for a polarized variation of Hodge structure of weight 2 on a quadratic lattice
(V,B) which is assumed to be of signature (p, 2q). Let R be a rational subspace of V ⊗ZQ
of rank r ≤ h1,1 such that B is positive de�nite in restriction to R⊗Q R, and let DR ⊂ D
be the set of Hodge structures x ∈ D such that R ⊂ V1,1

x .
Choose a basepoint o in DR. Let K be the stabilizer of o in G, H be the subgroup

of G �xing R and L = K ∩ H. Then H is a Mumford�Tate group and DR ⊂ D is the
Mumford�Tate domain H/L ⊂ G/K.
Denoting as before by p and π the respective projections from G/L to G/H and G/K,

we can now prove the following:

Theorem 5.21. Let X be an smooth complex analytic manifold, let V = V2,0⊕V1,1⊕V0,2

be the C∞ Hodge decomposition of a variation of Hodge structure of weight 2 and Hodge

numbers (q, p, q) on X and let f̃ : X̃ → D be the corresponding period map. Then

f ∗ (π∗p∗ωG/H

)
= Vol(GU/HU) · cq(V2,0)r .

Proof. Let σ be the antilinear automorphism de�ned in the previous section. Since we
are in even weight, σ is an involution which �xes a real form Uσ of Uo on which the
symmetric form B is real and positive de�nite. Since σ coincides with the standard
complex conjugation on U1,1

o , the subspace R is contained in Uσ.
Now, GU is the subgroup of GC = AutC(B) preserving Uσ and HU = GU ∩HC is the

subgroup of GU �xing R. Therefore, HU/L is the domain D̂R ⊂ D̂ where Û1,1 contains
R. Since R is σ-invariant and

F1Û ∩ σ(F1Û) = Û1,1 ,

we also have that
D̂R = {x ∈ D̂ | F1Ûx ⊇ R} .

Let (u1, . . . , ur) be a basis of R. The projection of uℓ into F0Û/F1Û de�nes a holo-
morphic section sℓ of F0Û/F1Û , and D̂R is the transverse intersection of the vanishing
loci of all the sℓ. We conclude that D̂R is Poincaré dual to the rth power of the Euler
class of F0Û/F1Û i.e.,

cq(Û0,2)r .
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By Lemma 4.9, we have

π∗p
∗ωGU/HU

= Vol(GU/HU) · cq(Û0,2)r + dα

for some invariant form α.
By Corollary 4.8 and Proposition 5.16 we have

π∗p
∗ωG/H = i2qrπ∗p

∗ωGU/HU

= (−1)qrcq(Û0,2)r + (−1)qrdα

= cq(Û2,0)r + (−1)qrdα

= cq(U2,0)r + (−1)qrdα .

Finally, by Proposition 5.18, the pull-back of dα by the period map of a variation of
Hodge structure vanishes, and the conclusion follows. □

5.4.2. Diagonal embedding of Shimura varieties. Let G1 be a semi-simple Lie group of

Hermitian type and K1 a maximal compact subgroup, so that D def
= G1/K1 is a Hermitian

symmetric space of non-compact type. We apply the results of previous sections to
G = G1 × G1 and H = ∆(G1), the diagonal embedding of G1. Let ∆ : D ↪→ D ×D be
the corresponding diagonal embedding of symmetric spaces.
First, remark that since D and D×D are Hermitian symmetric, their tangent space is

equal to the Gri�ths' distribution. Hence by Proposition 5.18, the complex Ω•(D×D,C)G
is supported in even degrees and is isomorphic to the complex H•

dR(D̂ × D̂,C).
Recall the following classical result. Let X be a closed orientable smooth manifold

of dimension n. For all 0 ≤ k ≤ n, let us �x a basis
(
[αk,i]

)
i∈Jk

of Hk(X,C) and

denote by
(
α∨
k,i

)
i∈Jk

the dual basis of Hn−k(X,C) with respect to Poincaré pairing. Let
π1, π2 : X × X → X denote respectively the projections onto the �rst and the second
factor. Then by [BT82, Lemma 1.22], the cycle class of the diagonal ∆(X) ↪→ X ×X is
Poincaré-dual to the de Rham cohomology class

γX =
n∑

k=0

(−1)n(n−k)
∑
i∈Jk

π∗
1[α

∨
k,i] ∧ π∗

2[αk,i] ∈ Hn
dR(X ×X,C) . (5.4.1)

We can now state the main theorem of this section. Let (γk,i)i∈Jk be a basis of
Ω2k(D,C)G1 and let (γ∨k,i)i∈Jk denote the dual basis of Ω2d−2k(D,C)G1 , i.e. such that

γk,i ∧ γ∨k,j =
δi,j

Vol(D̂)
ωD ,

where ωD denotes the invariant volume form of D ≃ G/K as in Section 2.3.

Theorem 5.22. Set G = G1 × G1, K = K1 × K1 where K1 is a maximal compact
subgroup of G and take H the diagonal embedding of G1 into G. Let π1 and π2 denote
the projections of G/K = D ×D on the �rst and second factor. Then

1

Vol(GU/HU)
π∗p

∗ωG/H =
∑

0≤k≤d
i∈Jk

π∗
1(γ

∨
k,i) ∧ π∗

2(γk,i) .

In particular, its pull-back by the diagonal embedding ∆ of D is given by

1

Vol(GU/HU)
∆∗π∗p

∗ωG/H =
χ(D̂)

Vol(D̂)
ωD .

where χ(D̂) > 0 is the Euler characteristic of D̂.



