
ON THE NON-ABELIAN HODGE LOCUS I

PHILIP ENGEL AND SALIM TAYOU

Abstract. We partially resolve conjectures of Deligne and Simp-
son concerning Z-local systems on quasi-projective varieties that
underlie a polarized variation of Hodge structure. For local sys-
tems of �compact type�, we prove (1) a relative form of Deligne's
�niteness theorem, for any family of quasi-projective varieties, and
(2) algebraicity of the corresponding non-abelian Hodge locus.
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1. Introduction

Let Π = π1(Y, ∗) be the fundamental group of a smooth quasi-
projective variety. A fundamental result of Deligne [Del87] is that,
up to conjugacy, only �nitely many representations ρ : Π → GLn(Z)
underlie a Z-polarized variation of Hodge structure (Z-PVHS) over Y .
We are primarily concerned with two questions here:

(Q1) If instead, one has a family Y → S of smooth quasi-projective
varieties, then do only �nitely many representations of Π un-
derlie a Z-PVHS on some (unspeci�ed) Ys?

(Q2) In the relative moduli space of �at connectionsMdR(Y/S,GLn),
is the locus underlying a Z-PVHS algebraic?

The �rst question is due to Deligne [Del87, Question 3.13]. Simp-
son [Sim97, Conjecture 12.3] posed and made progress on the second
question, proving that this locus is analytic.
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Note that the two questions are related: Q2 implies Q1 because
an algebraic set will have only �nitely many connected components,
and the representation of Π is locally constant along a locus of �at
connections underlying a Z-PVHS.
We answer both questions, under the following assumption:

De�nition 1.1. Let ρ : Π → GLn(Z) be a group representation and
let H(R) denote the Zariski-closure of im(ρ) in GLn(R). Let

H(Z) := H(R) ∩GLn(Z).

We say that ρ is of compact type if H(Z) ⊂ H(R) is cocompact.

Theorem 1.2. Let Y → S be a family of smooth quasi-projective va-

rieties. Then the �at connections in MdR(Y/S,GLn) underlying a Z-
PVHS with compact type monodromy form an algebraic subvariety.

In particular, if Π = π1(Y0, ∗) for some 0 ∈ S, then only �nitely

many compact type representations of Π underlie a Z-PVHS on some

�ber Ys, up to an appropriate identi�cation.

The appropriate identi�cation mentioned in the theorem above is
explained in De�nition 3.1.
A useful feature of the compact type case is that, due to Gri�ths'

generalization of the Borel extension theorem, a Z-PVHS on Ys ex-
tends over a projective, simple normal crossings compacti�cation Y s.
We may stratify S into loci over which Y admits a relative simple
normal crossings compacti�cation. This is achieved by induction on
dimension, applying resolution of singularities over the generic point
of each stratum. Note that both Q1 and Q2 are Zariski-local on S.
So both Q1 and Q2 (in the compact type case) reduce to families of
smooth projective varieties. Hence, for the remainder of the paper, we
assume that Y → S is smooth projective, and S is quasiprojective.
Our result also answers a question asked by Landesman and Litt

[LL22, Question 8.2.1], again in the cocompact case.

1.1. The non-abelian Hodge locus. In [Sim95], Simpson de�ned
MDol(Y/S,GLn), resp. MdR(Y/S,GLn), the relative Dolbeault space,
resp. the relative de Rham space: MDol(Y/S,GLn) is a relative moduli
space of semistable Higgs bundles (E , φ) with vanishing rational Chern
classes andMdR(Y/S,GLn) is a relative moduli space of vector bundles
with �at connection.
Let NDol ⊂MDol(Y/S,GLn) be the �xed point set of the Gm-action

(E , φ) 7→ (E , tφ) and let NdR be its image in MdR(Y/S,GLn) under the
non-abelian Hodge correspondence. De�ne

MdR(Y/S,GLn(Z)) ⊂MdR(Y/S,GLn)
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to be the �at bundles having integral monodromy representations on
a �ber of Y → S. Following Simpson [Sim97, �12], we de�ne the non-
abelian Hodge locus, called the Noether-Lefschetz locus in loc. cit.,

NHL(Y/S,GLn) := NdR ∩MdR(Y/S,GLn(Z)).

These are the �at vector bundles underlying a Z-PVHS.
The precise phrasing of Simpson's conjecture on the non-abelian

Hodge locus [Sim97, Conjecture 12.3] is:

Conjecture 1.3. NHL(Y/S,GLn) is an algebraic variety and the in-

clusions into MdR(Y/S,GLn) and MDol(Y/S,GLn) are algebraic mor-
phisms.

When the base S is projective, Conjecture 1.3 is a consequence of
Serre's GAGA theorem, as explained in [Sim97, Corollary 12.2]. Fur-
thermore, we have a decomposition

NHL(Y/S,GLn) = NHLc(Y/S,GLn) t NHLnc(Y/S,GLn)

according to whether the monodromy representation is compact type or
non-compact type. Our main Theorem 1.2 proves NHLc(Y/S,GLn) is
algebraic. The case of non-compact type monodromy will be explored
in future work of the authors.

1.2. Strategy of the proof. The proof splits into two parts, each of
a rather di�erent nature. First, Q1 is proven, using techniques from
hyperbolic and metric geometry. Then, the resolution of Q1 is used to
prove Q2, by applying more algebraic techniques.

1.2.1. Finiteness of monodromy representations. By slicing by hyper-
planes, Q1 can be reduced to the case of curves, and in turn, to the
universal family Cg →Mg, for g ≥ 2. Let

