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Abstract. LetX be a K3 surface over a number �eld. We prove thatX
has in�nitely many specializations where its Picard rank jumps, hence
extending our previous work with Shankar�Shankar�Tang to the case
where X has bad reduction. We prove a similar result for generically
ordinary non-isotrivial families of K3 surfaces over curves over Fp which
extends previous work of Maulik�Shankar�Tang. As a consequence, we
give a new proof of the ordinary Hecke orbit conjecture for orthogonal
and unitary Shimura varieties.
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1. Introduction

Let X be a K3 surface over a number �eld K. Let X → S be a smooth
projective model, where S ↪→ Spec(OK) is an open subset of the spectrum
of the ring of integers OK . For every place P of OK with �nite residual �eld
k(P), we have an injective specialization map:

Pic(XK) ↪→ Pic(X
k(P)

),

and both groups have �nite rank, the Picard rank, denoted ρ(XK) and
ρ(X

k(P)
) respectively.

Inspired by the classical density result of Noether�Lefschetz loci for weight
2 polarized variations of Hodge structures, see [Voi02, Ogu03], Charles asked
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in [Cha14] what can be said about the arithmetic Noether�Lefschetz locus:

NL = {P ∈ S | ρ(XK) < ρ(X
k(P)

)}.

In a prior work [SSTT19, Theorem 1.1], we proved that the set NL is
in�nite under the additional assumption that X has potentially everywhere
good reduction, i.e., up to taking a �nite extension of K, we assumed that
S = Spec(OK). The �rst main result of this paper is the following uncon-
ditional result.

Theorem 1.1. Let X be a K3 surface over a number �eld K. Then the set

NL is in�nite.

This theorem is a particular instance of Theorem 4.1 which is formulated
for GSpin Shimura varieties and which has many other applications. As a
consequence, Theorems 1.4, 1.6, and Corollary 1.7 in [SSTT19] hold with
no assumptions on the reduction type. In particular, we have the following
theorem.

Theorem 1.2. Let K be a number �eld and A an abelian surface over K.

Then there exists in�nitely many places where A has good reduction, and the

reduction is geometrically non-simple.

1.1. Picard rank jumps over function �elds. Let p ≥ 5 be a prime
number. Let X → S be a family of K3 surfaces over a curve S over Fp.

Let η be the generic point of S . For every s ∈ S (Fp), we have similarly an
inequality of Picard ranks

ρ(Xη) ≤ ρ(Xs),

and one can introduce similarly the Noether�Lefschetz locus as the subset
of S where the above inequality is strict:

NL = {s ∈ S (Fp)|ρ(Xη) < ρ(Xs)}.

In [MST22, Theorem 1.1], Maulik, Shankar and Tang proved that if S is
proper and the family X → S is generically ordinary and not isotrivial
then the set NL is in�nite. Our second main theorem in this paper is to
remove the properness assumption in their result.

Theorem 1.3. Let X → S be a generically ordinary non-isotrivial family

of K3 surfaces over a smooth curve S over Fp with p ≥ 5. Suppose that the
discriminant of the generic geometric Picard lattice is prime to p. Then the

locus NL is in�nite.

The theorem is also a particular instance of Theorem 4.8 for GSpin Shimura
varieties, which has several other applications and also has an analogue for
unitary Shimura varieties, see Theorem 6.1. In particular, we have the follow-
ing theorem which extends [MST18, Theorem 1 (1)] to the quasi-projective
case.



3

Theorem 1.4. Let A be a non-isotrivial ordinary abelian surface over the

function �eld of a curve over Fp. Then A has in�nitely many smooth and

non-simple specializations.

Both Theorem 1.1 and Theorem 1.3 are motivated by the density of Hodge
loci in polarized variations of Hodge structure of weight 2 of K3 type, see for
example [Voi02, Ogu03, Tay20]. Recent density results for general polarized
variations of Hodge structures of level less than 2 as in [TT23, BKU21]
suggest that density of Hodge loci in arithmetic and function �eld settings
are natural problems to investigate, and we hope to address these questions
in future work.

1.2. Hecke orbit conjecture. As an application of Theorem 1.3, we give
a new proof of the Hecke orbit conjecture for orthogonal and certain unitary
Shimura varieties. We refer to [MST22, Section 1.2] for the context and prior
results on this conjecture.

Theorem 1.5. Let MFp be the reduction at p ≥ 5 of the integral model of a

Shimura variety of either:

(1) Orthogonal type associated to a lattice of signature (b, 2) having dis-

criminant prime to p.

(2) Unitary type associated to an imaginary quadratic �eld K split at p
and to a Hermitian lattice over OK of signature (n, 1) with discrim-

inant prime to p.

Then the prime-to-p Hecke orbit of an ordinary point is Zariski dense in

MFp .

The density of Hecke orbits in characteristic zero is a consequence of the
work of Clozel�Oh�Ullmo [CU05], see also [EO06] for a dynamical approach
using Ratner theory. Chai �rst proved the Hecke orbit conjecture for the
ordinary locus of the moduli space of principally polarized abelian varieties
in [Cha95]. For orthogonal and some unitary Shimura varieties, a �rst proof
of the Hecke orbit conjecture in the ordinary case has been obtained by
Maulik�Shankar�Tang in [MST22] and our approach is inspired from theirs.
Very recently, Pol Van Hoften [van21] proved this conjecture for the ordinary
locus of Shimura varieties of abelian type under certain conditions on the
re�ex �eld and using completely di�erent methods.

1.3. Strategy of the proof. Theorem 1.1 and Theorem 1.3 are proved us-
ing a strategy initiated by Chai-Oort [CO06] and Charles [Cha18] for the
product of two modular curves and subsequently used in [MST18, ST20] for
Hilbert modular surfaces over number �elds and Siegel threefolds over Fp.
Here we follow the set-up in [SSTT19] and [MST22] to which we refer for
more details. For Theorem 1.1, we �rst translate it into an intersection the-
ory type statement between a curve and a sequence of divisors in the integral
model of a toroidal compacti�cation of a Shimura variety of GSpin type. For
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this matter, we use the Arakelov intersection theory with prelog forms devel-
oped in [BBK07]. We follow a similar approach for Theorem 1.3, using the
usual intersection theory on the reduction modulo p of the aforementioned
compacti�cation of the integral model of a GSpin Shimura variety. The new
ingredients which were missing in both [SSTT19] and [MST22] are the local
estimates on multiplicities of intersection with special divisors at points of
bad reduction and the estimates of extra terms coming from the boundary
divisors in the global intersection numbers coming from the work of [BZ21],
see also [EGT23] for a recent approach. These are the main contributions
of this paper. To obtain the �rst estimates, we use an explicit description
of the special divisors in the formal completions along toroidal boundary
components. This allows us to de�ne in each case a decreasing sequence of
positive de�nite lattices (Ln, Q) which computes the local intersection num-
ber. We give an estimate on the growth of the successive minima of these
lattices, then a geometry-of-numbers type argument allows us to derive the
desired estimates. To obtain the bounds on the extra terms in the global
intersection number, we use the explicit expressions from [BZ21] and [Bru02]
combined with an equidistribution result from [Duk88, EO06].

1.4. Organization of the paper. The key input of this paper is the de-
scription of the special divisors in terms of local coordinates of integral mod-
els of toroidal compacti�cations of Shimura varieties of GSpin type. In Sec-
tion 2, we explain these constructions following [HP20] and [MP16], and
the section culminates with a description of the special divisors in formal
completions along locally closed boundary divisors. In Section 3, we re-
call brie�y Arakelov arithmetic intersection theory with prelog forms fol-
lowing [BBK07], and we assemble di�erent ingredients from the literature
([BZ21, HP20, Bor99]) to state the modularity of the generating series of spe-
cial divisors in the integral models of toroidal compacti�cations of Shimura
varieties of GSpin type. In Section 4, we state the archimidean and �nite
place estimates needed to prove our main theorems, and then we prove the
archimidean estimates. Section 5 is devoted to estimating contributions from
bad reduction places. Finally, we prove the application to Hecke orbit con-
jecture in Section 6.

1.5. Acknowledgments. I am very grateful to François Charles, François
Greer, Keerthi Madapusi Pera, Ananth Shankar and Yunqing Tang for many
helpful discussions and insights. This project started while I was invited by
Yunqing Tang to Princeton University, and I also bene�ted from support
from the Institute for Advanced Study in Princeton. I thank both institutions
for their hospitality. I thank the referee for the very valuable comments and
suggestions.
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2. GSpin Shimura varieties: integral models and their

compactifications

This section summarizes the construction of the GSpin Shimura variety, its
toroidal compacti�cations and their integral models following [BZ21, HP20,
Per19, AGHMP18], see also [Kis10, MP16, Pin90] for earlier work. The
ultimate goal is to describe the special divisors in formal completions along
the toroidal boundary strata. The familiar reader may wish to skip directly
to Section 2.4 for these results.

2.1. The GSpin Shimura variety. Let (L,Q) be an even quadratic lattice
of signature (b, 2) with b ≥ 1 and with associated even bilinear form

( . ) : L× L → Z

such that Q(x) = (x.x)
2 ∈ Z for all x ∈ L.

Let G = GSpin(LQ) be the algebraic group over Q of spinor similitudes
de�ned as in [MP16, Section 1.2]. The group G(R) acts on the Hermitian
symmetric space

D =: {z ∈ P(LC)| (z.z) = 0, (z.z) < 0}.

The pair (G,D) is the GSpin Shimura datum. Its re�ex �eld is Q by [MP16,
Section 3.1].

For K ⊂ G(Af ) a compact open subgroup, the GSpin Shimura variety

M(C) = G(Q)\D ×G(Af )/K

is the set of complex points of a Deligne�Mumford stack M de�ned over
Q. In what follows, we choose the compact open group K ⊂ G(Af ) as in

[AGHMP18, Equation (4.1.2)]. Its image in SO(LQ)(Af ) stabilizes L⊗ Ẑ ⊆
L ⊗ Af and is equal to the subgroup that acts trivially on the quotient

L̂∨/L̂ = L∨/L, where the dual lattice L∨ is de�ned as

L∨ = {x ∈ LQ|∀y ∈ L, (x.y) ∈ Z}.

The Shimura variety M carries a line bundle of weight 1 modular forms
that we denote by LQ and we refer to [AGHMP18, Section 4.1] for a de�ni-
tion. The Shimura datum (G,D) is of Hodge type by [AGHMP17, Section
2.2]: there exists a Shimura datum of Siegel type (GSg,DSg) and a compact
open subgroup Ksg ⊂ Gsg(Af ) such that we have an embedding of Shimura
varieties over Q

M ↪→ MSg.

This is the Kuga�Satake embedding. The pull-back of the universal abelian
scheme on MSg yields the Kuga�Satake abelian scheme A → M .
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2.2. Toroidal compacti�cations over C. In this section, we describe the
toroidal compactifcations of M as well as the structure of the boundary
components following [BZ21] and [HP20]. See also [AMRT10] for the general
theory of toroidal compacti�cations over C.

Recall from [HP20, Section 2.2] that an admissible parabolic subgroup
P ⊆ G is either a maximal proper parabolic subgroup of G or G itself. 1

A cusp label representative Φ = (P,D◦, h) is a triple constituted from an
admissible parabolic subgroup P , a connected component D◦ ⊂ D and an
element h ∈ G(Af ).