34 SALIM TAYOU AND NICOLAS THOLOZAN

Proof. By Corollary 4.8 and Lemma 4.9, it is enough to determine the cohomology class
of the corresponding pull-push form on the compact dual D̂ × D̂. By Lemma 4.9, this
cohomology class is Poincaré dual to the diagonal embedding of D̂. The conclusion now
follows from Equation (5.4.1). □

5.4.3. Hodge locus in Shimura varieties. In this section, we prove Theorem 1.17 and
Corollary 1.18.
Let G be a semi-simple Lie group of Hermitian type, D the associated Hermitian

symmetric space, Γ ⊂ G an arithmetic subgroup and S = Γ\D. Let (H,DH) be a
Shimura subdatum such that π∗p∗ωG/H is a positive form of type (k, k). In particular,
its restriction to any subvariety of S of dimension at least k is non-zero. Hence by
the equivalences from Proposition 5.9, the Hodge locus in X is analytically dense and
equidistributed with respect to π∗p∗ωG/H .
For the second part of the theorem, the pull-push form associated to G/H is a (1, 1)-

form and since G is absolutely irreducible, there is, up to a scalar, a unique (1, 1)-from
on D which is given as the Chern form of the canonical bundle on D. The latter is known
to be Kähler. Hence π∗p∗ωG/H is Kähler and we conclude as before.
We now prove Corollary 1.18. Let n ≥ 1 and let G = SU(n, 1). For 1 ≤ r ≤ n, let

H = SU(n− r, 1). Let K = S(U(1)×U(n)) be the maximal compact subgroup of G and
let D = Bn ≃ G/K be the unit ball which is isomorphic to the symmetric space of G.
The natural 1-dimensional representation of U(1) on the determinant of the cotangent
bundle of D determines a Hermitian line bundle on Bn with �rst Chern form ω. Using a
similar method as in Theorem 5.21, one can prove easily that:

Proposition 5.23. We have π∗p
∗ωG/H = Vol(GU/HU)ω

r.

Let Γ be a neat arithmetic subgroup of G. The quotient S = Γ\Bn is a unitary
Shimura variety and the form ω is Kähler on S. If r = 1, then we are in the situation of
Theorem 1.17. Hence the Hodge locus is dense and equidistributed in any subvariety of
S of positive dimension.

5.4.4. Hodge locus in Ag. In this section, we prove Theorem 1.14.
Let (V,Ψ) be a rational vector space of dimension 2g endowed with a non-degenerate

symplectic form Ψ. Let G = Sp2g(R) and let Hg be the Siegel upper-half space which is
the Hermitian space associated to G.
For 1 ≤ k ≤ g

2
, let Vk ⊆ V be a non-degenerate rational subspace of rank 2k and let

H ⊆ G be the stabilizer of Vk in G. Then H ≃ Sp2k(R)× Sp2g−2k(R) and its symmetric
space is equal to Hk ×Hg−k.

To compute the pull-push form π∗p
∗ωG/H , we follow the general method explained in

Section 4 and Section 5. The compact dual Yg of Hg is equal to the space of Lagrangian
subspaces of VC and the compact dual of Hk×Hg−k is the subspace Yk×Yg−k where Yk and
Yg−k are the space of Lagrangian subspaces of Vk,C and V ⊥

k,C respectively. The inclusion
Yk × Yg−k ↪→ Yg is then given by taking direct sums of Lagrangians in a compatible way
with the decomposition VC = Vk,C ⊕ V ⊥

k,C.

Let V → Yg be the trivial vector bundle of rank 2g determined by V and let F̂1 → Yg
be the Hodge vector bundle whose restriction to Hg will be denoted simply F1. Let Vk

be the trivial vector bundle determined by Vk. Then we have a natural map of vector
bundles:

f : Vk → V/F̂1.

The locus where this map has rank at most k corresponds to the locus where the rank of
the kernel is at least k. Since the kernel is Lagrangian in Vk, it is also the locus where the



35

rank is exactly k and hence it is equal to Yk × Yg−k. By the Giambelli�Porteous�Thom
formula [KL74], the locus Yk × Yg−k is Poincaré dual to the class

det
(
(cg−k+i−j(V/F̂1))1≤i,j≤k

)
By Corollary 4.8 and Proposition 5.16, we have:

π∗p
∗ωG/H = i2k(g−k)π∗p

∗ωGU/HU

= (−1)k(g−k) Vol(GU/HU) det
(
((−1)g−k+i−jcg−k+i−j(F1))1≤i,j≤k

)
= Vol(GU/HU) det

(
((−1)i−jcg−k+i−j(F1))1≤i,j≤k

)
= Vol(GU/HU)sk.

Now combining Proposition 5.9, and Theorem 1.1, the �rst part of Theorem 1.14 easily
follows. For the second part, we use the Main Theorem of [KS03] which stipulates that
s1 = cg−1 is non-zero restricted to any compact subvariety of dimension > (g−1)(g−2)

2
.

6. Applications

We discuss in this section various applications of Theorem 1.1. They concern mainly
equidistribution of Hodge loci in variations of Hodge structures, in particular in the
context of weight 2 Hodge structures and Hodge structures parametrized by Shimura
varieties. For an introduction to these topics, we refer to [Voi02, III,VI] and [GGK12].

6.1. Re�ned Noether�Lefschetz loci in Z-PVHS of weight 2. Let {VZ,F•V , B}
be a polarized variation of Hodge structure of weight 2 over a smooth complex quasi-
projective varietyX. Assume as before that the local system (VZ, B) has �bers isomorphic
to a quadratic lattice (VZ, B) equipped with a bilinear form

B : VZ × VZ → Z

with associated quadratic form B(y,y)
2

∈ Z for y ∈ VZ. Let (q, p, q) be the Hodge numbers
and d = p+ 2q the rank of VZ.
For x ∈ X, let ρ(x) be the rank of the Picard group Pic(x) = F1Vx ∩ VZ,x. Assume

that the variation is simple, i.e., ρ(x) = 0 at a very general point. For r ≥ 1, we introduce
the re�ned Noether�Lefschetz locus6

NL≥r = {x ∈ X, ρ(x) ≥ r}.

It corresponds to a sub-Hodge locus for Vr
Z. It can be written as the union over algebraic

subvarieties in the two following ways:

(1) It is the union, over all integers N ≥ 1, of the sets

{x ∈ X | ∃P ⊆ Pic(x) of rank r, disc(P ) ≤ N}.

(2) It is the union, over all positive de�nite symmetric matrices M ∈ Mr(Z), of the
sets

{x ∈ X | ∃(λ1, · · · , λr) ∈ Pic(x), (B(λi.λj))1≤i,j≤r =M}.
We will prove in the next two subsections that both formulations give equidistribution
results and hence we prove Theorem 1.6 and Theorem 1.7 by using di�erent techniques
in each case.