Φ: C → Γ\D
be the period map associated to a Z-PVHS of compact type on some
C ∈Mg. Every genus g Riemann surface C admits a hyperbolic metric,
and Deligne's �niteness result relies critically on the length-contracting
property of Φ [Gri70, 10.1]. But as the curve C ∈Mg degenerates, the
length-contracting property alone ceases to be useful: The monodromy
representation will be determined by curves whose hyperbolic geodesic
representatives have length growing to in�nity.
These geodesics grow in length as they cross hyperbolic collars form-

ing near the nodes of the limiting curve. Thus, our key lemma, see
Proposition 3.16, is that the image of a length-decreasing harmonic
map from a hyperbolic collar to a symmetric space is bounded, even
as the transverse length to the collar grows to in�nity.
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1.2.2. Algebraicity of NHLc(Y/S,GLn). Our main tool for proving Q2
is an algebraization theorem for Douady spaces of Gri�ths transverse,
compact analytic subspaces of arithmetic manifolds Γ\D which param-
eterize period images of Z-PVHS's with big monodromy.
The local analytic branches of the non-abelian Hodge locus are the

isomonodromic deformations of a �xed integral representation which
underlie a Z-PVHS. Hence the �bers of Y → S along such a branch
admit a period map Φs : Ys → Γ\D. The images Φs(Ys) of such period
maps are closed analytic spaces, tangent to the Gri�ths distribution
on Γ\D, of bounded volume with respect to the Gri�ths line bundle.
When Γ\D is compact, we prove that such period images are param-

eterized by a product of a compact Moishezon space and a sub-period
domain of D accounting for the factors where the monodoromy rep-
resentation is �nite. We identify the non-abelian Hodge locus as a
relative space of maps of bounded degree from Y/S to the universal
family over the Moishezon space.
Then Q2 follows for period maps with a �xed target Γ\D. The set

of such arithmetic quotients Γ\D which can appear is bounded using
the resolution of Q1. Theorem 1.2 follows.

1.3. Organization of the paper. In �2 we recall some background
results on polarized variations of Hodge structures and period domains.
In �3, we prove the relative version of Deligne's �niteness theorem, for
representations of compact type. Then in �4, we introduce the Douady
and Barlet spaces in the general context of polarized distribution man-
ifolds and prove their key properties. In �5, we prove algebraicity of
the compact type non-abelian Hodge locus.

1.4. Acknowledgements. The �rst author thanks P. Smillie for sug-
gesting a proof of Proposition 3.12, R. Krishnamoorthy for many help-
ful discussions, and B. Bakker and D. Litt for their insights. The second
author thanks A. Landesman for bringing this question to his atten-
tion and for useful conversations, and D. Maulik, Y.-T. Siu, and N.
Tholozan for useful conversations.

2. Variations of Hodge structures

We recall in this section some background results on polarized vari-
ations of Hodge structures and �x notations. Our main references are
[GGK12, Kli17].

2.1. Monodromy and Mumford-Tate group. Let Y be a complex
manifold and let V := (VZ, F

•, ψ) be a polarized variation of Hodge
structure of weight k on Y . Here VZ is the Z-local system, F • is the
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Hodge �ltration on VZ ⊗OY , and ψ is the polarization. Let G be the
generic Mumford-Tate group of the variation and letH be the algebraic
monodromy group of V.
We recall that G is the Mumford�Tate group of the Hodge structure

over a very general point of Y and H is the de�ned as follows: �x a
base point ∗ ∈ Y and denote the monodromy representation associated
to the local system VZ by ρ : π1(Y, ∗) → GL(VZ,∗), which lands in the
subgroup Sp(VZ,∗) or O(VZ,∗) depending on the parity of the weight.
Then H is the identity component of the Q-Zariski closure of the image
of ρ. The groups G and H are reductive algebraic groups over Q and
by a classical theorem of Deligne and André, H is a normal subgroup of
Gder, the derived group of G. It follows that we have a decomposition
over Q of the adjoint groups Gad = Had ×H′.
Let D be the Mumford-Tate domain associated to the variation. It is

a complex analytic space, homogeneous for G := Gad(R)+ and it can be
identi�ed with a quotient G/K where K ⊂ G is a compact subgroup.
In terms of Hodge structures, K is the real subgroup preserving each
V p,q and the Hodge pairing between V p,q and V q,p. From the theory of
symmetric spaces, D is an analytic open subset of the compact dual D∨,
a projective subvariety of a symplectic or an orthogonal �ag variety
with speci�ed Mumford-Tate group. There then exists a parabolic
subgroup P ⊂ GC such that D∨ = GC/P and P ∩G = K.

The variation of Hodge structure V on Y is completely described by
its holomorphic period map:

Φ : Y → Γ\D,

where Γ ⊂ G(Z) is a �nite index subgroup preserving VZ such that
the monodromy representation factors through Γ. Up to taking a �nite
étale cover of Y , we can assume that Γ is neat, hence acting freely
on D. Then the quotient XΓ := Γ\D is a connected complex mani-
fold, called a connected Hodge manifold, see [Kli17, De�niton 3.18]. It
is the classifying space of polarized Z-Hodge structures on VZ whose
generic Mumford-Tate group is contained in G, with level structure
corresponding to Γ.
In general, XΓ is not algebraic unless D is Hermitian symmetric.

In that case, XΓ is in fact quasiprojective by the Baily-Borel theorem
[BB66], and Φ is algebraic by the Borel hyperbolicity theorem [Bor72],
see also [BBT23] for another proof.
We can furthermore re�ne the period map by taking into account

the algebraic monodromy group H. The Mumford�Tate domain D
decomposes according to the decomposition Gad = Had×H′ of adjoint
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groups as D = DH ×DH′ where DH is an H := Had(R)+-homogeneous
space. Up to a �nite étale cover of Y , we can assume that the lattice
Γ decomposes as Γ = ΓH × ΓH′ where ΓH ⊂ H(Z) and ΓH′ ⊂ H′(Z)
are arithmetic subgroups. Then the projection of the period map Φ
is constant on the second factor and hence the period map takes the
following shape:

Φ : S → ΓH\DH × {tY } ↪→ Γ\D,

where tY is a Hodge generic point in DH′ . Then XΓH
×DH′ serves as a

classifying space of Z-PVHS on a lattice isometric to VZ,∗ whose generic
Mumford-Tate group is contained in G, and whose monodromy factors
through ΓH . The classifying map for such a variation factors through
the inclusion of XΓH

× {t} for some �xed t.

2.2. Automorphic vector bundles. Given any complex linear rep-
resentation of χ : K → GL(W ), there is an associated holomorphic
vector bundle G×KW → D which is Γ-equivariant and hence descends
to a holomorphic vector bundle over XΓ. In particular, for any p, the
natural representation of K on V p,q de�nes a holomorphic vector bun-
dle on D which is identi�ed to the pth graded piece F p/F p+1 of the
Hodge �ltration.
Any character χ : K → S1 de�nes an equivariant holomorphic line

bundle Lχ → D. For example, if the character χ is the determinant of
the action of K on V p,q, we get the line bundle Lp = det(F p/F p+1).
Any such equivariant line bundle admits a unique (up to scaling) left
G-invariant hermitian metric

h : Lχ ⊗ Lχ → C.

De�nition 2.1. The Gri�ths bundle L→ XΓ is de�ned by

L :=
⊗

p≥0(Lp)
⊗p.