Attached to a cusp label representative Φ = (P,D◦, h), there exists a
mixed Shimura variety that we now describe. Let UΦ be the unipotent
radical of P and let WΦ be the center of UΦ

2. Let QΦ be the normal
subgroup of P de�ned as in [Pin90, �4.7], see also [HP20, 2.2]. De�ne as in
loc. cit. DΦ = QΦ(R)WΦ(C)D◦ and let KΦ = hKh−1 ∩QΦ(Af ). We de�ne
then the mixed Shimura variety

MΦ(C) = QΦ(Q)\DΦ ×QΦ(Af )/KΦ. (2.2.1)

By [Pin90, Prop. 12.1], MΦ(C) has a canonical model MΦ also de�ned
over Q. Let QΦ = QΦ/WΦ and DΦ = WΦ(C)\DΦ. Let KΦ be the image
of KΦ under the quotient map QΦ(Af ) → QΦ(Af ). Then from the data

(QΦ,DΦ,KΦ) we de�ne similarly to 2.2.1 a mixed Shimura variety Mϕ and
we have a canonical morphism

MΦ → MΦ. (2.2.2)

This map has a torsor structure that we now describe. Let ΓΦ = KΦ∩WΦ(Q).
It is a Z-lattice in WΦ(Q). By [HP20, Proposition 2.3.1], the map 2.2.2 is
canonically a torsor under the torus TΦ,Q whose cocharacter group is ΓΦ.

The mixed Shimura variety MΦ has itself a �bration structure over a pure
Shimura variety constructed as follows, see [Per19, 2.1.7] for more details.

Let Gh
Φ = QΦ/UΦ be the Levi quotient of QΦ, VΦ = UΦ/WΦ the unipotent

radical of QΦ and let Dh
Φ = VΦ(R)\DΦ. Then the pair (Gh

Φ,Dh
Φ) is a pure

Shimura datum with re�ex �eld equal to Q. Let Kh
Φ ⊂ Gh

Φ(Af ) be the image
of KΦ. Then the quotient

Mh
Φ(C) = Gh

Φ(Q)\(Dh
Φ ×Gh

Φ(Af ))/K
h
Φ

is the set of complex points of a Shimura variety which admits a canonical
model Mh

Φ de�ned over Q and we have a canonical map

MΦ → Mh
Φ. (2.2.3)

By [Per19, 2.1.12], there exists a natural abelian scheme AK(Φ) → Mh
Φ such

that the map 2.2.3 is a torsor under AK(Φ).

1Gad is simple in our case.
2We follow the notations of [Per19] which di�er from other references.
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In what follows, we will describe the above data for the GSpin Shimura va-
riety introduced in Section 2.1 following [HP20, Section 4] and [BZ21, Section
3]. Let Φ be a cusp label representative. The admissible parabolic subgroup
P is the stabilizer of a totally isotropic subspace IΦ of LQ of dimension at
most 2. The dimension 0 case corresponds to P = G. If P is the stabilizer of
a primitive isotropic line IQ ⊂ LQ, then the cusp label representative is said
to be of type III. If P is the stabilizer of a primitive isotropic plane JQ ⊂ LQ,
then Φ is said to be of type III. We will follow the notations of [BZ21] and
denote by Υ, resp. Ξ, a cusp label representative of type II, resp. of type
III.

Given two cusp label representatives Φ1 and Φ2, there is a notion of a

K-morphism Φ1
(γ,q2)K−−−−−→ Φ2 given by γ ∈ G(Q) and q2 ∈ QΦ2(Af ) which

we don't de�ne here and refer to [Per19, 2.1.14] for the de�nition, see also
[HP20, De�nition 2.4.1].

Let Φ be a cusp label representative. By the general theory of toroidal
compacti�cations, see [Pin90, 4.15] or [AMRT10, Ch. II.�1.1] for the de�ni-
tions, there exists a canonical open non-degenerate self-adjoint convex cone
CΦ ⊂ WΦ(R) homogeneous under P (R) and which allows to realize D◦ as a
tube domain inside an a�ne space, see [Per19, 2.1.5]. We de�ne the extended

cone C∗
Φ as in [Per19, 2.1.22]: for any map Φ′ (γ,q)K−−−−→ Φ, the conjugation by

γ−1 induces an embedding

int(γ−1) : WΦ′(R) ↪→ WΦ(R)

and we de�ne then

C∗
Φ =

⋃
Φ′→Φ

int(CΦ′).

This cone lies between CΦ and its topological closure in WΦ(R) but in gen-
eral, it is neither open nor closed. See also [Pin90, De�nition-Proposition
4.22] for more details.

Recall from [HP20, De�nition 2.4.3] that a rational polyhedral cone decom-

position (rpcd for short) of C∗
Φ is a collection ΣΦ = {σ} of rational polyhedral

cones σ ⊂ WΦ(R) satisfying natural compatibility conditions (we don't recall
these conditions here and invite the reader to consult the reference above for
more information). The rpcd ΣΦ is said to be smooth if it is smooth in the
sense of [Pin90, �5.2] with respect to the lattice ΓΦ. It is complete if

C∗
Φ =

⋃
σ∈ΣΦ

σ.

2.2.1. Boundary components of type II. Let Υ be a cusp label representative
of type II. Then P is the stabilizer of a primitive isotropic plane JQ ⊆ LQ
and let J = JQ ∩ h.L, where h ∈ G(Af ) acts on L via the map G(Af ) →
SO(LQ)(Af ). Then by [HP20, Page 31], the group WΥ is identi�ed with∧2 JQ, hence it is one dimensional. The lattice ΓΥ ⊂ WΥ is also of rank 1.
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The open convex cone CΥ is given by a half line R+\{0} and the extended
cone is C∗

Υ = {0} ∪ CΥ.

Let MΥ and MΥ be the mixed Shimura varieties associated to Υ. Then
MΥ → MΥ is a torsor under the 1 dimensional torus TΥ with cocharacter
group ΓΥ. The group Gh

Υ is equal to SL2 and Dh
Υ is equal to the Poincaré

upper half-plane. The Shimura variety Mh
Υ is a modular curve and the

abelian scheme AΥ is equal to the Kuga�Sato variety D⊗E where E → Mh
Υ

is the universal elliptic curve over over Mh
Υ and D is the positive de�nite

plane J⊥/J , see [BZ21, Corollary 3.17] and [Zem20, Proposition 4.3] for
details and proofs. Notice that our choice for the compact open subgroup K
gives exactly the stable orthogonal group used in [BZ21] and [Zem20].

The only possible cone decomposition of C∗
Υ in this situation is ΣΥ =

{{0}, CΥ∪{0}} and this determines a partial compacti�cation MΥ ↪→ MΥ,Σ

which is a �bration by A1
C over MΥ. Finally, there is only one boundary

divisor denoted by BΥ associated to the ray CΥ.

2.2.2. Boundary components of type III. Let Ξ be a cusp label representative
of type III. Then P is the stabilizer of a primitive isotropic line IQ ⊂ LQ
and let I = IQ ∩h.L. Set KI = I⊥/I. Then by [HP20, Equation (4.4.2)], we
have UΞ = WΞ and we have an isomorphism of vector spaces

KI,Q ⊗ IQ ≃ WΞ(Q).

The lattice (KI , Q) is a Lorentzian lattice of signature (b− 1, 1). Under the
above isomorphism, and assuming we have chosen a primitive generator of
I, the open convex cone CΞ ⊂ WΞ(R), see [HP20, Section 2.4] is identi�ed
with a connected component of the light cone

{x ∈ KI,R, Q(x) < 0}.

The spaces Mh
Ξ and MΞ are equal and are Shimura varieties of dimension

zero that we can describe as follows. Let (Gm,H0) be the Shimura data
given by

H0 := {2πϵ : ϵ2 = −1},

on which R× acts naturally through the quotient R×/R×
+. There is a mor-

phism of mixed Shimura data (QΞ,DΞ) → (Gm,H0) given by a canonical
character vΞ : QΞ → Gm de�ned as in [HP20, Equation (4.4.1)] and a map
DΞ → H0 given as in [HP20, Equation (4.6.3)]. Then the Shimura vari-
ety ShνΞ(KΞ)(Gm,H0) is zero dimensional and the canonical map MΞ →
ShνΞ(KΞ)(Gm,H0) is a torsor under the torus TΞ = Spec

(
Q[qα]α∈Γ∨

Ξ

)
with

cocharacter group ΓΞ = KI by [BZ21, Proposition 3.7].

The intermediate cone C∗
Φ can be described explicitly as follows, see also

[BZ21, page 23]: for any type II boundary component Υ with corresponding
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isotropic plane J containing I, the quotient J/I has a generator ωΞ,Υ lying
on the boundary of the CΞ. Hence

C∗
Ξ = CΞ ∪

⋃
Υ

RωΞ,Υ.

The rays RωΞ,Υ will be referred to as the external rays and the rays in CΞ

are the inner rays.

2.2.3. Toroidal compacti�cations. Recall from [HP20, De�nition 2.4.4] that
a K-admissible rational polyhedral cone decomposition for (G,D) is a col-
lection Σ = {ΣΞ,ΣΥ} such that ΣΞ and ΣΥ are rpcd for any cusp label
representative Ξ and Υ respectively satisfying the compatibility conditions
of [HP20, De�nitions 2.4.3, 2.4.4]. It is said smooth (resp. complete) if every
ΣΦ is smooth (resp. complete).

A toroidal stratum representative is a pair (Φ, σ) where Φ is a cusp label
representative and σ ⊂ C∗

Φ is a rational polyhedral cone whose interior is
contained in CΦ. There is similarly a notion ofK-morphism between stratum
representatives, see [HP20, De�nition 2.4.6] and the set of K-isomorphism
classes of toroidal stratum representatives will be denoted StartK(G,D,Σ).
We say that Σ is �nite if

|StartK(G,D,Σ)| < ∞.

Let Σ be a �nite K-admissible complete cone decomposition. The main
result of [Pin90, �12], see also [Per19, Theorem 2.1.27], ensures that there
exists a proper toroidal compacti�cation

M ↪→ MΣ

in the category of Deligne-Mumford stacks over Q such that MΣ is proper
over Q and has a strati�cation

MΣ =
⊔

(Φ,σ)∈StartK(G,D,Σ)

BΦ,σ (2.2.4)

by locally closed subspaces indexed by the �nite set of strata StartK(G,D,Σ).
The stratum indexed by (Φ, σ) lies in the closure of the stratum index
by (Φ′, σ′) if and only if there is a K-morphism of strata representatives

(Φ, σ) → (Φ′, σ′). Then the closure of the stratum BΦ,σ
K is given by

BΦ,σ =
⋃

(Φ′,σ′)→(Φ,σ)

BΦ′,σ′
.

Moreover, by [HP20, Theorem 3.4.1] following the work of Harris and
Harris�Zucker [HZ01], the line bundle of weight 1 modular forms L extends
to a line bundle on MΣ which we still denote L by abuse of notation.