6Historically, Hodge loci are referred to as Noether�Lefschetz loci in weight 2.
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6.1.1. Equidistribution on average. Let x be a point in X and denote by (VZ, B, F
•) the

�ber at x of V. As in the previous section, we set G = O(VR, B), Γ = O(VZ, B) and let
K ⊂ G be the stabilizer of F •. Finally, let H denote the stabilizer of a positive de�nite
subspace of VR of dimension r, so that G/H identi�es with the space P of positive de�nite
real subspaces of dimension r.
De�ne the discriminant of a rational subspace W ∈ P as the determinant of the

intersection matrix

I(W ) = (B(vi, vj))1≤i,j≤r

where (vi) is a basis of W ∩ VZ. We denote by Pn the discrete subset of P consisting of
rational subspaces of discriminant ≤ n. The set Pn is a �nite union of Γ-orbits of G/H,
corresponding to a �nite union On of closed H-orbits in Γ\G. We prove here that Pn is
equidistributed in G/H.

Theorem 6.1. The sequence (Pn)n∈N is equidistributed in G/H.

The proof we give here is a re�nement of the fact that integral vectors of length at
most n equidistribute. Some trick is needed in order to get rid of multiplicities, but the
proof is �elementary� in the sense that it does not rely on any involved argument such
as the circle method, automorphic functions or Ratner theory. Of course, by counting all
rational subspaces of length less than n, we avoid all the di�cult arithmetic questions
that arise when looking at rational subspaces of a �xed discriminant.
Let Ω denote the open cone of V r

R consisting of tuples of vectors spanning a positive
de�nite subspace of dimension r. The function

h : Ω → R>0

v = (v1, . . . , vr) 7→ det (B(vi, vj))1≤i,j≤r

is homogeneous of degree 2r. We denote by Ω1 the hypersurface {v ∈ Ω | h(v) = 1} and
by Ω≤1 the subset {v | h(v) ≤ 1}. We denote by

pr : Ω → Ω1

the projection map

v 7→ h(v)−
1
2r v .

We endow V r
R with the Lebesgue measure for which V r

Z has covolume 1 and denote by
ω the push-forward by pr of the Lebesgue measure restricted to Ω≤1 (i.e. the volume
form such that ∫

U

ω = Leb

( ⋃
0<t≤1

tU

)
.

De�ne

Qn = {v ∈ Ω ∩ V r
Z | h(v) ≤ n}

and let µn be the counting measure of pr(Qn), i.e.,

µn =
∑
v∈Qn

δpr(v) .

We �rst prove the following elementary counting result:

Proposition 6.2. The sequence of measures n− d
2µn converges weakly to the smooth mea-

sure ω.
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Proof. Let f : Ω1 → R be a continuous function with compact support which we extend
on Ω by setting f(tv) = f(v) for all t ∈ R>0 and all v ∈ Ω1. We have

n− d
2µn(f) = n− d

2

∑
v∈V r

Z ∩Ω|h(v)≤n

f(v)

= n− d
2

∑
v∈n− 1

2r V r
Z ∩Ω|h(v)≤1

f(v) by homogeneity of f

−→
n→+∞

∫
Ω≤1

f = ω(f) by Riemann summation.

□

The group G× SL(r,R) acts transitively on Ω1 by

(g1, g2) · v = g1 · v · g−1
2

and preserves the measure ω. The restriction of this action to SL(r,R) is proper and the
quotient SL(r,R)\Ω1 is the space P or positive de�nite r-subspaces of VR.
Now, the subgroup SL(r,Z) preserves the set Qn and acts properly discontinuously on

Ω1 so that the quotient set Q̄n = SL(r,Z)\Qn still equidistributes in SL(r,Z)\Ω1. Let us
consider the projection

π : SL(r,Z)\Ω1 → SL(r,R)\Ω1 = P .

We still denote ω the volume form induced on SL(r,Z)\Ω1. The push-forward measure
π∗ω is G-invariant (since ω is G-invariant and π is G-equivariant), non-zero, and locally
�nite since SL(n,Z)\ SL(n,R) has �nite volume. We hence deduce from Proposition 6.2:

Corollary 6.3. De�ne the measure

νn =
∑
v∈Q̄n

δπ(v) .

Then
n− d

2 νn ⇀ λωG/H

for some λ ̸= 0.

Remark 6.4. The multiplicative constant λ could be computed in terms of the volume of
SL(n,R)/ SL(n,Z).

The measure νn, however, is not the counting measure of Pn. To be more precise, note
that Q̄n is the set positive de�nite sublattices of VZ of discriminant ≤ n and π maps
Λ ∈ Q̄n to Λ⊗ R. Therefore, we have

νn =
∑

W∈Pn

mn(W )δW

where
mn(W ) = |{Λ ⊂ W ∩ VZ | h(W )[W ∩ VZ : Λ] ≤ n}| .

In other words, νn counts a rational subspace W with a weight equal to the number of
sublattices of W ∩ VZ with discriminant ≤ n.
Let ν ′n be the counting measure of Pn. To relate νn and ν ′n, let us introduce

bk = |{Λ ⊂ Zr | [Zr : Λ] = k}| .
We have the following estimate on bk:

Proposition 6.5.

bk ≪ kr .
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Proof. We will prove a sharper estimate. Consider the zeta function which converges for
large s:

ζZr(s) =
∑
k≥1

bk
ks

=
∑
g

| det(g)|−s

where g runs through GLr(Z)\ (Mr(Z) ∩GLr(Q)). By [LS03, Equation (15.10)], we have
the equality

ζZr(s) =
r−1∏
i=0

ζ(s− i).

Hence by identifying the coe�cients, we get

bk =
∑

(k0,··· ,kr−1)
k0···kr−1=k

k0 · · · kr−1
r−1

≤ kr−1|{(k0, · · · , kr−1), k0 · · · kr−1 = k}|
≪ϵ k

r−1+ϵ

for every ϵ > 0. Hence the result. □

We now have

νn =
∑
P∈Pn

 ∑
k≤
√

n
h(P )

bk

 δP

=
∑
k≤

√
n

∑
h(P )≤ n

k2

bkδP

and we conclude that
νn =

∑
k≤

√
n

bkν
′
⌊ n
k2

⌋ . (6.1.1)

Set

α =
∑
k

bk
kd

.

Proposition 6.6. The measure ν ′n converges weakly to

λ

α
ωG/H .