We denote the descent to XΓ of the equivariant vector bundles F p,
line bundles Lp, and the hermitian metrics h by the same symbols.

Remark 2.2. While F • de�nes a �ltration of holomorphic vector bun-
dles over XΓ, it does not, in general, de�ne a Z-PVHS over XΓ for the
tautological local system, because Gri�ths' transversality fails.

Recall that the tangent space to the Grassmannian at a subspace
W ⊂ V is canonically isomorphic to Hom(W,V/W ). Since D is an
open subset of a �ag variety D∨, we have an inclusion

TD ⊂
⊕

p Hom(F p, V/F p).
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The Gri�ths transversality condition on a Z-PVHS over Y implies
that the di�erential dΦ of the period map lands in an appropriate
subspace of the tangent space:

De�nition 2.3. The Gri�ths distribution T || ⊂ TD is the holomophic
subbundle of the tangent bundle de�ned by

T
||
F • := TF •D ∩

⊕
p Hom(F p, F p−1/F p).

It is G-invariant, and so descends to a distribution in TXΓ which we
also denote by T ||.

The following proposition is [Gri70, Prop. 7.15].

Proposition 2.4. Let ωL := i
2π
∂∂ log h ∈ Λ1,1(XΓ,R) be the curvature

form of the Hermitian metric h on L. Then ωL
∣∣
T ||

is positive de�nite,

in the sense that for any nonzero v ∈ T ||R,

ωL(v, Jv) > 0.

From this, Gri�ths concluded that the image of Φ admits a holo-
morphic line bundle with positive curvature. In particular, using a
generalization of the Kodaira embedding theorem due to Grauert, he
proved, see [Gri70, Thm. 9.7]:

Theorem 2.5. Let Φ: Y → XΓ be the period map of a Z-PVHS on

a compact, complex manifold Y . Then Φ(Y ), with its reduced analytic

space structure, is a projective algebraic variety.

It seems though, that some conditions of Grauert's theorem do not
always hold. In particular, it may not be the case that TΦ(Y ) ⊂ T ||

due to singularities on Φ(Y ). An independent proof and strengthening
to the non-compact case was given in [BBT23, Thm. 1.1].

3. Boundedness of monodromy representations

Let S be a smooth connected quasi-projective complex algebraic va-
riety and let π : Y → S be a smooth projective morphism. Our
goal in this section is to prove that there are only �nitely representa-
tions π1(Y0)→ GLn(Z), up to conjugacy, which underlie a Z-PVHS of
compact type on some �ber Ys of π : Y → S, after an identi�cation
π1(Y0, ∗) ' π1(Ys, ∗) moving the base point in the universal family.
Slicing Y by hyperplanes, we can apply the Lefschetz theorem to

reduce to the case of a relative smooth projective curve C → S (passing
to a �nite Zariski cover of S if necessary). Then, we may as well
assume that S =Mg and that C = Cg is the universal curve. This is a
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particular instance of a question asked by Deligne, for representations
of compact type, see [Del87, Question 3.13].

We can decomposeMg into two subsets, the thick part and the thin
part. Let C ∈Mg be a Riemmann surface of genus g and let γ ∈ π1(C)
be a loop. Then C has a unique hyperbolic metric of constant curvature
−1, in the conformal equivalence class de�ned by the complex structure
on C. There is a unique representative of the free homotopy class of
γ which is a hyperbolic geodesic for this metric. Let `C(γ) denote its
hyperbolic length. Then, the thick part of Mg is a compact subset
M≥ε

g ⊂ Mg consisting of all curves C ∈ Mg, for which `C(γ) ≥ ε for
all γ ∈ π1(C), see [Mum71, Cor. 3].
First, we deal with the thick part. The proof follows, nearly vertabim,

Deligne's proof [Del87] of �niteness of monodromy representations un-
derlying Z-PVHS on a �xed curve C.

De�nition 3.1. Let Πg be the surface group:

Πg = 〈α1, β1, . . . , αg, βg
∣∣ ∏g

i=1 αiβiα
−1
i β−1

i = 1〉.

Fix a pointed Riemann surface (C0, ∗0) ∈Mg,1 = Cg of genus g and an
isomorphism π1(C0, ∗0) ' Πg. Then a path in Cg connecting (C0, ∗0)
to (C, ∗) produces an identi�cation

π1(C, ∗) ' π1(C0, ∗0) ' Πg.

We call such an identi�cation admissible.

Two such admissible identi�cations can be compared by an auto-
morphism of Πg induced by a path from (C0, ∗0) to itself, i.e., an ele-
ment of π1(Cg, (C0, ∗0)). The paths connecting (C0, ∗0) to itself keeping
C0 ∈Mg constant in moduli induce the inner automorphisms Inn(Πg).
The paths connecting (C0, ∗0) to itself by moving C0 ∈ Mg in moduli
induce an inclusion of the mapping class group Modg ⊂ Out(Πg) as
an index 2 subgroup of Out(Πg), corresponding to orientation. So any
isomorphism π1(C, ∗) ' Πg induced by an oriented homeomorphism
(C, ∗)→ (C0, ∗0) is admissible.

Proposition 3.2. Let ρ : π1(C, ∗)→ GLn(Z) be the monodromy repre-
sentation of a Z-PVHS of rank n on some C ∈M≥ε

g in the thick part of

the moduli space. There is an admissible identi�cation π1(C, ∗) ' Πg

identifying ρ with one of a �nite list of representations Πg → GLn(Z),
up to conjugacy.

Proof. A theorem of Procesi [Pro76] states that, up to conjugacy, a
semisimple representation ρ : Π→ GLn(C) from any �nitely generated
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group Π is uniquely determined by the function

{1, . . . ,m} → C
j 7→ tr(ρ(δj))

for some �nite generating set (δj)1≤j≤m of the group, where m depends
only on Π and n.
Choose, for once and all, such a generating set δ1, . . . , δm for the

surface group Πg. We call this set the Procesi generators. Deligne's
argument relies on the famous length-contracting property of period
maps, due to Gri�ths [Gri70, 10.1]:

Theorem 3.3. There is a G-invariant metric on D = G/K for which

any holomorphic, Gri�ths transverse map ∆→ D from a holomorphic

disk is length-contracting for the hyperbolic metric on ∆.