Let (Φ, σ) be a toroidal stratum representative. Then (Φ, σ) determines
a partial compacti�cation of the mixed Shimura variety MΦ ↪→ MΦ(σ) with
boundary component index by σ denoted by ZΦ(σ). Pink proved that there
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is a canonical isomorphism [Pin90, Corollary 7.17, Theorem 12.4], see also
[Per19, Theorem 2.1.27], of Deligne�Mumford stacks:

∆K(Φ, σ)\Zσ(σ) ≃ BΦ,σ

where ∆K(Φ, σ) is the �nite group de�ned in [Per19, 2.1.19]. The latter
induces an isomorphism of formal Deligne�Mumford stacks:

∆K(Φ, σ)\M̂Φ(σ) ≃ M̂Σ (2.2.5)

where M̂Φ(σ) is the completion of MΦ(σ) along the locally closed subspace

ZΦ(σ) and M̂Σ is the formal completion of MΣ along the locally closed
stratum BΦ,σ.

Our goal in the next two sections is to make the above isomorphisms
explicit for type II and type III boundary strata.

2.2.4. Formal completion along type II boundary strata. Let Υ be a cusp
label representative of type II. By the discussion in Section 2.2.1, there is a
unique choice of a 1 dimensional ray σ and hence a unique choice of boundary
stratum representative (Υ, σ) which corresponds to a locally closed divisor
BΥ,σ.

The morphism MΥ → MΥ is then a torsor under a 1-dimensional torus
TΥ with cocharacter group ΓΥ ≃ Z, i.e., TΥ ≃ Spec(Q[q, q−1]). The partial
compacti�cation TΥ(σ) is then isomorphic to Spec (Q[q]) and the partial
toroidal compacti�cation of MΥ is given as a twisted torus embedding over

MΥ with �ber Spec (Q[q]). Hence we have the following description of M̂Υ(σ)

M̂Υ(Σ)
Spf(Q[[X]])−−−−−−−→ MΥ

D⊗E−−−→ Mh
Υ.

2.2.5. Formal completion along type III boundary strata. Let (Ξ, σ) be a
toroidal stratum representative of type III such that σ is a one dimensional
inner ray. The corresponding boundary component is denoted by BΦ,σ and
is a locally closed divisor. Write σ = Rω where ω ∈ CΞ ∩K is an integral
primitive generator that satis�es (ω.ω) < 0.

The morphism MΞ → ShνΞ(KΞ)(Gm,H0) is a torsor under the torus

TΞ = Spec
(
Q[qα]α∈Γ∨

Ξ

)
.

The partial compacti�cation TΞ(σ) is equal to

TΞ(σ) = Spec

(
Q[qα] α∈Γ∨

Ξ
(α.ω)≥0

)
and the ideal de�ning the boundary divisor is given by Iσ = (qα, (α, ω) > 0).
It is generated by qω′ for any ω′ ∈ Γ∨

Ξ for which (ω, ω′) = 1. We �x such ω′.
The formal completion along the boundary divisor is then given by:

T̂Ξ(σ) = Spec
(
Q[qα, α ∈ Γ∨

Ξ ∩ ω⊥][[qω′ ]]
)
,
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and the map MΞ(σ) → ShνΞ(KΞ)(Gm,H0) is a twisted torus embedding with

�bers T̂Ξ(σ). We will trivialize this �bration following an approach similar
to [HP20, Page 34].

First choose an auxiliary isotropic line I∗ ⊂ LQ such that (I.I∗) ̸= 0. Then
by [HP20, Equation (4.6.6)] and the discussion that follows, this determines
a section

(Gm,H0)
s−→ (QΞ,DΞ).

The section s determines a Levi decomposition QΞ = Gm ⋉ UΞ. Let
K0 ⊂ Gm(Af ) be a compact open subgroup small enough such that the
image under the section s is contained in KΞ and let

KΞ,0 = K0 ⋉ (UΞ(Af ∩KΞ)) ⊂ KΞ.

Then by reasoning similarly to [HP20, Proposition 4.6.2], we have the
following.

Proposition 2.1. We have an isomorphism of formal algebraic spaces:⊔
a∈Q×

>0\A
×
f /K0

T̂Ξ(σ)/C
≃−→ M̂KΞ,0

(σ)/C,

and the map

M̂KΞ,0
(σ)/C → M̂KΞ

(σ)/C

is a formally étale map of formal Deligne�Mumford stacks given by the quo-

tient by KΞ/KΞ,0. In particular, if K is neat, then the above map is a

formally étale surjection of algebraic spaces.

Proof. The same proof as in [HP20, Proposition 4.6.2] works with no change
in our setting. □

2.3. Integral models. We recall in this section the construction of inte-
gral models of GSpin Shimura varieties and their compacti�cations following
[HP20, AGHMP18, Per19]. We assume henceforth that the lattice (L,Q) is
a maximal lattice, i.e., there is no strict superlattice in LQ containing L over
which Q is Z-valued.

By [AGHMP18, Section 4.4], there exists a �at and normal integral model
M → Spec(Z) which is a Deligne�Mumford stack of �nite type over Z. It
enjoys the following properties:

(1) If the lattice (L,Q) is almost self dual3 at a prime p then the restric-
tion of the integral model to Spec(Z(p)) is smooth.

(2) If p is odd and p2 does not divide the discriminant of (L,Q), the
restriction of M to Spec(Z(p)) is regular.

(3) If n ≥ 6, the reduction mod p is geometrically normal.
(4) The line bundle of modular forms of weight 1 extends to a line bundle

on M that we denote by L.

3See [HP20, De�nition 6.1.1].
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Furthermore, given a K-admissible polyhedral complete cone decomposi-
tion, M admits by [Per19, Theorem 4.1.5] a toroidal compacti�cation MΣ

proper over Spec(Z) and which extends the compacti�cation MΣ previously
de�ned over Q. Moreover, it has a strati�cation

MΣ =
⊔

(Φ,σ)∈StartK(G,D,Σ)

BΦ,σ (2.3.1)

which extends the strati�cation in Equation (2.2.4) and such every stratum
is �at over Z. The unique open stratum isM and its complement is a Cartier
divisor. Moreover, for any cusp label representative (Φ, σ), the tower of maps

MΦ(σ) → Mϕ → Mh
Φ

has an integral model
MΦ(σ) → Mϕ → Mh

Φ

which satis�es the following: the abelian scheme AΦ has an extension AΦ →
Mh

Φ such that the map Mϕ → Mh
Φ is a torsor under AΦ and the map

MΦ(σ) → Mϕ is a twisted torus embedding with structure group the tor-
sor TΞ extending TΞ. Finally, the boundary component ZΦ(σ) has a �at
extension ZΦ(σ) such that we have an isomorphism of completions:

∆K(Φ, σ)\M̂Φ(σ) ≃ M̂Σ (2.3.2)

extending the isomorphism in Equation (2.2.5). See [Per19, Theorem 4.1.5]
and [HP20, Section 8.1] for more details.

Fix a prime p. The goal of the next two subsections is to describe the
formal completions of MΣ along the boundary divisors of these compacti�-
cations explicitly over Z(p) in the type II and the type III case.

2.3.1. Type II. Let (Υ, σ) be a toroidal stratum representative of type II
where σ is the unique one dimensional ray.

Let TΥ = Spec
(
Z(p)[q, q

−1]
)
with partial compacti�cation TΥ(σ) = Spec

(
Z(p)[q]

)
.

By Equation (2.3.1) and [Per19, Theorem 4.1.5 (2-4)], the morphism MΥ →
MΥ is a torsor under TΥ and the morphism MΥ → Mh

Ξ is a torsor under

D ⊗ E where E → Mh
Ξ is the universal elliptic curve. Moreover, the partial

toroidal compacti�cation of MΞ is given as a twisted torus embedding over
MΥ with �bers isomorphic to TΥ(σ). In particular, the formal completion
of MΥ along the boundary component is describe by the following diagram:

M̂Υ(σ)
T̂Υ(σ)−−−→ MΥ

D⊗E−−−→ Mh
Υ, (2.3.3)

where T̂Υ(σ) = Spf
(
Z(p)[[q]]

)
.

2.3.2. Type III. Let (Ξ, σ) be a toroidal stratum representative of type III
such that σ is one dimensional and generated by a primitive integral element

ω ∈ CΞ with (ω.ω) = −2N . Let TΞ = Spec
(
Z(p)[qα]α∈Γ∨

Ξ

)
and recall that

we have a TΞ torsor structure

MΞ → ShνΞ(KΞ)(Gm,H0).
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The cone σ determines a partial compacti�cation TΞ(σ) = Spec

(
Z(p)[qα] α∈Γ∨

Ξ
(α,ω)≥0

)
and also a partial compacti�cation MΞ ↪→ MΞ(σ) which is a twisted torus
embedding with �bers TΞ(σ).

The boundary divisor in TΞ(σ) is de�ned by the ideal Iσ = (qα, (α, ω) > 0).
If ω′ ∈ Γ∨

Ξ is as before an element such that (ω′.ω) = 1, then Iσ = (qω′). The
formal completion of TΞ(σ) along Iσ is then given by

T̂Ξ = Spf
(
Z(p)[qα, α ∈ Γ∨

Ξ ∩ ω⊥][[qω′ ]]
)
.

Recall that we have a morphism of Shimura data

(QΞ,DΞ)
vΞ−→ (Gm,H0),

and let s be the section of vΞ de�ned in Section 2.2.5. Let K0 ⊂ A×
f be a

compact open subgroup such that s(K0) ⊂ KΞ. We can furthermore assume
that K0 factors as

K0 = Z×
p .K

p
0 .

Let F be the abelian extension of Q determined by the reciprocity morphism
in global class �eld theory:

rec : Q×
>0\A

×
f /K0 ≃ Gal(F/Q).

Fix a prime P ⊂ OF above p and let R be the localization of OF at P.
Then using similar arguments as in [HP20, Proposition 8.2.3], we have the
following proposition.

Proposition 2.2. There is an isomorphism⊔
Q×

>0\A
×
f /K0

T̂Ξ(σ)/R → M̂Ξ,0(σ)/R

of formal Deligne�Mumford stacks over R whose base change to C agrees

with Proposition 2.1. Moreover, the map

M̂Ξ,0(σ)/R → M̂Ξ(σ)/R

is an étale map of Deligne�Mumford stacks given as the quotient by KΞ/KΞ,0.

The proof follows from the description given over C 2.1, the �atness of both
sides over Z(p) and the fact the normalization of Spec(Z(p)) in ShK0(Gm,H0)
is isomorphic to

⊔
a∈Q×

>0\A
×
f /K0

Spec(R), see [HP20, Proposition 8.2.3] for a

proof and more details.

2.4. Special divisors. We continue to assume in this section that the lattice
(L,Q) is maximal and let Σ be a smooth K-admissible cone decomposition.

For every β ∈ L∨/L, m ∈ Q(β) + Z such that m > 0, one can de�ne a
special divisor Z(β,m) → M following [AGHMP18, De�nition 4.5.6]. We
recall brie�y the de�nition and refer to loc. cit. for more details.
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The Shimura varietyM carries the family of Kuga-Satake abelian varieties
A → M. For any scheme S → M, a group of special quasi-endomorphisms
Vβ(AS) is de�ned in [AGHMP18, Section 4.5]. Then the functor sending a
scheme S to

Z(β,m)(S) = {x ∈ Vβ(AS)|Q(x) = m}
is representable by a Deligne�Mumford stack which is étale locally an ef-
fective Cartier divisor on M. We will rather consider its image in M by
a procedure described in [HP20] after Proposition 6.5.2. By abuse of nota-
tion, we also denote by Z(β,m) its closure in MΣ, which is again a Cartier
divisor.