Proof. Remark �rst that, under the hypothesis 1 ≤ r ≤ p = d− 2q ≤ d− 2, we have

bk
kd

≪ 1

k2
,

hence
α ≤ ζ(2) < 2 .

Let f be a continuous function with compact support on G/H. Set

sn = n− d
2

νn(f)

λ
∫
G/H

fωG/H

and

s′n = n− d
2

ν ′n(f)

λ
∫
G/H

fωG/H

.
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By (6.1.1), we have

sn =
∑
k≥1

n− d
2

⌊ n
k2

⌋ d
2
bks

′
⌊ n

k2
⌋ . (6.1.2)

By Proposition 6.2, we have

sn −→
n→+∞

1 .

In particular, (sn) is bounded by a constant c. Since s′n ≤ sn the sequence s′n is also
bounded and, by convergence of the series∑

k

bk
kd

.

we can �nd for all ϵ > 0 some k0 such that∑
k≥k0

n− d
2

⌊ n
k2

⌋ d
2
bks

′
⌊ n

k2
⌋ ≤ ϵ

for all n.
Set m = lim inf s′n andM = lim sup s′n, and let ni be a subsequence such that s′ni

−→
n→+∞

m. For all 2 ≤ k ≤ k0 we have

lim sup
i→+∞

n
− d

2
i

⌊ni

k2

⌋ d
2
s′⌊ ni

k2
⌋ =≤ bk

kd
M .

Hence, taking the limsup of 6.1.2 along ni, we get

1 ≤ m+

k0∑
k=2

bk
krd

M + ϵ = m+ (α− 1)M + ϵ .

Similarly taking the liminf along a subsequence ni such that s′ni
−→

n→+∞
→M , we obtain

1 ≥M + (α− 1)m .

Combining the two, we get

M + (α− 1)m ≤ m+ (α− 1)M + ϵ ,

hence

M −m ≤ ϵ

2− α

since α < 2.
Since this is true for all ϵ > 0, we conclude that M = m. Hence s′n converges to

m =M . Taking the limit in (6.1.2) gives 1 = αm, and we conclude that

s′n −→
n→+∞

1

α
.

Going back to the de�nition of s′n we have proved that

n− d
2 ν ′n(f) −→

n→+∞

λ

α

∫
G/H

fωG/H .

□
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6.1.2. Equidistribution along intersection matrices. To prove the second version of the
equidistribution theorem which yields Theorem 1.7, we can restrict to matrices M which
are primitively represented by (VZ, B), i.e., for which there exists (λ1, · · · , λr) ∈ V r

Z
generating a primitive sublattice of VZ and with intersection matrix M . For simplicity,
if λ ∈ V r

R , we denote by I(λ) the intersection matrix (B(λi.λj))1≤i,j≤r. Let

V r
R,Ir = {λ = (λi)1≤i≤r, I(λ) = Ir}.

Then V r
R,Ir is an a�ne homogeneous variety under the action of the group G =

O(VR, B) ≃ O(p, 2q) and letting H ≃ O(p− r, 2q) be the stabilizer of a point λ0 ∈ V r
R,Ir ,

then V r
R,Ir ≃ G/H. When r < p and q ≥ 1 the group H is simple without compact factors,

so that Ratner theory can be applied as explained in 2.16. Finally, H is not contained in
any proper parabolic subgroup of G, so that sequences of closed H-orbits of Γ\G do not
have loss of mass.
There is a right action of a r × r-matrix A = (ai,j) on a vector u = (u1, · · · , ur) ∈ V r

R
given by matrix product:

u · A =

(
r∑

j=1

a1,ju1, . . . ,

r∑
j=1

ar,juj

)
.

Notice that this action commutes with the diagonal action of GL(VR) and that the com-
ponents of u · A span a subspace of the vector space spanned by components of u in VR,
and they are equal if A is invertible. Their intersection matrix are related by

I(u) = tAI(u)A .

Let M be a positive de�nite integral matrix of size r and let

WM = {λ = (λi)1≤i≤r ∈ V r
Z , I(λ) =M}.

In order to study equidistribution of WM , it is natural to �rst project it to V r
R,Ir . We

have thus a G-equivariant projection map

pr : WM → V r
R,Ir

λ 7→ λ ·
√
M

−1
,

where
√
M is the unique positive de�nite matrix such that

√
M

2
=M .

By a theorem of Borel and Harish-Chandra [BH62, Theorem 6.9], the projection
pr(WM) is a �nite union of discrete Γ-orbits of G/H, which thus corresponds to a �-
nite union of closed H-orbits OM ⊂ Γ\G. The volume of OM is �nite by Borel�Harish-
Chandra's theorem [BH62, theorem 9.4] since H is semi-simple, and the following lemma
gives an estimate for its volume:

Lemma 6.7.

(1) LetM be a positive de�nite matrix of rank r ≤ p represented by the lattice (VZ, B).
Then there exists c > 0 depending only on (VZ, B) and r such that:

a(M)
def
= Vol(OM) = c det(M)

p+2q−r−1
2

∏
a prime

βa(M),

where for a prime number a, the local density at a is expressed as

βa(M)
def
= lim

s→∞
a−s(r(p+2q− r+1

2
))|{λ ∈ V r

Z /a
sV r

Z , I(λ) =M}| .
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(2) If (Mn)n∈N is a sequence of positive de�nite matrices primitively represented by
(VZ, B), then

a(Mn) ≥
n→∞

det(Mn)
p+2q−r−1

2
−ϵ

for any ϵ > 0. In particular, a(Mn) goes to +∞, as det(Mn) goes to +∞.
(3) If moreover r ≤ p+2q−3

2
, then

a(Mn) ≍
n→∞

det(Mn)
p+2q−r−1

2 .

Proof. The �rst assertion is simply the Siegel-Weil formula, which is valid in this setting
by [Wei62]. To prove the second statement, we need to �nd a lower bound on the growth
of the product of the local densities βa(Mn) assuming that Mn is primitively represented
by (V r

Z , B). Let n ∈ N and let P (n) be the set of odd primes a which are coprime to
det(Mn). det(VZ). By [Kit93, Proposition 5.6.2(ii)], there exists two positive numbers
c1, c2 depending only on VZ such that

c1 <
∏

a∈P (n)

βa(Mn) < c2.