Choose a cover ofM≥ε
g by a �nite number of contractible, compact

subsets {Vi}i∈I . Choosing a base-point consistently over Vi, the fun-
damental groups π1(C, ∗) for all C ∈ Vi are uniquely identi�ed, by the
contractibility of Vi. Let π1(C, ∗) ' Πg be an admissible identi�cation,
and consider the resulting family of Procesi generators (δj)1≤j≤m of
π1(C, ∗) for C ∈ Vi. Then `C(δj) is a continuous function on Vi which,
by compactness, is bounded. Hence there exists some M for which
`C(δj) ≤M for all 1 ≤ j ≤ m and all C ∈ Vi.
Suppose that ρ : π1(C, ∗) → Γ is the monodromy representation of

a Z-PVHS for some C ∈ Vi. Then, applying Theorem 3.3 to the hy-
perbolic uniformization ∆→ C, we conclude that there exists a point
x ∈ D for which dD(x, ρ(δj) · x) ≤ M . In particular, x may be taken
as the period image of some point on the lift to ∆ of the hyperbolic
geodesic representing δj. Thus, ρ(δj) has bounded translation length,
and thus, bounded trace, by Lemma 3.4. See [Del87, Corollaire 1.9].

Lemma 3.4. Let g ∈ G and suppose that dD(x, g · x) ≤ M for some

x ∈ D. There is a bound N , depending only on D and M , for tr(g).

Proof. Fix a base point x0 ∈ D and choose some h ∈ G for which
h · x0 = x. Then

dD(x, g · x) = dD(h · x0, gh · x0) = dD(x0, h
−1gh · x0) ≤M.

Since the closed ball of radius M around x0 is compact, and the map
G→ G/K = D has compact �bers, we conclude that the set

{k ∈ G
∣∣ dD(x0, k · x0) ≤M}

is compact. As the trace is a continuous function, we conclude that tr
is bounded on the above set, in terms of M alone. We conclude that
tr(h−1gh) = tr(g) is bounded. �
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Hence the trace tr(ρ(δj)) is bounded in terms of `C(δj) ≤ M , and
hence it is bounded globally on Vi by some integer N . It is further-
more an integer, as ρ lands in GLn(Z). Since there are only �nitely
many possibilities for a map {1, . . . ,m} → {−N, . . . , N}, there are
only �nitely many monodromy representations achieved for a Z-PVHS
over any C ∈ Vi. Since the indexing set I is �nite, we conclude the
same overM≥ε

g , up to conjugacy. �

Thus, it remains to consider the thin part of the moduli spaceM<ε
g

consisting of smooth curves with systole less than ε.

De�nition 3.5. A collar A is the Riemann surface with boundary{
reiθ ∈ H

∣∣∣∣ 1 ≤ r ≤ r0

θ0 ≤ θ ≤ π − θ0

}/
∼

where τ ∼ r0τ . A half-collar is the subregion where θ ≤ π
2
.

We recall a famous result due to Keen [Kee74]. The sharpness is due
to Buser [Bus78, Thm. C].

Lemma 3.6 (Collar Lemma). Every simple closed geodesic γ of length

` on a complete hyperbolic surface C is contained a hyperbolic collar

Aγ ⊂ C of transverse length ln
(
e`/2+1
e`/2−1

)
. Furthermore, any two such

collars associated to disjoint geodesics are disjoint.

The function

F (`) := ln

(
e`/2 + 1

e`/2 − 1

)
satis�es lim`→0+ F (`) = +∞, and is monotonically decreasing towards
zero as ` → +∞. In terms of the constants r0, θ0 of De�nition 3.5,
we have r0 = e` and θ0 = cos−1(e−`/2). The perimeter of a boundary
component of this collar is `(1− e−`)−1/2. More generally, the formula
is Per(A) = `

sin(θ0)
.

For C ∈ M<ε
g , let {γ1, . . . , γk} be the set of simple closed curves of

hyperbolic length less than ε. Choosing ε smaller than the �xed point
of the function F (`), we conclude that all such curves are disjoint.
So k ≤ 3g − 3, with equality when {γ1, . . . , γk} form a pair-of-pants
decomposition of C.
We now recall the result of Bers [Ber74, Ber85]:

Theorem 3.7. There exists a constant Bg for which any hyperbolic

surface of genus g admits a pair-of-pants decomposition, all of whose

curves have length bounded above by Bg.
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By choosing ε so that F (ε) > Bg, any such pair of pants decom-
position must contain all simple closed curves of length less than ε,
as any pair of pants decomposition not including γj would include a
curve that crossed the collar of Lemma 3.6. Thus, we may extend the
set {γ1, . . . , γk} to a full pair of pants decomposition {γ1, . . . , γ3g−3} in
such a way that `C(γj) ≤ Bg for all j.
A pair of pants P (`1, `2, `3) is uniquely speci�ed by the three cu�

lengths `1, `2, `3 ∈ R+. Two adjacent pairs of pants, glued along γi in
a pants decomposition of C, contain a collar Aγi of transverse length
at least F (`(γi)), but with the bounds Bg on the chosen pairs of pants,
we can do better:

Proposition 3.8. Suppose P (`1, `2, `3) is a pair of pants with `i ≤ Bg.

There exists a constant Cg > 0 for which each cu� is contained in a

half-collar of perimeter at least Cg.

Proof. The key is to observe that even as `i → 0, the geometry of
P (`1, `2, `3) converges, with the cu� γi limiting to a hyperbolic cusp,
and the half-collars limiting to the horoball neighborhoods. Therefore
P (`1, `2, `3) makes sense, for all 0 ≤ `i ≤ Bg. For each such surface,
each cu� (resp. cusp) has a de�nite half-collar (resp. horoball) neigh-
borhood of non-zero perimeter. So the maximal such perimeter is a
continuous function on the compact set [0, Bg]

3, never equal to zero,
and thus has a nonzero minimum. �

De�nition 3.9. The truncated pair of pants P o(`1, `2, `3) (Fig. 1) is
the complement of the half-collars in P (`1, `2, `3) with perimeter Cg.

If `i ≥ Cg we need not truncate the corresponding cu�. Making Cg
su�ciently small, we may assume that the (up to) three half-collars we
cut are disjoint.

Remark 3.10. The issue with truncating pairs of pants by the uni-
versal (half-)collar of Lemma 3.6 is that the limit of its perimeter is

lim
`→0+

`(1− e−`)−1/2 = 0.

So the universal collar is not su�cient to bound the geometry (e.g. as
measured by the hyperbolic diameter) of the truncated pair of pants,
when `→ 0. Hence the need for Proposition 3.8.