In what follows, we will give an explicit description of Z(β,m) in the
formal completions of MΣ along its boundary components. Since for our
purposes we only need β = 0 and m coprime to p, we will only describe what
happens in this situation and we abbreviate for short Z(β,m) = Z(m). We
assume that m ≥ 1 is coprime to p for the rest of this section.

By [AGHMP18, Page 434], Z(m)(C) has a complex uniformization as

follows: for any g ∈ G(Af ), let Lg = g.L̂∩LQ and consider the sub-Hermtian
domain of D

D◦(λ) = {x ∈ D◦|(x, λ) = 0},
where λ ∈ Lg, Q(λ) = m. Then Z(m)(C) is equal to the union of D◦(λ) for
g ∈ G(Af ) and λ ∈ Lg with Q(λ) = m.

For any λ ∈ Lg with Q(λ) = m, let Gλ be the �xator of λ, Lλ the
orthogonal lattice to λ in LQ, and let Dλ ⊂ D be the orthogonal to λ.
Notice that Dλ does not depend on g but only on λ ∈ LC. Notice that since
m is coprime to p, the lattice Lλ is also maximal at p. Then (Gλ, Dλ) is
again a Shimura datum of GSpin associated to the lattice (Lλ, Q) which is
of signature (b − 1, 2) and has re�ex �eld equal to Q. If we choose Kλ ⊂
Gλ(Af ) a compact open subgroup as in [AGHMP18, Equation (4.1.2)], then
Kλ ⊂ K ∩Gλ(Af ) and we obtain a morphism of complex Shimura varieties

Mλ(C) → M(C).
By the description [AGHMP18, Equation (2.4)], the union over g ∈ G(Af ),
λ ∈ Lg with Q(λ) = m of the images of Mλ(C) is equal to Z(m)(C).

Now since (Gλ, Dλ) is again a Shimura variety of GSpin type associated
to a lattice maximal at p, the discussion in the previous sections applies
verbatim to the Shimura variety Mλ and yields similar description for the
compacti�cation and the integral model over Z(p). In particular, we have
a map between integral models Mλ → M over Z(p) which factors through
Z(m) by [HP20, Page 82].

Mλ → Z(m) ↪→ M
and the union over of images4 of such maps for g ∈ G(Af ) and λ ∈ Lg with
Q(λ) = m is equal to Z(m).

4This union is in fact �nite.
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Let (Φ, σ) be a toroidal stratum representative for M. From the descrip-
tion of the parabolic subgroups of GSpin(b, 2), we have the following lemma.

Lemma 2.3. The group P ∩ Gλ is an admissible parabolic subgroup of Gλ

if and only if λ ∈ I⊥Φ .

Notice also that if λ /∈ I⊥Φ , then the image of Dλ in MΣ(C) will not
intersect the boundary components parameterized by Φ, as its projection to
the Baily-Borel compacti�cation will not do so. Hence they will not appear
in the formal completions of MΣ along these boundary components.

We can write Φ = (P,D◦, h) and let λ ∈ Lg with Q(λ) = m such that

λ ∈ I⊥Φ . Lemma 2.3 shows that (Φ, σ) can also be seen as a toroidal stratum
representative with respect to (Gλ,Dλ) by considering P ∩ Gλ, see [MP16,
Section 2.1.28] for more details. Let Mλ,Υ be the integral model over Z(p)

of the mixed Shimura variety associated to Φ. We get then a morphism of
mixed Shimura varieties

Mλ,Φ → MΦ,

as well as a morphism of partial compacti�cations respecting the strata

Mλ,Φ(σ) → MΦ(σ).

By [Per19, Proposition 2.1.29], the morphism induced at the level of formal
completions along the boundary strata given by σ is compatible with the
toroidal compaciti�cations of Mλ and M. In particular, we get a commu-
tative diagram

M̂λ,Φ(σ) //

��

M̂Φ(σ)

��

Ẑ(m) // M̂Σ,

where the right vertical map is an étale cover of Deligne�Mumford stacks,
the left vertical map is an étale cover of an open and closed subset by [HP20,
Page 82]. Finally, the union over g ∈ G(Af ), λ ∈ Lg with Q(λ) = m of the

images of the left map covers the whole Ẑ(m).

2.4.1. Special divisors along type II boundary components. Let (Υ, σ) be a
toroidal stratum representative of type II.

Let λ ∈ L with Q(λ) = m such that λ ∈ I⊥Υ and m is coprime to p. We
have a morphism of formal completions of the partial compacti�cations of
mixed Shimura varieties

M̂λ,Υ(σ) → M̂Υ(σ).

Let x ∈ BΥ,σ(Fp) ⊂ MΥ(σ)(Fp) and let OMΥ(σ),x be the local ring at x. Let

x be the image of x in MΥ(Fp) and let z the image in Mh
Υ(Fp). If follows

from Equation (2.3.3) that the formal completion ÔMΥ(σ),x is isomorphic to

ÔMΥ(σ),x ≃ Zp[[X]]⊗̂ÔMΦ,x
.
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Moreover, the pull-back of the torsor MΥ → Mh
Υ to Spf(ÔMh

Υ,z) is trivial,

as it is trivial by reduction to Fp and we can lift formally any section. Hence

ÔMΦ,x
≃ ÔD⊗E,x

For λ ∈ D, consider the map over Mh
Υ

D ⊗ E (λ. )⊗Id−−−−−→ E . (2.4.1)

Its kernel is �at over Mh
Υ. Let Iλ ⊂ λ be the ideal de�ning it. Then

Îλ ↪→ ÔD⊗E,x is �at over ÔMh
Υ,z.

Proposition 2.4. The formal completion Ẑ(m) along x is the union over

λ ∈ D with Q(λ) = m of the vanishing loci inside ÔMΥ(σ),x of the ideals

Zp[[X]]⊗̂Îλ.

Proof. Let λ ∈ L such that λ ∈ J⊥ and Q(λ) = m. Then we have a
description of the mixed Shimura variety MΥ,λ similar to Equation (2.3.3),
namely, it has a �bration structure which �ts into the following diagram:

M̂λ,Υ(σ)
T̂Υ(σ) //

��

Mλ,Υ
Dλ⊗E //

��

Mh
λ,Υ

��
M̂Υ(σ)

T̂Υ(σ) //MΥ
D⊗E //Mh

Υ.

One can check that Dλ = λ
⊥

where λ is the image of λ in D = J⊥/J .
Moreover, the right vertical map in the above diagram is an étale cover and
the vertical middle map is equivariant with respect to the inclusion

λ
⊥ ⊗ E ↪→ D ⊗ E ,

and the left vertical map has image given by an open and closed subset of

Ẑ(m).

Let z′ ∈ Mh
λ,Υ(Fp) be a point mapping to z, then ÔMh

λ,Υ,z′
≃ ÔMh

Υ,z
.

Hence the above diagram becomes at the level of completed local rings:

Spf(Zp[[X]]⊗̂Ô
λ
⊥⊗E,x′)

//

��

Spf(Ô
λ
⊥⊗E,x′)

//

��

Spf(ÔMh
λ,Υ,z′

)

≃
��

Spf(Zp[[X]]⊗̂ÔD⊗E,x) // Spf(ÔD⊗E,x) // Spf(ÔMh
Υ,z

).

where the vertical map is contained in the kernel of the map 2.4.1. By
considering all the λ ∈ J⊥ that map to a given class λ ∈ D, we get that
the image is exactly the kernel of the map 2.4.1 and hence the image of left

vertical map is de�ned by the ideal Zp[[X]]⊗̂Îλ, see [Zem20, Equation (26)]
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for a description over C. Finally, since Ẑ(m) is equal to the union of such
images, the conclusion follows. □

2.4.2. Special divisors along type III boundary components. Let (Ξ, σ) be
a stratum representative of type III. Let KI = I⊥/I be the Lorentzian
lattice as introduced in Section 2.2.2 and we continue to assume that σ is
a one dimensional inner ray. Let ω ∈ KI ∩ CΞ be a generator of σ with
(ω.ω) = −2N , N ≥ 1. Let ω′ ∈ K∨

I be an element such that (ω.ω′) = 1.

Let λ ∈ L with Q(λ) = m and such that λ ∈ I⊥. The projection λ ∈ KI

de�nes a divisor in the torus TΞ = Spec(Z(p)[q
α]α∈Γ∨

Ξ
) given by the equation

qλ = 1.
In the partial compacti�cation TΞ ↪→ TΞ(σ), the equation of this divisor

becomes qλ − 1 = 0 if (λ.ω) ≥ 0 or q−λ − 1 = 0 otherwise. Notice also that
this divisor intersects the toric boundary divisor de�ned by σ if and only if
(ω.λ) = 0. We will hence restrict ourselves to this latter situation and we
denote by

TΞ(λ, σ) ↪→ TΞ(σ)
the divisor de�ned by λ. By construction, it only depends on the class of λ
in KI .

Proposition 2.5. Let Ẑ(m) be the formal completion of Z(m) along the

boundary component of MΞ index by (Ξ, σ). Then the following diagram is

commutative and compatible with Proposition 2.1.⊔
a∈Q×

>0\A
×
f /K0

⊔
λ∈K

Q(λ)=m,(λ.ω)=0

T̂Ξ,0(λ, σ)/C //

��

⊔
a∈Q×

>0\A
×
f /K0

T̂Ξ,0(σ)

��

Ẑ(m) // M̂Σ

The vertical maps are étale coverings of formal Deligne�Mumford stacks and

the union over λ ∈ I⊥ covers Ẑ(m).

Proof. Let λ ∈ L ∩ I⊥ with Q(λ) = m and such that projection λ ∈ I⊥/I is
orthogonal to ω. Then we have similarly a description of the mixed Shimura
variety Mλ,Ξ associated to the Shimura datum (Gλ,Dλ) as a torus �bration
and such that the following diagram is commutative

M̂λ,Ξ(σ)
T̂Ξ,0(λ,σ) //

��

S(Gm,H0)/R

��
M̂Ξ(σ)

T̂Ξ,0(σ) // S(Gm,H0)/R.

The left vertical map is equivariant with respect to the inclusion T̂Ξ(λ, σ) ↪→
T̂Ξ(σ) and its image only depends on λ ∈ I⊥/I. Since the formal completion
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Ẑ(m) is the union over λ ∈ L of the images of the left vertical maps, we get
the desired result. □

3. Arithmetic intersection theory and modularity

We recall in this section the Arakelov arithmetic intersection theory on
MΣ following [BBK07], the modularity results of the special divisors from
[HP20, Bor99] and its extension to complex toroidal compacti�cation by
[BZ21]. Then we derive a further extension to the integral model of the
toroidal compacti�cations of GSpin Shimura varieties.

3.1. Modularity of special divisors. Let (L,Q) be a maximal quadratic
lattice with signature (b, 3) and assume that b ≥ 3.

Let K ⊂ G(Af ) be the compact open subgroup from Section 2.1 and let Σ

be a K-admissible smooth polyhedral cone decomposition. Denote by MΣ

the toroidal compacti�cation of the integral model of the GSpin Shimura

variety constructed in Section 2.3. Let ĈH
1
(MΣ,Dpre)Q be the �rst Chow

group of prelog forms as de�ned in [BBK07, De�nition 1.15].

Let Υ be a cusp label representative of type II. Then there is a unique one
dimensional ray in the cone decomposition associated to Υ and we denote
by abuse of notation BΥ the closure of the boundary divisor associated to
Υ.