If r ≤ p+2q−3
2

, then by Corollary 5.6.2 loc.cit., the above estimate on the product is
true for a ranging over all primes, proving the third statement.
Otherwise, since we assumed that Mn is represented by a sublattice of VZ which is

primitive 7, then [Kit93, Theorem 5.6.5,(a)] yields that there exists a constant c3 < 1
such that for any prime a dividing det(VZ) · det(Mn) we have

βa(Mn) ≥ c3

Since the number of prime divisors of det(Mn) is O(
log(det(Mn))

log log(det(Mn))
), we obtain that

Vol(OMn) ≥ cc1 det(Mn)
p+2q−r−1

2 c
c4 log(det(Mn))
log log(det(Mn))

3 = det(Mn)
p+2q−r−1

2
+o(1) .

□

For a positive de�nite integral matrix M , let µ1(M) be the square root of the smallest
non-zero integer represented by M .

Theorem 6.8. Let (Mn)n∈N be a sequence of positive de�nite matrices primitively rep-
resented by (VZ, B) and such that µ1(Mn) → ∞ as n→ ∞. Then the sequence of subsets
{pr(WMn), n ∈ N} is equidistributed in V r

R,Ir in the sense of Theorem 2.16.

Proof. Note �rst that, since M is positive de�nite, we have det(M) ≥ cµ1(M)2 where c
depends only on the rank of M , see [EK95, Equation (5)]. Hence det(M) goes to ∞ and
so does Vol(OMn) by Lemma 6.7.
To prove the equidistribution, we apply Theorem 2.16. Since H is not contained in

a proper parabolic subgroup, the sequence OMn has no loss of mass, and we need to
prove that it is non-focused see (De�nition 2.14). We are in the easy situation where any
sequence of Γ-orbits Γ · λn ⊂ pr(WMn) is non-focused.
To prove this, assume by contradiction that, up to taking a subsequence, there exists

a proper subgroup H ′ of G de�ned over Q, an element g ∈ G such that gH0g−1 ⊂ H ′

and a sequence λn ∈ EMn such that pr(λn) ∈ H ′gZ(H0) · pr(λ0)λ0.
Set Vn = SpanR(λn) and let Hn ⊂ G be the subgroup �xing Vn. Then Hn is conjugate

to H and contained in H ′ for all n by assumption on λn. In particular, by Lemma 6.9
below, H ′ preserves a rational subspace W contained in V0. Hence every Hn preserves
W . Since the action of HN on V ⊥

n is irreducible, we deduce that W ⊂ Vn for all n.

7Even weaker assumption such as locally bounded imprimitivity is enough, see [Kit93, Theorem 5.6.5].



42 SALIM TAYOU AND NICOLAS THOLOZAN

Since W is rational, it intersects VZ in a lattice which is contained in SpanZ(λn) for all
n since SpanZ(λn) is primitive. This contradicts the assumption that µ1(Mn) → +∞.

□

Lemma 6.9. Let V0 be a positive de�nite rational subspace of VQ, let H0 be the subgroup of
G �xing V0 and let H be a proper connected subgroup of G de�ned over Q and containing
H0. Then H leaves invariant a rational subspace of V0.

Proof. As a representation of H0, the Lie algebra g decomposes orthogonally with respect
to the Killing form as

g = h0 ⊕ so(V0)⊕ p

where p = {u ∈ g | u(V0) ⊂ V ⊥
0 } is isomorphic to Hom(V0, V

⊥
0 ). Note that the represen-

tation of H0 on V ⊥
0 is irreducible and H0 acts trivially on V0, hence also on so(V0).

Since H contains H0, its Lie algebra h is a subrepresentation of g and thus decomposes
as

h0 ⊕ k⊕ p′ ,

where k is a Lie subalgebra of so(V0) and p′ is a subrepresentation of p ≃ Hom(V0, V
⊥
0 ).

By elementary representation theory, there exists a subspace W ⊂ V0 such that

p′ = {u ∈ p | u|W = 0} .

We have

W = {x ∈ V0 | u(x) ∈ V0 for all u ∈ h} ,

in particular, W is a rational subspace since h and V0 are de�ned over Q.
We claim that k preserves W . Indeed, assume by contradiction that there exists u ∈ k

and x ∈ W such that u(x) ∈ V0 \W . Then there is v ∈ p′ such that vu(x) /∈ V0. Since
v(x) = 0, we obtain that

[u, v](x) = uv(x) /∈ V0 ,

contradicting x ∈ W .
In conclusion, the Lie algebra h preserves W ⊂ V0. If W were trivial, then we would

have h ⊃ p ⊕ h0, hence h = g since [p, p] ⊃ so(V0). Since H is a proper subgroup, W is
non-trivial. □

6.1.3. Proof of Theorems 1.6 and 1.7. Gathering together the results of the previous
sections, we can �nally prove our equidistribution theorems for re�ned Noether�Lefschetz
loci in weight 2. Let us �rst state them more precisely.
Let {VZ,F•V , B} be a Z-PVHS of weight 2 over a complex manifold S of dimension

rq as in Theorem 1.6. Let s ∈ S and let P ⊆ Hdg(s) be a subspace of rank r. Then
the pair (s, P ) is a transverse intersection point of S with a H-orbit, where H is the
stabilizer of a positive de�nite subspace of VR as in Section 6.1.1, if s does not admit �rst
order deformations such that P still embeds in the group of Hodge classes. Similarly,
if (λ1, · · · , λr) ∈ Hdg(s)r have intersection matrix M , then the tuple (s, λ1, · · · , λr) is a
transverse intersection point with aH-orbit, H being now the stabilizer of an orthonormal
r-tuple as in section 6.1.2, if s does not admit �rst order deformations such that λ1, · · · , λr
all remain Hodge classes.

We can now prove the main theorems in Section 1.2.1. Notations and hypothesis are
as in Theorem 1.6.
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Theorem 6.10. There exists a constant λ > 0 such that, for every relatively compact
open subset Ω ⊂ S with boundary of measure 0, we have

n− p+2q
2 |{(s, P )| s ∈ Ω, P ⊆ Hdg(s), rank(P ) = r, (s, P ) regular, disc(P ) ≤ n}|

−→
n→+∞

λ

∫
Ω

cq(F2V)r ,

where cq denotes the q
th Chern form of the bundle F2V endowed with the Hodge metric.