Consider the three seam geodesics connecting cu�s of P (`1, `2, `3).
These seams intersect each boundary component of P o(`1, `2, `3) and
P (`1, `2, `3) at two points. We call these (six total) points the distin-
guished boundary points of P o(`1, `2, `3) and P (`1, `2, `3). Note that
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Figure 1. A hyperbolic pair of pants P (`1, `2, `3), and
its truncation P o(`1, `2, `3). Distinguished boundary
points on P , P o are shown in red.

the distinguished points on a given cu� are diametrically opposite. So
when two pants are glued, the four total distinguished points on the
cu� alternate which pants decomposition they come from.

Proposition 3.11. Suppose `1, `2, `3 ≤ Bg for some constant Bg. Let µ
be a homotopy class of paths on the truncated pair of pants P o(`1, `2, `3),
terminating at two distinguished points of the boundary. Then, µ has

a representative of bounded distance Dµ independent of `i.

Proof. The minimal length representative of µ on any truncated pair
of pants is �nite, and furthermore, this minimal length is continuous
as one varies the `i. This holds even when some `i = 0, corresponding
to cusped pairs of pants. The proposition follows because (`1, `2, `3) is
restricted to lie in the compact set [0, Bg]

3. �

Thus, the length-contracting property will be useful inside the trun-
cated pair of pants. But the following issue arises: As the core curve of
a collar A shrinks, the length of any transverse geodesic grows. So the
length-contracting property ceases to be useful on the collars, at least
on its own. Thus, the next proposition is absolutely crucial.
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Proposition 3.12. Let (M, g) be a simply connected Riemannian man-

ifold with non-positive sectional curvature and let Ψ: A → M be a

length-contracting, harmonic map from a collar. Assume the perimeter

of A is bounded above by Cg. Then, the image of A is contained in a

ball of bounded radius 1
2
(Cg + π).

Proof. Recall that the collar A is parameterized by polar coordinates
(r, θ) ∈ H (Def. 3.5) where r ∈ R>0/(r0)Z is the circle coordinate on
the collar, and θ ∈ [θ0, π − θ0] is the transverse coordinate. Let p0 be
a point on the boundary component of A de�ned by θ = θ0. De�ne

d : A→ R≥0

q 7→ distg(Ψ(p0),Ψ(q)).

As M has non-positive sectional curvature and π1(M) is trivial, the
distance function distg(Ψ(p0), ·) : M → R≥0 is convex. The composition
of a convex function with a harmonic function is subharmonic, so the
function d is subharmonic. Let S1(q) denote the circle containing q ∈ A
(varying only the coordinate r) and de�ne

dmax(θ) := max
q′∈S1(q)

d(q′),

which is now circularly symmetric, and so is only a function of θ. It
su�ces to prove that dmax is bounded.
Since the rotation action on A is conformal, the pullback along the

rotation action of d(q) is subharmonic. Thus dmax(θ), as a maximum
of subharmonic functions, is also subharmonic.
The hyperbolic metric is y−2(dx2 +dy2) on the upper half-plane, and

so ghyp( ∂
∂θ
, ∂
∂θ

) = 1 when θ = π
2
. So the length-contracting property,

along with the triangle inequality, implies∣∣ ∂
∂θ

(d(q))
∣∣ ≤ 1 when θ(q) = π

2
, and so∣∣ d

dθ
(dmax(θ))

∣∣ ≤ 1 when θ = π
2
.

Thus drel(θ) := dmax(θ) − θ has a non-positive derivative at θ = π
2
.

On the other hand, θ is harmonic so drel(θ) is again subharmonic. As
a subharmonic function with a non-positive derivative at π

2
, we have

that drel(θ) is bounded above by its value at the left endpoint p0 for
all θ ≤ π

2
. Let D ≤ 1

2
Per(A) ≤ 1

2
Cg denote the hyperbolic diameter of

a boundary component of A. By the length-contracting property, we
have drel(θ0) ≤ D − θ0 so

dmax(θ) ≤ D + (θ − θ0) < 1
2
(Cg + π) for all θ ≤ π

2
.

Applying the same argument to a point p0 on the other boundary
component of the collar, we conclude that for a point p′ on the core
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curve, the ball of radius 1
2
(Cg + π) about its image contains the image

of the boundary of A entirely. We conclude the result by the maximum
principle, as q 7→ distg(Ψ(p′),Ψ(q)) is subharmonic. �

Lemma 3.13. There is a constant µn > 0 depending only on n such

that: For any arithmetic group Γ acting on a period domain D classi-

fying Z-PVHS of rank at most n, and for any p ∈ D, we have

dD(p, γ(p)) > µn for all γ ∈ Γ non-quasi-unipotent.

Proof. There are only �nitely many possible spaces D, corresponding
to real Lie groups G of Hodge type and bounded rank, and compact
subgroups K ⊂ G. Let χγ(t) denote the characteristic polynomial of
γ. Since it is monic of degree n, we can apply the following e�ective
form of Kronecker's theorem:

Theorem 3.14 ([BM71]). Let α be an algebraic integer of degree d ≤ n.
Either α is a root of unity, or the largest Galois conjugate of α has

absolute value at least

cn = 1 +
1

52n log(6n)
.

Factoring χγ(t) into irreducible factors, this theorem bounds the
norm of the largest eigenvalue of γ away from 1, whenever γ is non-
quasi-unipotent. Let λ1, . . . , λn be these eigenvalues and let

Lγ := inf
p∈D

dD(p, γ(p))

be the translation length. As Lγ is conjugation-invariant, it is solely a
function FD(λ1, . . . , λn) of the eigenvalues.
Let S = G/Kmax be the symmetric space associated to the real

group G. Here Kmax ⊂ G is a maximal compact subgroup containing
K. Consider the map

D = G/K
π−→ G/Kmax = S.

For appropriate leftG-invariant metrics, this map is length-contracting.
Then, Lγ ≥ infp∈S dS(p, γ(p)). The formula for the translation length
on S is the same as for the symmetric space SLn(R)/ SOn(R):

inf
p∈S

dS(p, γ · p) =
√

(log |λ1|)2 + · · ·+ (log |λn|)2.

Hence, taking µn < log |cn| and applying Theorem 3.14, we conclude
that Lγ > µn for non-quasi-unipotent γ. �

Corollary 3.15. Consider a Z-PVHS of rank n of compact type over

a curve C. Up to passing to a �nite étale cover of �xed degree, there is
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an ε > 0 such that, for any γ ∈ π1(C) with `C(γ) < ε, the monodromy
of γ is trivial: ρ(γ) = I ∈ Γ.