Consider now (Ξ, σ) a toroidal stratum representative of type III such that
σ is a 1-dimensional inner ray in the cone decomposition Σ. Then we denote
by BΞ,σ the closed boundary divisor in MΣ associated to (Ξ, σ).

Let β ∈ L∨/L and m ∈ Q(β) +Z with m > 0. For every toroidal stratum
representative Υ and (Ξ, σ), let µΥ(β,m) and µΞ,ω(β,m) be the real numbers
de�ned by Equation (4.5.1) and Equation (4.6.1), see also [BZ21]. Consider
then the following divisor on MΣ:

Ztor(β,m) = Z(β,m) +
∑
Υ

µΥ(µ,m) · BΥ +
∑
(Ξ,ω)

µΞ,ω(µ,m) · BΞ,ω,

(3.1.1)

where the two last sums are over toroidal stratum representatives of type
II and type III respectively. Then by [BZ21], the Cartier divisor Ztor(β,m)
can be endowed with a Green function Φβ,m such that the resulting pair

Ẑtor(β,m) = (Ztor(β,m),Φβ,m)

is an element of the �rst Chow group of prelog forms ĈH
1
(MΣ,Dpre)Q. For

m = 0 and β = 0, we de�ne Ẑ(0, 0) to be any arithmetic divisor whose is

class is the dual of the hermitian line bundle L̂ = (L, ||.||pet) endowed with
the Petersson metric ||z||2 = [z, z].
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Consider then the following generating series

ΦL :=
∑

β∈L∨/L

∑
m∈Q(β)+Z

Ẑtor(β,m)qmeβ ∈ C[L∨/L][[q
1

DL ]]⊗ĈH
1
(MΣ,Dpre)Q,

where (eβ)β∈L∨/L is a basis of the C-vector space C[L∨/L], DL is the

discriminant of L, and q = e2iπτ , where τ ∈ H is in the the upper-half plane.

Let

ρL : Mp2(Z) → AutC(C[L∨/L])

be the Weil representation associated to the quadratic lattice (L,Q), where
Mp2(R) is the metaplectic double cover ifMp2(R). For k ∈ 1

2Z, letModk(ρL)
denote the vector space of vector valued modular forms of weight k with
respect to ρL. We then have the following theorem.

Theorem 3.1. The generating series ΦL is the Fourier development of a

vector-valued modular forms of weight 1 + b
2 and representation ρL, i.e.,

ΦL ∈ Mod1+ b
2
(ρL)⊗ ĈH

1
(MΣ,Dpre)Q.

Proof. Let F ∈ M !
1− b

2

(ρL) be a weakly holomorphic modular form of weight

1− b
2 with respect to the complex conjugate Weil representation of ρL such

that that F has integral principal part, and let Ψ be the associated Borcherds
product. Then by [BZ21, Theorem 5.5], the divisor in MΣ(C) of Ψ(F )C is
equal to ∑

β∈L∨/L

∑
m∈Q(β)+Z

cβ(−m)Ztor(β,m)(C).

Since Borcherds products are de�ned rationally by [HP20, Theorem A],
we only need to check that the divisor of the Borcherds products has the
expected form over Z and this will be automatic if all the special divisors
and the boundary divisors are �at. By [Per19, Theorem 4.1.5], the boundary
divisors are �at and by [HP20, Proposition 7.2.2], the special divisors are �at
over Z[12 ] and over Z if b ≥ 4. For b = 3, one can use the algebraic version
of the Borcherds embedding trick as in [HP20, Section 9.2] to prove that
no further components appear at 2 and hence the divisor of the Borcherds
product has the correct form. Hence we conclude by the criterion in [BZ21,
Proposition 5.4]. □

4. The main estimates and proof of the main theorems

We state in this section the local and global estimates that will allow
us to prove Theorem 1.1 and Theorem 1.3. Then we will prove the global
estimates and we postpone the proof of local estimates to the next section.
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4.1. Number �eld setting. Let X be K3 surface over a number �eld K.
Given an embedding τ : K ↪→ C, let (L,Q) be a maximal lattice containing
the transcendental lattice of Xτ (C). It is an even lattice of signature (b, 2)
whose genus is independent from τ . We can assume furthermore that b ≥ 3,
as the case b ≤ 2 has already been treated, see [Cha18, ST20].

Let M be the integral model of the GSpin Shimura variety associated to
the lattice (L,Q) and, given an admissible polyhedral cone decomposition
Σ, let MΣ be its toroidal compactit�cation as in Section 2. By [MP15], the
K3 surface has an associated Kuga-Satake abelian variety which we can also
assume to be de�ned over the number �eldK, up to taking a �nite extension.
Hence it de�nes a K-point of MΣ. By the extension property of the integral
model, there exists N ≥ 1 such that, up to taking a �nite extension of K,
we have a �at morphism over Z:

Spec(OK

[
1

N

]
) → M,

and by properness, this map extends to

ρ : Y = Spec(OK) → MΣ.

By construction, the image of this map is not contained in any special divisor.
A prime over N is said to be a prime of bad reduction and otherwise of good
reduction.

As in [SSTT19, Theorem 2.4], we will rather prove the following more
general version, which is easily seen to imply Theorem 1.1.

Theorem 4.1. Let Y ∈ MΣ(OK) with smooth reduction outside N . Let

D ∈ Z>0 be a �xed integer represented by (L,Q) and coprime to N . Assume

that YK ∈ M(K) is not contained in any special divisor Z(m)(K). Then

there are in�nitely many places P of K of good reduction such that YP lies

in the image of Z(Dm2) → M for some m ∈ Z>0 coprime to N .

Let ρ : Y → MΣ be as in the previous theorem. We �rst begin by the
following proposition.

Proposition 4.2. There exists a re�nement of the cone decomposition Σ,
such that the map ρ : Y → MΣ satis�es the following property: for any prime

P of bad reduction, the image of the closed point {P} under ρ is contained

in a stratum which is a locally closed divisor of MΣ.

Proof. Let sP ∈ Y be the closed point P of Y. By Equation (2.3.1), the
image of sP lies in a stratum indexed either by either a type II boundary
component Υ or a type III (Ξ, σ) toroidal stratum representative. In the
type II case, the boundary is already a divisor and there is nothing to prove.
In the type III case, let r be the dimension of the cone σ. Then we get a
morphism:

Spf(W (Fp)) → M̂Σ, (4.1.1)
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where M̂Σ is the formal completion along the boundary component de�ned
by (Ξ, σ). By a similar analysis to Section 2.3.2, we have an étale cover of
formal Deligne�Mumford stacks:

T̂Ξ(σ) → M̂Σ.

Hence the map Equation (4.1.1) lifts to a morphism

Spf(W (Fp)) → T̂Ξ(σ), (4.1.2)

where

T̂Ξ(σ) = Spf
(
Zp[q

α|(α, σ) = 0]⊗Zp Zp[[q
α|(α, σ) > 0]]

)
.

Hence this corresponds to a map

Zp[[q
α|(α,C) > 0]]⊗ Zp[q

α|(α,C) = 0] → W (Fp).

The linear form on Γ∨
Ξ given by sending an element α to the p-adic valu-

ation of the image of qα under the above map is represented by an element
ω ∈ ΓΞ which satis�es (ω.α) > 0 whenever (α.σ) > 0, hence ω is in σ.
The cocharacter de�ned by ω is in fact tangent to the map given in Equa-
tion (4.1.2). Let σ′ in σ be the ray de�ned by ω and let Σ′ be the new cone
decomposition obtained by re�ning Σ and which contains σ′ as a one dimen-
sional ray. Then MΣ′

is a blow-up of MΣ and by the preceding discussion,
the point sP belongs to the boundary divisor parameterized by (Ξ, σ′). Since
there are only �nitely many primes of bad reduction, then by repeating this
procedure �nitely many times, we get the desired cone decomposition. □

We will work from now on with the toroidal compacti�cation given by the
above proposition. For m ≥ 1 an integer, let Z(m) be the closed special

divisor Z(0,m) ↪→ MΣ and Ẑtor(m) the arithmetic divisor associated to
Ztor(m) by Equation (3.1.1). The pullback via the period map ρ : Y → MΣ

allows us to de�ne the height hẐtor(m)
(Y) of Y with respect to the arithmetic

divisor Ẑtor(m) as its image under the composition:

ĈH
1
(MΣ,Dpre)Q →ĈH

1
(Y,Dpre)Q

d̂eg−−→ R,

Ẑtor(m) −→ hẐtor(m)
(Y).

By choice of the lattice (L,Q), the arithmetic curve Y intersects properly
the divisors Z(m), BΞ,ω and BΥ for every Υ and (Ξ, ω). Hence we have

hẐtor(m)
(Y) =

∑
τ :K↪→C

Φm(Yτ ) +
∑
P

(Y.Ztor(m))P log |OK/P|, (4.1.3)

where for τ : K ↪→ C, we use Yτ to denote the point in M(C) induced by

Spec(C) τ−→ Spec(OK) = Y → MΣ.
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We have

(Y.Ztor(m))P = (Y.Z(m))P +
∑
Υ

µΥ(m)(Y.BΥ)P +
∑
(Ξ,ω)

µΞ,ω(m) · (Y.BΞ,ω)P.

(4.1.4)

Let us denote by OY×MΣZ(m),v the étale local ring of Y ×M Z(m) at v,

then

(Y.Z(m))P =
∑

v∈Y×MZ(m)(FP)

length(OY×MΣZ(m),v), (4.1.5)

where FP denotes the residue �eld of P.
Let

(Y.Z(m)) =
∑
P

(Y.Z(m))P log |OK/P|.

The �rst new contribution of this paper is to prove the following estimate
which results from Borcherds modularity and ad hoc bounds on the multi-
plicities µΥ(m) and µΞ,ω(m).

Proposition 4.3. As m → ∞, we have

(Y.Z(m)) +
∑

τ :K↪→C
Φm(Yτ ) = O(m

b
2 ).

As a corollary, we get the following bound, which is referred to as the
diophantine bound in [SSTT19, Equation (5.2)].

Corollary 4.4. For any �nite place P, we have the following bound.

(Y.Z(m))P = O(m
b
2 logm), Φm(Yτ ) = O(m

b
2 logm).

For our next estimate, we recall the notion of asymptotic density from
[SSTT19]: for a subset S ⊂ Z>0, the logarithmic asymptotic density of S is
de�ned to be

lim sup
X→∞

log |SX |
logX

,

where SX := {a ∈ S | X ≤ a < 2X}.
Recall from Theorems 5.7 and 6.1 in [SSTT19] that we have the following

estimate:

Proposition 4.5. There exists a subset Sbad ⊂ Z>0 of zero logarithmic

asymptotic density such that∑
τ :K↪→C

Φm(Yτ ) = c(m) log(m) + o(m
b
2 log(m)),

where −c(m) ≍ m
b
2 and is de�ned in [SSTT19, Section 3.3].

For a prime P of good reduction, i.e., where the intersection of Y and
Z(m) above P is supported in M, we have the following estimate which
follows easily from [SSTT19, Theorem 7.1].
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Proposition 4.6. Let P be a �nite place of good reduction. Let D ∈ Z≥1

coprime to N . For X ∈ Z>0, let SD,X denote the set

{m ∈ Z>0 | X ≤ m < 2X,
m

D
∈ Z ∩ (Q×)2, (m,N) = 1}.