Proof. We use the notations from Section 6.1.1. By Theorem 6.1, the sequence (Pn)n∈N
is equidistributed in G/H. We are now in the setting of Theorem 3.6. By Theorem 5.21,
the pull-push form π∗p

∗ωG/H is equal to Vol(GU/HU).cq(F2V)r, where cq(F2V) is the
qth-Chern form of F2V . We can hence apply Theorem 3.6 to deduce Theorem 1.7. □

Notations and hypothesis are now as in Theorem 1.7.

Theorem 6.11. For every relatively compact open subset Ω ⊂ S with boundary of mea-
sure 0, we have:

1

a(Mn)
|{(s, λ1, · · · , λr)) ∈ Ω× Vr

Z,s regular tuple , (B(λi.λj))1≤i,j≤r =Mn, λi ∈ Hdg(s)}|

−→
n→∞

Vol(GU/HU)

∫
Ω

cq(F2V)r.

Proof. We use the notations from Section 6.1.2. By Theorem 6.8, the sequence (pr(WMn))n∈N
is equidistributed in G/H. We are now again in the setting of Theorem 3.6. Here H is
the stabilizer of an orthonormal r-tuple of vectors, and if we denote by H ′ the stabilizer
of the rank r subspace they generate in VR, then H ′/H is compact and one easily checks
then that π∗p∗ωG/H = Vol(H ′/H)π∗p

∗ωG/H′ .
By Theorem 5.21, the pull-push form π∗p

∗ = ωG/H′ is equal to Vol(GU/H
′
U) · cq(F2V)r,

where cq(F2V) is the qth-Chern form of F2V . Moreover,

Vol(GU/H
′
U) =

Vol(GU/HU)

Vol(H ′
U/HU)

=
Vol(GU/HU)

Vol(H ′/H)
.

Hence π∗p∗ωG/H = Vol(GU/HU)cq(F2V)r. We can hence apply Theorem 3.6 to deduce
Theorem 1.7. Indeed, one can easily see again that regular points in our de�nition above
correspond to transverse intersection points de�ned there. □

Finally we mention brie�y how to prove Proposition 1.24.

Proof of Proposition 1.24. Combining Corollary 2.9, Lemma 2.12 and Proposition 6.8, we
get Proposition 1.24. □

6.2. Equidistribution of families of CM points in Shimura varieties. In this
section, we use Theorem 1.1 to study the equidistribution of transverse intersection loci
of Hecke correspondences on Shimura varieties and deduce the equidistribution of some
families of CM points in average. We recall �rst the de�nition of a CM Hodge structure,
see [GGK12, V].
A CM �eld is a totally imaginary number �eld which is a quadratic extension of a

totally real number �eld. A CM algebra is a �nite product of CM number �elds.

De�nition 6.12. Let (V,B, F •) be a pure polarized integral Hodge structure and let
d = rankZ V . We say that (V,B, F •) has Complex Multiplication (�CM� for short) if one
of the following equivalent conditions hold:

(1) Its algebraic Mumford�Tate group MTφ is a torus ;
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(2) The ring EndQ(V, F
•) contains an étale CM sub-algebra of dimension 2d.

We refer to [GGK10, (IV.B.1)] for the equivalence in the de�nition above.

Example 6.13.
(1) Let (A, λ) be a polarized complex abelian variety and let End(A)Q = End(A)⊗Q.

Recall that A has complex multiplication if EndQ(A) contains an étale sub-algebra
of degree 2 dim(A) over Q. This is equivalent to the polarized Hodge structure
(H1(X,Z), ψ) being CM in the sense of De�nition 6.12.

(2) Let (X, ℓ) be a complex polarized K3 surface and let T (X) be the transcendental
lattice of X, i.e., the orthogonal complement of Pic(X) inside H2(X,Z) with

respect to the Poincaré form. Then X has CM if E
def
= End(T (X))Q is a CM �eld

and T (X)Q is of dimension 1 over E. If PH2(X,Z) is the primitive cohomology of
X, then this is equivalent to PH2(X,Z) being CM in the sense of De�nition 6.12.

Let (G̃,D) be a Shimura datum, see [Del71, Del79], and let D+ be a connected com-
ponent of D ; D+ is a G̃ad(R)+-conjugacy class of a morphisms had : S → G̃ad

R and it is
a Hermitian symmetric domain. Let K∞ be the stabilizer of had(i) in G̃ad(R)+. If K∞,+

is its preimage by the adjoint map, then we have an isomorphism D+ = G̃(R)+/K∞,+ ≃
G̃ad(R)+/K∞. Let Γ ⊂ G̃(Q) be an arithmetic subgroup and let X = Γ\D+. Then X is
a (connected) Shimura variety.

De�nition 6.14. Let g ∈ G̃ad(Q) and Γg = g−1Γg ∩ Γ. The Hecke correspondence
Cg ↪→ X ×X is the image of Γg\D by the embedding

Γg\D ↪→ X ×X

[x] 7→ ([x], [gx]).

If g = 1 is the identity of G̃(Q), then C1 is simply the diagonal embedding of X in
X ×X.

Proposition 6.15. For f ∈ G̃(R), the following properties are equivalent:

(i) f has a unique �xed point in D,

(ii) The centralizer of f is compact in G̃ad(R),
(iii) The intersection of the graph of f and the diagonal in D × D is transversal and

non-empty.

If f satis�es those properties, we say that f is regular.

Proof. (1) ⇒ (2): let x be the unique �xed point of f , then f is contained in the stabilizer
of x in G̃ad(R) which is a compact subgroup. Moreover, for any g ∈ Z(f), g · x is also a
�xed point for f , hence equal to x and thus Z(f) ⊆ K.
(2) ⇒ (3): Since Z(f) is compact, it is contained in a maximal compact subgroup K

of G̃ad(R). Hence f �xes a point x and the di�erential dfx on TxD identi�es to the action
of Ad(f) on p, the orthogonal complement of p in g̃ad with respect to the Killing form.
Then Ad(f) does not have 1 as eigenvalue in p, as Z(f) ⊆ K. This will hold true at
any �xed point f in D. Let (x, x) be an intersection point of the graph Cf of f and the
diagonal ∆ in D × D, then the tangent spaces of Cf and ∆ at (x, x) = (x, f · x) inside
T(x,x)(D × D) are given respectively by {(X,X)|X ∈ p} and {(X,Ad(f) · X)|X ∈ p}.
Their sum is equal to p ⊕ p if and only if their intersection is zero, which is true as 1 is
not an eigenvalue of Ad(f) in p.