Proof. This follows from Lemma 3.13, the length-contracting property,
and the fact that in the compact type case, the only quasi-unipotent
elements of Γ are of �nite order. Note that for all possible Γ ⊂ GLn(Z),
the torsion can be killed at a �xed �nite level, since this holds for the
entire group GLn(Z). �

Proposition 3.16. Let (C, γ) and ε be as above, and let A be a hyper-

bolic collar on C containing γ, of perimeter Cg. Then the period map

A→ Γ\D lifts to a period map Φ: A→ D. Furthermore, the image of
Φ is contained in a ball of bounded radius B.

Proof. The restriction of the period map to A lifts to D = G/K by
Corollary 3.15, because the monodromy of the core curve is trivial,
and the core curve generates π1(A).
De�ne Ψ = π◦Φ to be the composition of the period map Φ: H → D

with the quotient map π : D → S = G/Kmax to the symmetric space.
Then π is harmonic. So Ψ, as the composition of a holomorphic and a
harmonic map, is harmonic.
Applying Proposition 3.12, we conclude that for p, q two points on

the two boundary components of A, the distance

dS(Ψ(p),Ψ(q))

is bounded. Here we use that S is non-positively curved, simply con-
nected, and that π : D → S is distance-decreasing, so π ◦ Φ is also
distance-decreasing. The �bers of π are isometric, compact subman-
ifolds Kmax/K ⊂ D. We conclude that the distance between Φ(p)
and Φ(q) is also bounded, for instance, by the above distance plus the
covering radius of a �ber of π. �

Theorem 3.17. Up to admissible identi�cation and conjugation, there

are only �nitely many representations ρ : Πg → GLn(Z), of compact
type, which underlie a Z-PVHS on some curve inMg.

Proof. Let Φ: C → Γ\D be the period map of a Z-PVHS of rank n on
some curve C ∈ M<ε

g . Take a Bers pair-of-pants decomposition of C
as in Theorem 3.7.
There are only �nitely many topological types of pants decompo-

sition for surfaces of a given genus g. Fix a set of �reference� pants
decompositions {Rk}, one for each possible topological type. We also
�x a �reference� triple of seams on each pair of pants in Rk in such a
way that the four points on each cu� alternate (or coincide in pairs;
there are 4 topologically distinct ways to do this for each cu�).
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On each reference decomposition, choose an admissible identi�cation
π1(Rk, ∗) ' Πg. This speci�es a �reference� set of Procesi generators
(δj)1≤j≤m for each topological type Rk of pants decomposition.
Then, we �x representatives of each Procesi generator δj which de-

compose into a collection of segments of the following two types:

(1) segments contained in a pair of pants, which terminate at marked
points on the cu�s, and

(2) segments circling around the cu� which connect two marked
points coming from adjacent pairs of pants.

Using the Bers pants decomposition of C, we may identify C → Rk

with one of the references, by an oriented homeomorphism preserving
the decomposition, and sending the hyperbolic seams to the reference
seams. This induces an admissible identi�cation with Πg and the given
representatives of the Procesi generators δj can be pulled back to C.
Applying Proposition 3.8, we further decompose each generator δj into
three types of segments:

(1) segments geodesically crossing a half-collar of perimeter Cg,
(2) segments geodesically winding around a cu�, of a �xed homo-

topy class ν relative to two distinguished points coming from
opposite pairs of pants, and

(3) segments in a �xed homotopy class µ relative to two distin-
guished points on a truncated pair of pants P o(`1, `2, `3) satis-
fying `i ≤ Bg.

Let Φ̃ : C̃ → D be the lift of the period map to the universal cover
of C and let [0, 1] be the lift of the loop δj to a segment in C̃. Then

dD(Φ̃(0), Φ̃(1)) ≤
∑

segments in
truncated pants

Dµ +
∑

segments in
cu�s

Lν + 2emax{B,B′} where

(1) Dµ bounds the length of a representative of a relative homotopy
class µ in the truncated pairs of pants (Prop. 3.11),

(2) Lν = Bg · winding(ν) bounds the length of the geodesic repre-
senting ν purely in terms of the relative homotopy class,

(3) B bounds the radius of a ball covering the image of a collar
(Prop. 3.16) whose core curve has length less than ε,

(4) B′ bounds the length of a transverse geodesic on a half-collar
with core curve of length at least ε and perimeter Cg, and

(5) e is the total number of collars crossed.

Thus dD(Φ̃(0), Φ̃(1)) is bounded. We conclude by Lemma 3.4 that in
turn, the trace tr(ρ(δj)) is bounded. Then, the theorem follows as in
Proposition 3.2. �
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Corollary 3.18. Let S be a smooth connected quasi-projective complex

algebraic variety and let π : Y → S be a smooth projective morphism.

There are only �nitely representations π1(Y0, ∗)→ GLn(Z), up to con-

jugacy, which underlie a Z-PVHS of compact type on some �ber Ys
of π : Y → S, after an identi�cation π1(Y0, ∗) ' π1(Ys, ∗) induced by

moving ∗ in Y.
Proof. This follows from the discussion at the beginning of the section,
using the Lefschetz hyperplane theorem. �

4. Douady spaces of polarized distribution manifolds

In this section we abstract some key elements of the Hodge manifolds,
in the case where Γ is cocompact.

De�nition 4.1. A distribution manifold (X,T ||) is a compact, complex
manifold X, together with a holomorphic subbundle T || ⊂ TX of its
tangent bundle (i.e. a holomorphic distribution).1

Let L → X be a holomorphic line bundle and let h be a Hermitian
metric on L. We say that (L, h) is positive on (X,T ||) if the (1, 1)-form
ωL := i

2π
∂∂ log h satis�es ωL

∣∣
T ||

> 0. We call (L, h) a polarization of

the distribution manifold (X,T ||).

We now recall fundamental results on the analogues of the Hilbert
and Chow varieties for complex manifolds and analytic spaces.

De�nition 4.2. An analytic cycle on X is a �nite formal Z-linear
combination

∑
i ni[Zi] of irreducible, closed, reduced analytic subspaces

Zi ⊂ X of a �xed dimension. An analytic cycle is e�ective if ni ≥ 0.

We have then the following fundamental result of Barlet, see [Bar75].

Theorem 4.3. E�ective analytic cycles on X are parameterized by a

countable union of analytic spaces, locally of �nite type.