Then we have ∑
m∈SD,X

(Y.Z(m))P = o(X
b+1
2 logX).

Finally, for a prime P of bad reduction, we prove the following proposition
which is the second new contribution of this paper.

Proposition 4.7. Let P a �nite place of bad reduction. Let D ∈ Z≥1

coprime to N . For X ∈ Z>0, let SD,X be the set de�ned in the previous

proposition. Then we have∑
m∈SD,X

(Y.Z(m))P = o(X
b+1
2 logX).

4.2. Function �eld setting. We assume in this section that the lattice
(L,Q) is self-dual at p. Then the Shimura variety M has smooth reduction
at p and we denote its reduction by MFp . Given an admissible cone decom-

position Σ, we denote by MΣ
Fp

the reduction of the toroidal compacti�cation

MΣ. We �rst give a new formulation of Theorem 1.3, see Theorem 4.8, then
we will give the main estimates that will allow us to prove the latter.

Let X → S be a generically ordinary non-isotrivial family of K3 surfaces
over a smooth curve S over Fp. The quadratic lattice (L,Q) in this case cor-
responds to a maximal quadratic lattice orthogonal to the generic geometric
Picard group in the K3 lattice. Hence (L,Q) has discriminant coprime to p
by assumption and we get a period map by [MP15, section 4]

ρ : S → MFp ,

which is a �nite map and the image of the generic point is in the ordinary
locus. The locus in S where the Picard rank jumps corresponds then exactly
to the union overm ≥ 1 of the intersections S ∩Z(m)Fp . Hence Theorem 1.3
follows from the following theorem.

Theorem 4.8. Let S → MFp be a �nite map with generically ordinary

image and not contained in any special divisor. Then there exists in�nitely

many closed points in S in the union of Z(m)Fp for integers m coprime with

p.

Let S be a smooth curve as in the theorem above. By properness, we can
extend the map

ρ : S → MΣ
Fp
,

where S is the smooth compacti�cation of S . We have the following propo-
sition whose proof is similar to Proposition 4.2 and hence we omit it.
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Proposition 4.9. There exists a re�nement of the cone decomposition Σ
such that the image of S in MFp

intersects the boundary only in strata

corresponding to locally closed divisors.

Let Σ be a polyhedral cone decomposition which satis�es the conditions
of the previous proposition. By abuse of notations, if D ⊂ MΣ

Fp
is a Cartier

divisor, we write

(D.S ) = degS ρ∗D.

We have then the following global estimate.

Proposition 4.10. As m → ∞, we have

(Z(m)Fp
.S ) = |c(m)|(S .LFp) + o(m

b
2 ).

For any integer m, we can decompose:

(Z(m)Fp
.S ) =

∑
P∈Fp

mP (Z(m)Fp ,S ),

wheremP (Z(m)Fp ,S ) is the multiplicity of intersection at P . Our next goal
is to estimate in average these local multiplicities and we start by the good
reduction case already treated in [MST22, Prop. 7.11, Th. 7.18 ].

Let S be as in [MST22, Section 7.1], i.e., a set of integers of positive
density such that every m ∈ S is coprime to p and is representable by the
quadratic lattice (L,Q).

For P ∈ (S ∩M)(Fp), we de�ne as in [MST22, De�nition 7.6]

gP (m) =
hp

p− 1
|c(m)|,

where hp is the order of vanishing of the Hasse invariant at P , see loc.

cit. The following proposition is the combination of Proposition 7.11 and
Theorem 7.18 from [MST22].

Proposition 4.11. Let P ∈ S (Fp). Then:

(1) If P is not supersingular then∑
m∈SX

mP (Z(m)Fp .S ) = O(X
b
2 logX).

(2) There exists an absolute constant 0 < α < 1 such that for any super-

singular point P we have∑
m∈SX

mP (Z(m)Fp .S ) = α
∑

m∈SX

gp(m) +O(X
b+1
2 ).

Our new contribution in this setting is the following theorem which gives
an estimate on intersection multiplicities at points where S intersects the
boundary of MΣ

p .
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Proposition 4.12. Let P ∈ S (Fp) a point mapping to the boundary of

MΣ
Fp
. Then we have the following estimate:∑

m∈SX

mP (Z(m)Fp .S ) = O(X
b
2 logX).

4.3. Proof of the main theorems. Assuming the estimates in the previous
section we now indicate how to prove Theorem 1.1 and Theorem 1.3.

Proof of Theorem 1.1. It is enough to prove Theorem 4.1 in a similar way
to [SSTT19, Section 8]. For convenience of the reader, we will sketch the
proof. Assume for the sake of contradiction that there are only �nitely many
primes of good reduction such that Y intersects a special divisor of the form
Z(Dm2) where Dm2 is coprime with N and is represented by (L,Q). By
Proposition 4.3 and Proposition 4.5, there exists a subset Sbad ⊂ Z>0 of
logarithmic asymptotic density zero such that:

(Y.Z(m)) = −c(m) log(m) + o(m
b
2 log(m)) ≍ m

b
2 log(m).

Let Sgood
D,X = {m ∈ SD,X ,m /∈ Sbad, (m,N) = 1}, then one can easily check

that |Sgood
D,X | ≍ X

1
2 and c(m) ≫ X

b
2 logX for m ∈ Sgood

D,X . Hence we get∑
m∈Sgood

D,X

(Y.Z(m)) ≍ X
b+1
2 logX. (4.3.1)

On the other hand, by Proposition 4.5 and Proposition 4.7, we get by sum-
ming over the �nitely many places where either Y intersects a Z(Dm2) or
which are of bad reduction∑

m∈Sgood
D,X

(Y.Z(m)) = o(X
b+1
2 logX),

which contradicts Equation (4.3.1). □

Proof Theorem 1.3. The proof is similar: assume that there are only �nitely
many points in the union (∪m,m∧p=1Z(m) ∩ S ) (Fp) and let S be a set as
in Section 4.2. Then by Proposition 4.10, we have∑

m∈SX

(Z(m)Fp .S ) =
∑

m∈SX

|c(m)|(S .LFp) + o(Xb/2+1).

On the other hand, by Proposition 4.11 and Proposition 4.12 we have∑
m∈SX

(Z(m)Fp .S ) =
∑

m∈SX

∑
P∈(∪m,m∧p=1Z(m)∩S )(Fp)

mP (Z(m)Fp .S )

= α
∑

m∈SX

|gP (m)|+O(X
b+1
2 ).

≤ α
∑

m∈SX

|c(m)|(S .LFp) +O(X
b+1
2 ),
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where the last equality results from the fact that the Hasse invariant is a
section of L⊗p−1

Fp
. These two estimates contradict each other, hence the

result. □

4.4. Global estimate. We prove in this section simultaneously Proposi-
tions 4.3 and 4.10.

By Theorem 3.1, the following generating series∑
β∈L∨/L

∑
m∈Q(β)+Z

hẐtor(β,m)
(Y)qmeβ,

and ∑
β∈L∨/L

∑
m∈Q(β)+Z

(Ztor(β,m)Fp .S )qmeβ

are elements ofMod1+ b
2
(ρL). Classical estimates on the growth of coe�cients

of modular forms imply that (see [Tay20, Example 2.3] for more details):

hẐtor(m)
(Y) = O(m

b
2 )

and
(Z(m)torFp

.S ) = |c(m)|(S .LFp) + o(m
b
2 ).

By Equation (4.1.3) and Equation (4.1.4), we can write

(Y.Z(m)) +
∑

τ :K↪→C
Φm(Yτ ) = hẐtor(m)

(Y)−
∑
Υ

µΥ(m)(Y.BΥ)P log |OK/P|

(4.4.1)

−
∑
Ξ

µΞ,σ(m) · (Y.BΞ,σ)P log |OK/P|

(4.4.2)

and similarly, we can write:

(S .Z(m)Fp) = (Ztor(m)Fp .S )−
∑
Υ

µΥ(m)(S .BΥ,Fp) (4.4.3)

−
∑
Ξ,σ

µΞ,ω(m) · (S .BΞ,σ
Fp

). (4.4.4)

Hence we only have to bound the growth of the multiplicities µΥ(m) and
µΞ,ω(m).5 This is given by the following lemma.

Proposition 4.13. As m → ∞, we have the following estimates.

(1) For any type II cusp label representative Υ, we have

µΥ(m) ≪ϵ m
b
2
−1+ϵ.

(2) For any type III toroidal stratum representative (Ξ, σ) such that σ is

a ray, we have

µΞ,ω(m) ≪ϵ m
b−1
2

+ϵ.

5ω is the unique integral generator of σ.
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This proposition will be proved in the following two sections.

4.5. Estimates on type II multiplicities. The goal of this section is to
prove the type II estimate in Proposition 4.13. First we recall some notations
associated to isotropic planes introduced in [BZ21, Section 3.2].

Let Υ = (P,D◦, h) be a cusp label representative corresponding to a
boundary component of type II. Recall from Section 2.2.1 that P is the
stabilizer of an isotropic plane JQ and J = JQ ∩ h.L is a primitive isotropic
plane of h.L ∩ LQ.

To simplify the notations, assume that h.L ∩ LQ = L, the reader may
otherwise replace L by Lh = h.L ∩ LQ in what follows. De�ne then:

JL∨ = JR ∩ L∨, J⊥
L = J⊥ ∩ L, J⊥

L∨ = J⊥ ∩ L∨, and D = J⊥
L /J.

The lattice D is positive de�nite lattice of rank b− 2. Its dual lattice can
be described as

D∨ = J⊥
L∨/JL∨ .

and the discriminant lattice is given by:

∆D = D∨/D = J⊥
L∨/(J⊥

L + JL∨ = L∨
J/(L+ JL∨),

where L∨
J is the subgroup of L∨

L+ J⊥
L∨ = {µ ∈ L∨|∃ν ∈ L such that (µ, λ) = (ν, λ) ∀λ ∈ J}.

Let ΘD denote the vector-valued Theta function associated to D de�ned
by

ΘD(τ) =
∑
β∈D∨

qQ(β)eβ+D ∈ C[∆D][[q
1

|∆D | ]].

It is an element of M b
2
−1(ρD), which is the space of vector-valued modular

forms of weight b
2 − 1 with respect to the Weil representation ρD associated

to the positive de�nite lattice (D,Q). We can can also write

ΘD(τ) =
∑

β∈D∨/D

∑
m≥0

c(D,β,m)qmeβ,

where for β ∈ D∨/D, m ∈ Q(β) + Z, m ≥ 0, we have

c(D,β,m) = |{λ ∈ β +D,Q(λ) = m}|.
Following Bruinier�Zemel's notations [BZ21, Section 4.4], de�ne

↑LD (ΘD)(τ) =
∑

β∈J⊥
L∨/J

q
Q(β)

2 eβ+L

=
∑

β∈L∨/L

∑
m∈Q(β)+L

c(D,β,m)qmeβ ∈ M b
2
−1(ρL),

where c(D,β,m) = 0 if β /∈ J⊥
L∨/J⊥ or m /∈ Q(β) + Z, and otherwise

c(D,β,m) = c(D,β,m) where β is the image of β under the reduction map
J⊥
L∨ → D∨/D.
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In particular, we have

q
d

dq
↑LD (ΘD)(τ) =

∑
β∈L∨/L

∑
m∈Q(β)+L

mc(D,β,m)qmeβ,

which is a quasi-modular form in the sense of [IRR14, De�nition 1].
Then by [BZ21, De�nition 4.18, Proposition 4.21 4.15], we can de�ne:

µΥ(m) =
1

b− 2
CT

(
⟨q d

dq
↑LD (ΘD), F

+
m⟩L

)
, (4.5.1)

where F+
m is the holomorphic part of the Harmonic Mass form Fm,0 from

[BZ21, Proposition 4.2]. A direct computation shows then (see also the
second formula in [Bru02, Theorem 2.14])

µΥ(m) =
2

b− 2
mc(D, 0,m).