(3) ⇒ (1): if the intersection is transverse, then by the previous computation, for any
�xed x point of f , the eigenvalues of dfx in p are di�erent from 1. If f �xes another point
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y ∈ D, then it �xes the geodesic line γ : R → D linking γ(0) = x to y and hence acts
trivially on this line. Hence dfx(γ̇(0)) = γ̇(0) which is a contradiction. Thus, f has a
unique �xed point. □

Lemma 6.16. A point [x] ∈ X is CM if and only if there exists g ∈ G̃(Q) such that C1
and Cg intersect transversally at x.

Proof. The transverse intersection locus of Cg and C1 inside X × X is necessarily of
dimension 0 by dimension count. Let [x] be a point in this intersection and hx : S → G̃(R)
a lift to D. Then there exists y ∈ D, γ1, γ2 ∈ Γ such that x = γ1 · y and x = γ2g · y.
Hence x = γ2gγ

−1
1 · x which implies that MT (x) ⊆ Z(γ2gγ

−1
1 ). Since the intersection

is transverse at x, then by the Lemma above, γ2gγ
−1
1 is regular and contained in K by

regularity. Hence by [GGK10, IV.B.1], x is a CM point.

Conversely, let x ∈ D be a CM point. Then L
def
= Z(MT (x))◦, the connected component

of the Mumford Tate group in its centralizer, is de�ned over Q. Then L(R) ⊂ K and the
function u : f 7→ det(Ad(f)|p−Idp) is well de�ned and does not vanish as u(hx(i)) ̸= 0. By
[Bor91, �18, Corollary 18.3], L(Q) is Zariski dense in L(R), hence there exists an element
f ∈ L(Q) which is regular andMT (x) ⊆ Z(f). Hence x is a transverse intersection point
of Cf and C1.

□

For g ∈ G̃ad(Q), let deg(g) = [Γ : Γg]. More generally, if V ⊂ G̃ad(Q) is a Γ-double class
with �nitely many left Γ-orbits, we let deg(V ) be the number of distinct left Γ-orbits,

in particular deg(g) = deg(ΓgΓ). If we set G
def
= G̃ad(R)+ × G̃ad(R)+ and H = G̃ad(R)+

embedded diagonally in G, then G/H ≃ G̃ad(R) and we are in the situation of Section 2.5.
Then we denote by O ⊂ (Γ×Γ)\G the corresponding �nite union of closed H-orbits and
by CO ↪→ X ×X the associated Hecke correspondence.

Theorem 6.17. Let X be a Shimura variety associated to a Shimura datum (G̃,D) such

that G̃ad is connected and Q-simple. Let (Vn)n∈N be a sequence of Γ-double classes in

G̃(Q) such that deg(Vn) → ∞. Then for every Ω ⊂ X open relatively compact subset
with zero measure boundary

|{(x, f)|x ∈ Ω, f ∈ Vn,MT (x) ⊂ Z(f), f regular}| ∼
n→∞

deg(Vn) · χ(D̂)

Vol(D̂)

∫
Ω

ωD .

Proof. Let H = G̃ad ↪→ G
def
= G̃ad × G̃ad and by assumption G̃ad is simple. Then the

quotient G/H is isomorphic to H via the map p : (x, y) 7→ yx−1. The preimage by p of
an element a ∈ G is equal to (1, a).H ↪→ G.
Then the sequence of Γ-double class (Vn)nN are equidistributed in G/H. This result

has been proved by [COU01] in the following cases: G̃ is connected, almost simple simply
connected and rankQ(G̃) ≥ 1 (see Theorem 1.6 loc. cit.) and for G = GSp2g (Remark (3)

page 332 loc. cit.). More generally, Eskin and Oh [EO06a] proved this result for any G̃
connected and simple over Q.8 Hence we are in the setting of Theorem 1.1.

By Theorem 5.22, the restriction of the form π∗p
∗ωG/H to D is equal to χ(D̂)

Vol(D̂)
· ωD.

Hence by Proposition 5.9, Γ\D is generically transverse to H-orbits and by Theorem 1.1,
the transverse intersection locus of CVn with X = C1 is equidistributed in X with respect

to χ(D̂)

Vol(D̂)
· ωD as n → ∞. By Lemma 6.16, this transverse locus is formed by elements x

8The simpli�cation comes at a cost of not having an error term.
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where x is a CM point with Mumford�Tate group MT (x) ⊂ Z(f) where f is regular and
f ∈ Vn. Hence the result. □

In this next section, we will give examples in situations where the Shimura variety
X receives an immersive dense map from a moduli space of algebraic varieties, namely
principally polarized abelian varieties and polarized K3 surfaces.

6.2.1. Equidistribution in average of CM abelian varieties. We now apply Theorem 6.17
to study equidistribution of CM principally polarized abelian varieties. Let g ≥ 1, G̃ =
GSp2g the standard symplectic group over Q and Hg the Siegel upper half-space. Then

(G̃,Hg) is a Shimura datum and for Γ = Sp(2g,Z), the quotient Ag
def
= Γ\Hg is in bijection

with the set of isomorphism classes of principally polarized abelian varieties over C.

For every N ≥ 1, we have a double class VN = {f ∈ GL2g(Z) ∩ G̃(Q), f † ◦ f = N · Id}
where f † is the adjoint with respect to the symplectic form. The Hecke correspondence
CN given by this double class has the following modular interpretation : CN ↪→ Ag×Ag is
the moduli of pairs (A1, A2, f) where (A1, A2) are principally polarized abelian varieties
of dimension g ≥ 1 and f : A1 → A2 is an isogeny satisfying f † ◦ f = N · IdA1 where
f † : B → A is the dual isogeny. Note that C1 is the diagonal embedding of Ag in Ag×Ag.
In this context, the transverse intersection locus of CN with C1 corresponds to principally
polarized CM abelian varieties A endowed with an isogeny f : A → A whose homology
class is a regular element of G̃(R) and lies in VN . Then the Mumford�Tate group of A is
a subgroup of Z(f).