Call a connected component B of this analytic space a Barlet space.

Remark 4.4. In general, a Barlet space of an analytic space X of �nite
type need not be of �nite type, even if X is a smooth, proper C-variety.
A famous counterexample is due to Hironaka: let C,D ⊂ M be two
smooth curves in a smooth projective 3-fold T , with C ∩ D = {p, q}.
We can consider the variety

M̂ := BlĈBlD(M \ q) ∪BlD̂BlC(M \ p),
that is, we blow up M along C and D, but in opposite orders at p and
q. If f is a �ber of one of the exceptional divisors, then the Barlet space

1We do not require the distribution to be integrable.
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containing f is not of �nite type, as f admits a deformation to a cycle
of the form f + (Z1 +Z2) where Z1 and Z2 are the strict transforms of
the �bers at p and q of the �rst blow-up in the second blow-up.

De�nition 4.5. Let (X,T ||) be a distribution manifold. A parallel

Barlet space B|| of (X,T ||) is a connected component of the sublocus
of B de�ned by the following property:∑

i ni[Zi] ∈ B|| i� there is a dense open set

Zo ⊂ ∪iZi for which TZo ⊂ T ||.

This is visibly a locally closed analytic condition on the Barlet space.
In fact, much more is true:

Theorem 4.6. Let (X,T ||, L, h) be a polarized distribution manifold.

Any parallel Barlet space B|| is a proper analytic space.

Furthermore, there are only �nitely many Barlet spaces parameter-

izing cycles of pure codimension d on which c1(L)n−d is bounded.

Proof. Let g be an arbitrary hermitian metric on X, for instance, we
can construct g via a partition of unity. De�ne a smooth distribution

T⊥ ⊂ TX by T⊥x := (T
||
x )⊥g. Then, we have a g-orthogonal splitting

TX = T ||⊕T⊥ as smooth C-vector bundles. Let g⊥ denote the degen-
erate, semi-positive hermitian form on TX which is de�ned by (0, g

∣∣
T⊥

)

with respect the decomposition TX = T || ⊕ T⊥.
Let N > 0 and de�ne a symmetric tensor by

g̃(v, w) := ωL(v, Jw) +Ng⊥(v, w) ∈ S2T ∗X.

We claim that g̃ is a Hermitian metric on X for su�ciently large N .
This follows from ωL(v, Jw) being positive-de�nite on T ||, g⊥ vanishing
on T || and being positive de�nite on T⊥, and compactness of X.
For any codimension d analytic cycle Z :=

∑
i ni[Zi] ∈ B||, de�ne

volL(Z) =
∑
i

ni

∫
Zi

c1(L)n−d = [Z] · c1(L)n−d.

Observe that c1(L)n−d is pointwise positive on Zo
i ⊂ Zi. Furthermore

volL(Z) is constant on a connected component ofB|| because it is given
as the intersection number on the right. Next, we de�ne

volg̃(Z) :=
∑
i

ni

∫
Zi

volg̃|Zi

and observe volg̃(Z) = volL(Z) because g̃(·, ·)
∣∣
T ||

= ωL(·, J ·)
∣∣
T ||

and

TZo
i ⊂ T ||. Thus, X admits a hermitian metric g̃ in which volg̃(Z) is

constant on a connected component of B||, equal to [Z] · c1(L)n−d.
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Let Z(1), Z(2), · · · be a countable sequence of e�ective analytic cycles
in (possibly di�erent) connected components B||,(i), for which volL =
volg̃ remains bounded. By a theorem of Harvey-Schi�man, [HS74,
Thm. 3.9] we can extract a convergent subsequence that converges
to an e�ective analytic cycle Z(∞) for which volg̃(Z

(i)) converges to
volg̃(Z

(∞)). Such convergence de�nes the topology on B.
By [Fuj78, Prop. 2.3], the Z(i) converge in the sense of currents of

integration to Z(∞), and in particular, the integrals
∫
Z(i) ω

n−d
L must

converge to
∫
Z(∞) ω

n−d
L and so remain bounded. Additionally, we have

volg̃(Z
(∞)) = volL(Z(∞)) and this equality holds for any choice N in

the de�nition g̃ = ωL+Ng⊥. We conclude that there is a Zariski-dense
open subset Zo ⊂ Z∞ for which TZo ⊂ (T⊥)⊥ = T ||, as otherwise
volg̃(Z

(∞)) would increase as N increases.
Thus, the union of all components B|| for which c1(L)n−d is bounded

is sequentially compact. Hence each component of B|| is a compact an-
alytic space, and there are only �nitely many components with bounded
volL. The theorem follows. �

We now consider the analogue of Hilbert spaces. A Douady space of
X is an analytic space D parametrizing �at families of closed analytic
subspaces of X, see [Dou66, �9.1] for a precise de�nition. By the main
theorem of Douady [Dou66, pp. 83-84], there is a universal analytic
subspace Z ⊂ D × X which is �at over X, and any �at family pa-
rameterized by a base M is the pullback along an analytic classifying
morphism M → D.
In general, a Douady space may only be locally of �nite type, for

similar reasons as the Barlet spaces.
Given a sub-analytic space Z ⊂ X, we can de�ne an e�ective analytic

cycle [Z] ∈ B called the support. It is the positive linear combination∑
i ni[Zi] where Zi are the irreducible components of the reduction of Z

that have top-dimensional set-theoretic support, and ni is the generic
order of non-reducedness of Z along Zi, see [Fuj78, Sec. 3.1]. There is
an analogue, the Douady-Barlet morphism [·] : D→ B, of the Hilbert-
Chow morphism, sending an analytic space to its support.

Theorem 4.7 ([Fuj78, Prop. 3.4]). The Douady-Barlet morphism is

proper on each component D of the Douady space.

De�nition 4.8. A parallel Douady space D|| is a connected component
of the sublocus of Z ∈ D for which [Z] ∈ B||.

Remark 4.9. It is important to note that the Zariski tangent space of
Z ∈ D|| is not required to lie in T ||. For instance, consider a �at family
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Z∗ → C∗ = C \ 0 of complex submanifolds of X, with the tangent
bundle TZt lying in T || for all t ∈ C∗. The �at limit Z0 over the
puncture might be nilpotently thickened in directions outside of T ||, if
the total space of the family itself does not have a tangent bundle TZ∗
lying in T ||, and this could even occur generically along Z0.

Corollary 4.10. Let (X,T ||, L, h) be a polarized distribution manifold.