Classical estimates on coe�cients of modular forms, see for example [Sar90,
Prop.1.5.5], show that

|c(D,β,m)| ≪ϵ m
b
2
−2+ϵ (4.5.2)

for all ϵ > 0. Hence we get that

|µΥ(m)| ≪ϵ m
b
2
−1+ϵ,

which proves the �rst part of Proposition 4.13.

4.6. Estimates on type III multiplicities. In this section, we prove the
estimates on the type III multiplicities in Proposition 4.13.

Let (Ξ, σ) be a toroidal stratum representative of type III such that σ
is a ray. Keeping the notations from Section 2.2.2, let IQ be the isotropic
line of LQ whose stabilizer is the parabolic subgroup attached to Ξ and let
I = IQ ∩ h.L. To simplify notations, we assume that h.L = L, the reader
may notice that this is harmless, up to replacing L by h.L in what follows.

The line I is an isotropic line of L and the latticeKI = I⊥/I is Lorentzian.
Let CR be the cone of negative elements of the Lorentzian space KI,R and
let C = CR ∩ K. As is explained in Section 2.2.2, the ray ω is generated
by an element ω ∈ KI ∩ C which is primitive and such that Q(ω) = −N .
Following [BZ21, De�nition 4.18], we de�ne

µΞ,ω(m) =

√
N

8
√
2π

ΦK
m

(
ω√
N

)
. (4.6.1)

Let v = ω√
N
. By [Bru02, Proposition 2.11] and [Bru02, Theorem 2.14], we

have
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ΦK
m(v) = ΦK

m(v,
1

2
+

b

4
)

=
2Γ( b−1

2 )(4πm)
b
2

1 + b
2

∑
λ∈KI

Q(λ)=m

F ( b−1
2 , 1, 1 + b

2 ;
m

q(Q(λ
v⊥ ))

(4π|Q(λv⊥)
b−1
2 |)

,

where F (a, b, c; z) is the usual Gauss hypergeometric function given by:

F (a, b, c; z) =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
,

and (a)n = Γ(a+ n)/Γ(a). Recall that the above series has 1 as a radius of
convergence and converges absolutely in the unit circle |z| = 1 ifR(c−a−b) >
0. In our situation, the latter quantity is equal to 1+b/2−1− b−1

2 = 1/2 > 0.

Hence the series F ( b−1
2 , 1, 1+ b

2 ; z) is globally bounded over the unit disc. For
λ ∈ K such that Q(λ) = m, we have m = Q(λv) +Q(λv⊥) and Q(λv) ≤ 0,
hence 0 < m ≤ Q(λv⊥). Hence we get

|ΦK
m(v)| ≪

√
m.

∑
√
mλ∈KI
Q(λ)=1

1

Q(λv⊥)
b−1
2

≪
√
m
∑
N≥1

∑
Q(λ⊥

v )∈[N,N+1[√
mλ∈KI
Q(λ)=1

1

N
b−1
2

.

By Proposition 4.14 below, we have

|{λ ∈ KI,R, Q(λ) = 1,
√
mλ ∈ K,Q(λ⊥

v ) ∈ [N,N + 1[}| ≪ϵ m
b
2
−1+ϵN

b
2
−2.

Hence

|ΦK
m(v)| ≪ϵ m

b−1
2

+ϵ
∑
N≥1

N
b
2
−2

N
b−1
2

≪ϵ m
b−1
2

+ϵ
∑
N≥1

1

N3/2
.

≪ϵ m
b−1
2

+ϵ.

which proves the second part of proposition 4.13.

Proposition 4.14. Let m ≥ 1 be an integer and X > 0 a positive real

number. Then

|{λ ∈ KI,R, Q(λ) = 1,
√
mλ ∈ KI , Q(λ⊥

v ) ∈ [N,N + 1[}| ≪ϵ m
b
2
−1+ϵN

b
2
−2
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Proof. Recall that (KI , Q) is a quadratic lattice of signature (b − 1, 1) and
we have a canonical measure µ∞ on the quadric K1 := {x ∈ KI,R|Q(x) = 1}
de�ned as follows: for W an open subset of KR, let

µ∞(W ∩K1) = lim
ϵ→0

Leb ({x ∈ W, |Q(x)− 1| < ϵ})
2ϵ

.

Here Leb is the Lebesgue measure on KR for which the lattice K is of co-
volume 1. One can then prove that (see for example the proof of [SSTT19,
Corollary 4.12]):

µ∞({λ ∈ K1, Q(λv⊥) ∈ [X,X + 1[}) ≪ X
b
2
−2.

On the other hand, by the equidistribution of integral points in quadrics, see
[EO06, Duk88], 6 we have:

|{λ ∈ K1,
√
mλ ∈ K,Q(λ⊥

v ) ∈ [N,N+1[}| ≪ϵ m
b
2
−1+ϵµ∞({λ ∈ K1, Q(λv⊥) ∈ [X,X+1[}),

which yields the desired result. □

5. Bounding the contribution from bad reduction places

In this section we prove Proposition 4.7 and Proposition 4.12. Let MΣ

be as before the toroidal compacti�cation of the GSpin Shimura variety
associated to a quadratic lattice (L,Q) and a K-admissible polyhedral cone
decomposition Σ. The lattice (L,Q) is assumed to be maximal in the number
�eld case and moreover self-dual at p in the function �eld case.

5.1. Bad reduction in the number �eld setting. In this section, we
prove Proposition 4.7. We assume hence that the lattice (L,Q) is maximal
and that the polyhedral cone decomposition Σ is chosen in such way that
Proposition 4.2 is satis�ed.

By the choice of the cone decomposition Σ, the intersection points of Y
and MΣ lie either in a boundary divisor of type II or a boundary divisor
of type III associated to a toroidal stratum representative (Ξ, σ) of type III
where σ is a ray.

Let P be a prime of bad reduction, i.e., where Y intersects the boundary
of MΣ. Let KP be the completion at P of the number �eld K and vP its

normalized valuation. Let kP be the residue �eld of P and kP an algebraic
closure.

5.1.1. Type II degeneration. Assume in this section that the boundary point
lies in BΥ

Fp
where Υ is a cusp label representative of type II.

Let J be the primitive isotropic plane associated to Υ and let D = J⊥
L /J ,

see Section 4.5 for notations.

6Or the circle method.
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Recall from Equation (2.2.5) and Equation (2.3.3) that the completion
of MΣ along the boundary divisor BΥ �ts into the following commutative
diagram

M̂Υ
π //

=
��

M̂Σ

M̂Υ
Spf(Zp[[X]]) //MΥ

D⊗E //Mh
Υ

where the map π is an étale map of formal Deligne�Mumford stacks.

The formal completion of Y along P induces a map

Spf(OKP
) → M̂Σ,

which lifts by étaleness of π to a map

Spf(OKP
) → M̂Υ.

Denoting by x the image of the closed point sP, then we get a map of local
rings

Ψ : ÔM̂Υ,x
→ OKP

.

Let m ≥ 1 be an integer coprime to N . By Proposition 2.4, the formal
completion of the divisor Z(m) is described as the union over λ ∈ D with

Q(λ) = m, of the vanishing set of the ideals Zp[X]]⊗ Îλ. If fλ is a generator

of Îλ
7, then the multiplicity of intersection of the branch parameterized by

λ at P is equal to
v(λ) = vP(Ψ(fλ)).

Hence the multiplicity of intersection of Y and Z(m) at P is given by:

(Y.Z(m))P =
1

d

∑
λ∈D

Q(λ)=m

v(λ),

where d is the degree of π at ρ(sP).
For an integer n, de�ne the set:

Ln = {λ ∈ D|v(λ) ≥ n},
and notice that (Ln) is a decreasing chain of sets. It follows then

(Y.Z(m))P ≤
∑
λ∈D

Q(λ)=m

v(λ) (5.1.1)

≤
∑
n≥1

|{λ ∈ Ln|Q(λ) = m}|. (5.1.2)

The Proposition below should be compared to what happens in the good
reduction case in [SSTT19, Section 7]. For a de�nition of the successive
minima used, we refer to [EK95, De�nition 2.2].

7Recall that Z(m) is Cartier.
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Proposition 5.1. The sequence (Ln, Q)n is a decreasing sequence of positive

de�nite lattices which all have the same rank r ≤ b − 2. Moreover, the

following holds:

(1) ∩nLn = {0}.
(2) For every n ≥ 1, pLn ⊆ Ln+1.

(3) For 1 ≤ r ≤ b− 2, let µi(Ln) be the ith successive minima of Ln and

let ai(Ln) =
∏

1≤k≤i µi(Ln). Then we have

ai(Ln) ≫ϵ n
i

b+ϵ .

Proof. Let λ, λ′ ∈ Ln. From Equation (2.4.1), we see that ker(pλ)∩ ker(pλ′)
and thus

Îλ+λ ⊂ Îλ + Îλ′ .

It follows that

v(λ+ λ′) ≥ min{v(λ), v(λ′)} ≥ n.

We conclude that Ln ⊆ D is a subgroup and (Ln, Q) is obviously positive
de�nite. Moreover, since the curve Y is not contained in any special divisor,
(1) follows immediately.

For (2), let λ ∈ Ln with v(λ) ≥ n ≥ 1. Then Îpλ is the ideal de�ning the
kernel of the composition

D ⊗ Ê → Ê → Ê ,

over Spf(ÔMh,z).
Since the multiplication by p map is rami�ed at 0 with rami�cation degree

equal to p, we conclude that

v(pλ) ≥ pv(λ)

≥ n+ 1.

This also proves that the lattices Ln have the same rank.
For (3), let n ≥ 1 and let w0 be a vector in Ln such that Q(w0) = µ1(Ln)

2.
By choosing m0 = µ1(Ln)

2, the height bound Corollary 4.4 implies

n ≤ (Y.Z(m0))P ≪ϵ m
b+ϵ
2 .

Hence µ1(Ln) ≫ϵ n
1

b+ϵ . Since ai(n) ≥ µ1(n)
r, this concludes the proof. □

Proposition 5.2. Let D ∈ Z≥1. For X ∈ Z>0, let SD,X denote the set

{m ∈ Z>0 | X ≤ m < 2X,
m

D
∈ Z ∩ (Q×)2, (m,N) = 1}.

Then we have ∑
m∈SD,X

(Y.Z(m))P = o(X
b+1
2 logX).
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Proof. We have∑
m∈SD,X

(Y.Z(m))P ≤
∑

m∈SD,X

∑
n≥1

|{λ ∈ Ln|Q(λ) = m}|

=
∑
n≥1

∑
m∈SD,X

|{λ ∈ Ln|Q(λ) = m}|.