Lemma 6.18. The transverse intersection loci of CN and C1 is set theoretically formed
by triples (A, λ, f) where (A, λ) is a principally polarized abelian variety, f : A → A is
an isogeny whose homological realization is regular and lies in VN and MT (A) ⊆ Z(f).
In particular, A is a CM abelian variety.

By applying Theorem 6.17, we get Theorem 1.21 in the introduction.

6.2.2. Equidistribution in average of CM K3 surfaces. We now discuss the second example
which is the equidistribution of CM points in the moduli space of polarized K3 surfaces.
Let d ≥ 1 and let F2d be the moduli space of complex polarized K3 surfaces of degree
2d. Then F2d can be embedded into an orthogonal Shimura variety which is given as
follows. Let VK3 be the K3 lattice, VK3 = U3 ⊕ E8(−1)2, ℓ2d ∈ VK3 a primitive class
of self-intersection 2d (it is unique up to the action of O(VK3)) and let V2d = ℓ⊥2d. Let
G̃ = GO(V2d) and D = {x ∈ P(V2d,C, (x, x) = 0, (x, x) = 0)}. Then (G,D) is a Shimura
datum and for Γ = Ker(O(V2d) → O(V ∨

2d/V2d)), we have a period map F2d → Γ\D which
is a local embedding by Torelli theorem [Huy16] and the complement of the image is a
�nite union of Cartier divisors. Under this map, K3 surfaces with CM, in the sense of
[Huy16, Remark 3.10] correspond to CM points of the orthogonal Shimura variety Γ\D.
Let ωD be the volume form on D as in Section 2.3, and for N ≥ 1, let VN be the double
class of integral elements f ∈ G̃(Q) which scale the bilinear form by N .

Theorem 6.19. Let N ≥ 1 and let CM(N) be the set of pairs (X, ℓ2d, f) where (X, ℓ2d) is
a CM polarized K3 surface of degree 2d, f ∈ End(PH2(X,Z)) an isogeny with f †◦f = N
and f ∈ GO(Q) is regular. Then for every open relatively compact subset with zero
measure boundary Ω ⊂ F2d, we have

|{(X, ℓ2d, f) ∈ CM(N), (X, ℓ2d) ∈ Ω}| ∼
N→∞

χ(D̂). deg(VN)

Vol(D̂)

∫
Ω

ωD.
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6.3. Equidistribution of Hecke translates of the Torelli locus. We prove in this
section Theorem 1.22 and Corollary 1.23. As the reader will notice, this is a statement
about the dynamics of Hecke operators rather than the varieties themselves.

Let S and D be two subvarieties of Ag of complimentary dimensions and let d be
the dimension of S. Let ωG/H be the pull-push form on Ag × Ag as constructed in
Theorem 5.22 with respect to the groups G = PGSp2g × PGSp2g and H = PGSp2g

embedded diagonally. We have an inclusion ι : S ×D ↪→ Ag ×Ag.
Let as before F1 → Ag be the Hodge bundle of the universal abelian scheme Ag and

let ω be its �rst Chern form with respect to the Hodge metric. Finally, let ωS and ωD be
its restriction to S and D respectively.

Lemma 6.20. We have ι∗ωG/H = 1

V ol(Ĥg)
ωd
S ∧ ω

g(g+1)
2

−d

D .

Proof. This is a consequence of Theorem 5.22 as the only non-vanishing di�erential forms
are the product of a form of degree 2d and a form of degree g(g + 1)− 2d, as the others
vanish on S ×D, combined with the fact that H2d(Ag,R) is generated by ωd for d ≤ 2,
see [van99, Prop. 2.2], and whose dual form (in the sense preceding Theorem 5.22) is
simply 1

V ol(Ĥg)
ωg(g+1)/2−d since the volume form on Ag is ωg(g+1)/2, hence the result. □

It is well-know that ω is Kähler form on Ag and hence the integration of ωd
S and

ω
g(g+1)

2
−1

D de�ne Lebesgue measures on S and D respectively, which are in fact �nite by
[Mum77, Main Theorem 3.1]. Finally, for (s, d) ∈ S × D, an isogeny f : AS,s → AD,d

is said to be regular if it does not admit �rst order deformation, or, equivalently, S ×D
intersects Cf transversely at (s, d).

Theorem 6.21. For every open relatively compact subsets with zero measure boundary
Ω ⊂ S and Ω′ ⊂ D, we have∣∣{(s, d, f)| (s, d) ∈ Ω× Ω′, f ∈ IsogN(AS,s,AD,d), f is regular}

∣∣
∼

N→∞
deg(VN) ·

χ(Ĥg)

Vol(Ĥg)

∫
Ω

ωd
S

∫
Ω′
ω

g(g+1)
2

−d

D .

In particular, the locus of points in S isogenous to a point in D is analytically dense in
S.

Proof of Theorem 1.22. For every N ≥ 1, we have de�ned the Hecke correspondance
CN ↪→ Ag × Ag which parameterizes pairs of principally polarized abelian varieties to-
gether with a polarized isogeny with similitude factor equal to N . By the Lemma above,
the restriction of the pull-push form ωG/H is Kähler, hence the generic transversality
assumption in Proposition 5.9 is satis�ed and we are in the setting of Theorem 1.1:
the transverse intersection locus of S × D and CN is equidistributed with respect to
χ(Ĥg)

Vol(Ĥg)
ωd
S ∧ ωg(g+1)/2−d

D as N → ∞. By the discussion preceding the theorem, the trans-

verse locus is exactly given by regular isogenies. Hence by choosing subsets of the form
Ω× Ω′, we get the desired equidistribution result. One has also similar equidistribution
results on D. □

Let g ≥ 2 and let Mg be the coarse moduli space parameterizing smooth projective
genus g curves over C. Recall that for any such curve C, one can associate its Jacobian
J(C), which is a principally polarized abelian variety of dimension g over C. This con-
struction can be done in families so that we get a map, the Torelli map, ιg : Mg ↪→ Ag

between coarse moduli spaces. This map is injective by [OS80] and its image is called the
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Torelli locus. For g = 4, the Torelli locus is a divisor in A4. Hence Corollary 1.23 follows
by applying the previous theorem to D = M4.
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