By [EK95, Lemma 2.4], we have the following estimate which only depends
on the rank r of the lattices Ln and hence not on n∑

m∈SD,X

|{λ ∈ Ln|Q(λ) = m}| ≪
r∑

j=0

Xj

aj(Ln)
.

On the other hand, if λ ∈ Ln with Q(λ) = m ∈ SD,X , then µ1(Ln)
2 ≤ m ≤

X, hence n ≪ X
b+ϵ
2 and

∑
m∈SD,X

(Y.Z(m))P ≪
∑

m∈SD,X

Oϵ(X
b+ϵ
2 )∑

n≥1

|{λ ∈ Ln|Q(λ) = m}|

≪
r∑

j=0

X
b+ϵ
2∑

n≥1

X
j
2

n
j

b+ϵ

≪
r∑

j=0

X
j
2
+(1− j

b+ϵ
) b+ϵ

2

= O(X
b+ϵ
2 ).

Hence the result. □

5.1.2. Type III degeneration. Let (Ξ, σ) be a toroidal stratum representative
of type III such that σ is a ray. We use notations from Section 2.2.2.

By our choice of Σ, the curve Y touches the boundary of MΣ at a locally

closed boundary divisor BΞ,σ. Let M̂Σ be the formal completion of MΣ

along BΞ,σ and hence we get a map

Ŷ → M̂Σ. (5.1.3)

By Section 2.2.5, the following maps of formal Deligne�Mumford stacks are
�nite étale: ⊔

Q×
>0\A

×
f /K0

T̂Ξ/R → M̂Ξ,σ → M̂Σ.

Hence map 5.1.3 lifts to map

Ŷ → Spf
(
Zp[qα|α ∈ Γ∨

Ξ ∩ ω⊥][[qω′ ]]
)
.
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This corresponds to a morphism:

Z(p)[[qω′ ]][qα] α∈Γ∨
Ξ

(α.ω)=0

→ OKP
. (5.1.4)

Let λ ∈ KI = ΓΞ with Q(λ) = m. By Section 2.4.2 the branch of the
special divisor Z(m) parameterized by λ intersects the boundary only if
(λ.ω) = 0. In the latter case, by Proposition 2.5, its equation is given by
qλ− 1 and the multiplicity of intersection of Y with the branch given by λ is
the p-adic valuation of the element qλ − 1 under the map Equation (5.1.4).

Let x ∈ BΞ,σ(Fp) be the image of P. Then by the previous discussion, we
conclude that

(Y.Z(m))P =
1

d

∑
λ∈KI∩ω⊥
Q(λ)=m

vp(q
λ − 1),

where d is the degree of the map Equation (5.1.3) at x.
For n ≥ 1, let

Ln = {λ ∈ KI ∩ ω⊥|vp(qλ − 1) ≥ n}.
Then we can rewrite the multiplicity intersection at P as:

(Y.Z(m))P =
1

d

∑
n≥1

{λ ∈ Ln|Q(λ) = m}.

Proposition 5.3. The lattices (Ln, Q) are positive de�nite lattices of rank

r ≤ b− 1 independent from n and they satisfy the following properties:

(1) ∩nLn = {0}.
(2) For every n ≥ 1, pLn ⊆ Ln+1.

(3) For 1 ≤ r ≤ b − 1, let µi(Ln) be the ith successive minima and let

ai(Ln) =
∏

1≤k≤i µi(Ln). Then we have

ai(Ln) ≫ϵ n
i

b+ϵ .

Proof. The proof is similar to the proof of Proposition 5.1. Let λ, λ′ ∈ K∩ω⊥.
By writing

qλ+λ′ − 1 = qλ(qλ
′ − 1) + qλ − 1,

we get that Ln is a lattice and it is obviously positive de�nite as KI is
Lorentzian and ω is a negative normed vector.

Let π be a uniformizer of OKP
and let λ ∈ Ln. Then qλ = 1 + πn.u for

some u ∈ OKP
. Hence

qpλ − 1 = (1 + πn.u)p − 1

=
∑
i≥1

(
p

i

)
πniui

= πn+1u′.

Hence (2). The rest of the proof is similar to Proposition 5.1. □
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As a consequence, we get the following proposition, whose proof is identical
to the proof of Proposition 5.2 and we omit it.

Proposition 5.4. Let D ∈ Z≥1 be coprime to N . For X ∈ Z>0, let SD,X

denote the set

{m ∈ Z>0 | X ≤ m < 2X,
m

D
∈ Z ∩ (Q×)2, (m,N) = 1}.

Then we have ∑
m∈SD,X

(Y.Z(m))P = o(X
b+1
2 logX).

5.2. Function �eld setting. In this section, we prove Proposition 4.11. We
assume here that the lattice (L,Q) is self-dual at p and we let MFp be the
mod p GSpin Shimura variety associated to (L,Q). Let Σ be a polyhedral
cone decomposition which satis�es Proposition 4.9.

Let S → MΣ
Fp

be a �nite map as before and let P ∈ S (Fp) be a point

mapping to the boundary of MΣ
Fp
. Let denote k = Fp. The point P lies

either in a boundary stratum of of type II or type III. We treat each case
separately.

5.2.1. Type II degeneration. Assume that the image of P is in BΥ
Fp
(k) where

Υ is a cusp label representative of type II.

Let Ŝ ≃ Spf(k[[t]]) be the formal completion of S along s. Then by
reasoning similarly to Section 5.1.1, speci�cally using the reduction mod p
of Equation (2.3.3), we get for every λ ∈ D with Q(λ) = m ≥ 1, m coprime
to N a map

Φp : ÔMΥ,Fp,x → k[[t]],

Let v(λ) denote the t-adic valuation of the generator fλ of Iλ,p. Then
similarly to the number �eld case, we have:

Lemma 5.5. The multiplicity of intersection of S and Z(m)Fp at P satis-

�es:

mP (S ,Z(m)Fp) ≪
∑
n≥1

|{λ ∈ Ln|Q(λ) = m}|.

Now we are ready to prove Proposition 4.12.

Proposition 5.6. The sequence of lattices (Ln, Q) satisfy the same prop-

erties as in Proposition 5.1 and letting S be as in Section 4.2, we have the

following estimate for X > 0:∑
m∈SX

mP (S ,Z(m)Fp) = Oϵ(X
b+ϵ
2 )
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Proof. The same proof as in Proposition 5.1 shows that the lattices (Ln, Q)
enjoy the same properties of the aforementioned proposition. For the second
part, we have∑

m∈SX

mP (S ,Z(m)Fp) ≪
∑

m∈SX

∑
n≥1

|{λ ∈ Ln|Q(λ) = m}|

≪
O(X

b+ϵ
2 )∑

n=1

|{λ ∈ Ln|Q(λ) ≤ m}|

≪
O(X

b+ϵ
2 )∑

n=1

r∑
j=0

X
j
2

aj(Ln)

≪
r∑

j=0

O(X
b+ϵ
2 )∑

n=1

X
j
2

n
j

b+ϵ

= O(X
b+ϵ
2 ).

□

5.2.2. Type III degeneration. Assume now that there exists a toroidal stra-

tum representative (Ξ, σ) such that σ is a ray and such that P lies in BΞ,σ
Fp

(k).

Using a similar approach to Section 5.1.2 by taking reduction mod p, we get
a map

k[qα|α ∈ Γ∨
Ξ ∩ ω⊥][[qω′ ]] → k[[t]],

sending qω′ to an element of the ideal (t). Let v denote the t-adic valuation
on k[[t]]. Then, for m coprime to N , the multiplicity of intersection of S
and Z(m)Fp at P satis�es:

mP (S ,Z(m)Fp) ≤
∑

λ∈KI∩ω⊥
Q(λ)=m

v(qλ − 1).

If we de�ne the sequence lattices Ln as

Ln = {λ ∈ K ∩ ω⊥|v(qλ − 1) ≥ n, }
then

mP (S ,Z(m)Fp) ≤
∑
n≥1

|{λ ∈ Ln, Q(λ) = m}|.

Now the rest of the proof is similar to Section 5.1.2. This proves Propo-
sition 4.12 in the remaining type III case.

6. Applications

In this section, we present a proof of Theorem 1.5. This approach is
inspired from [MST22].
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6.1. Hecke orbit conjecture.

6.1.1. The orthogonal case. Since GSpin Shimura varieties are �nite covers of
orthogonal ones, it is enough to prove the result for GSpin Shimura varieties.

Let MFp be the reduction mod p ≥ 5 of a GSpin type Shimura variety
with hyperspecial level at p associated to a lattice (L,Q), which is assumed
to be self-dual at p and of signature (b, 2). We will prove Theorem 1.5 by
induction on b, which is also the dimension of MFp .

The case b = 1 is immediate: the prime-to-p Hecke orbit of x is in�nite,
hence Zariski dense.

Assume now that n ≥ 2 and the result of Theorem 1.5 holds for all or-
dinary points in GSpin Shimura varieties of dimension less than b − 1 with
hyperspecial level at p. Let x be an ordinary point in M(Fp) and let Tx

be the Zariski closure of its prime-to-p Hecke orbit. Then Tx has positive
dimension and intersects the ordinary locus non-trivially. Hence we can �nd
a smooth quasi-projective curve S and a �nite map

S → MFp

whose image is contained in Tx and which is contained in the ordinary locus.
Moreover, we can assume that this image is not contained in any special di-
visor. Indeed, the same argument used for proper curves in [MST22, Lemma
8.11] works in our setting with no change. By Theorem 1.3, the curve S
intersects in�nitely many divisors Z(m)Fp with (m, p) = 1. The special
divisors Z(m)Fp are themselves the union of GSpin Shimura varieties of di-
mension b − 1 with hyperspecial level at p since m is coprime to p. Let
y ∈ S (Fp) ∩ Z ′(m)(Fp) for some irreducible component Z ′(m) of Z(m).
Then y is ordinary and the prime-to-p Hecke orbit of y in Z ′(m)Fp is Zariski
dense by the induction hypothesis. Since this orbit is a sub-orbit of the
Hecke orbit in MFp , we conclude that Z ′(m)Fp ⊂ Tx. Furthermore, it is
straightforward to check that the collection of the divisors Z ′(m)Fp must be

in�nite by Theorem 1.3. Hence we conclude that Tx = MFp which is the
desired result.

6.1.2. The unitary case. We prove in this section the Hecke orbit conjecture
in the unitary case using the reduction to the orthogonal case already used
in [MST22, Remark 8.12] and in [SSTT19, Section 9.3].

Let MFp be the mod p points of the canonical model of a unitary Shimura
variety associated to an imaginary quadratic �eld k, a unitary group of
signature (r, 1) with hyperspecial level at p as described in [BHK+20, Section
2.1] such that p is split in k. Consider the family of special divisors ZKra(m)
as described in Section 2.5 loc. cit. which are themselves unitary Shimura
varieties associated to unitary groups of signature (r−1, 1) and hyperspecial
at p when p does not divide m. Then using a similar argument to [SSTT19,
Section 9.3] and further explained in [MST22, Remark 8.12], we have the
following theorem which is a consequence of Theorem 1.3.
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Theorem 6.1. Assume that p ≥ 5 and let S → MFp be a �nite map from

a smooth quasi-projective curve S over Fp and with generically ordinary

image. Then the union over m prime to p of the intersections S ∩ZKra(m)
is in�nite.

Now the Hecke orbit conjecture in the unitary case is an easy consequence
of the above theorem and the induction method explained in the previous
paragraph.
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