Then, each connected component of D|| is a proper analytic space.

Proof. This follows directly from Theorem 4.7 and Theorem 4.3. �

Theorem 4.11. Let Z ∈ D|| lie in a parallel Douady space. Then Z
is projective, and L

∣∣
Z
is an ample line bundle.

Proof. A simpli�cation of the proof in [BBT23, Thm. 1.1] applies. It
follows from Siu and Demailly's resolution [Siu84, Siu85, Dem87] of the
Grauert-Riemenschneider conjecture, applied to a resolution of Z, that
Z is Moishezon. We have the following lemma:

Lemma 4.12. Let S be an open stratum of the singular strati�cation

of ∪iZi. Then TS ⊂ T ||.

Proof. By assumption, there is a dense open Zo ⊂ ∪iZi for which
TZo ⊂ T ||. We claim that TS ⊂ TZo lies in the Zariski closure of TZo

in TX. Then the result will follow as T || is Zariski-closed in TX.
Let Zi be an irreducible component containing S and consider the

map dπi : TZ̃i → TX from a resolution. Let Z̃o
i := π−1

i (Zi ∩ Zo). As

dπi is continuous and dπi(TZ̃
o
i ) ⊂ TZo, we have im(dπi) ⊂ TZo. The

claim follows if we can show im(dπi) ⊃ TS ′, for a dense open S ′ ⊂ S,

i.e. can we lift a generic tangent vector of S ′ to Z̃i? This is immediate
from the generic smoothness of πi

∣∣
π−1
i (S)red . �

Lemma 4.12 implies we have Ld · V > 0 for any subvariety V of
dimension d, because TV is generically contained in the tangent bundle
of some singular stratum S and i

2π
∂∂ log(h) is positive de�nite on T ||.

So Z satis�es the Nakai-Moishezon criterion. Then, a theorem of Kollár
[Kol90, Thm. 3.11] implies that Z is projective. �

De�nition 4.13. Let C ⊂ (D||)red be an irreducible component of a
parallel Douady space. For Zt ∈ C let Lt := L

∣∣
Zt
.

We say that C has maximal variation if there exists an analytic open
set U ⊂ C for which (Zs, Ls) 6' (Zt, Lt) for all s, t ∈ U , s 6= t.

Theorem 4.14. Let C be an irreducible component of a parallel Douady

space of (X,T ||, L, h) with maximal variation. Then C is Moishezon.
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Proof. Let u : Z|| → C be the universal �at family and let L → Z|| be
the universal polarizing line bundle. For any �xed n ∈ N, the locus
Cn ⊂ C of projective (Thm. 4.11) schemes Z ∈ C on which nL = nL

∣∣
Z

is not very ample is closed. Taking the sequence

· · · ⊂ C3! ⊂ C2! ⊂ C1! ⊂ C

gives a nested sequence of closed analytic subspaces. The intersection
is empty since for all Z ∈ C, there is some nZ ∈ N for which nZL is
very ample, and nZ | i! for all i ≥ nZ . We conclude some Cn is empty
for large enough n, so |nL| is a projective embedding for all Z ∈ C.
Furthermore, the locus on which H i(Z, nL) jumps in dimension is

also closed, and so by the same argument, we may assume hi(Z, nL) = 0
for all i > 0 and all Z ∈ C. Then u∗(nL) is a vector bundle of rank

N + 1 := χ(Z, nL) = h0(Z, nL).

It is a vector bundle because χ is constant in (analytic) �at families.
Let P → C be the projective frame bundle of u∗(nL), a principal

holomorphic J = PGL(N + 1)-bundle. Points of P correspond to some
Z ⊂ X, and a basis of sections of H0(Z, nL), modulo scaling. We have
an analytic map

φ : P→ H
where H ⊂ Hilb(PN) is the component of the Hilbert scheme with
Hilbert polynomial χ, sending (Z, [s0 : · · · : sN ]) ∈ P to the closed
subscheme of PN with the given embedding. Note H is projective and
φ is equivariant with respect to the natural J-action on both sides.
Consider the set of algebraic cycles O := {J · x

∣∣x ∈ H} ⊂ Chow(H).
A point of O uniquely determines a J-orbit, since a J-orbit is recover-
able from its closure. Since the action of J is algebraic on H, the space
O is strati�ed by algebraic varieties

O = O1 t · · · tOm

with each Oj an irreducible, locally closed set of some component
Chowj(H) of the Chow variety. Let Hj ⊂ H be the locally closed
set of points x for which J · x ∈ Oj and choose the j such that Hj is
the largest-dimensional space intersecting φ(P). These are the �generic�
J-orbits which arise from choosing a basis of H0(Z, nL).
Since P is irreducible, we have φ(P) ⊂ Hj. Observe that there is a

rational map (a morphism on Hj)

ψ : Hj 99K Oj

x 7→ J · x
with the closure of the latter taken in Chowj(H), which is projective.
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Let U ⊂ C be a small analytic open around a given point. There is
a local analytic section of P

∣∣
U
→ U , call it sU . Then, φ ◦ sU : U → Hj

is analytic and ψ is rational, so the composition

ψ ◦ φ ◦ sU : U 99K Oj

is a meromorphic map. Furthermore, since ψ collapses J-orbits, and
φ is J-equivariant, we conclude that this local meromorphic map is
independent of choice of local section sU . So these maps patch together
to give a meromorphic map α : C 99K Oj. Since α is meromorphic, by
Hironaka, there is a resolution of indeterminacy

C
β←− C̃

γ−→ Oj

of α = γ ◦ β−1 with β bimeromorphic.
Finally, we apply the assumption of maximal variation: There exists

some analytic open U ⊂ C for which (Zs, Ls) 6' (Zt, Lt) for all s, t ∈ U ,
s 6= t. This implies that (Zt, nLt) 6' (Zs, nLs) for all s 6= t in a
possibly smaller neighborhood. Thus, the J-orbits in H corresponding
to (Zt, nLt) are distinct in an analytic open set. Hence γ is generically

�nite. We conclude that C̃ and thus C is Moishezon. �

Remark 4.15. The assumption of maximal variation is necessary. For
instance, let X be an arbitrary compact, complex manifold, and con-
sider the distribution manifold for which T || = 0. It admits a polariza-
tion by setting L = OX with h the trivial metric. Then, the Douady
space of points in X is a parallel Douady space, isomorphic to X itself.
But of course, X need not be Moishezon, so not all parallel Douady
spaces are Moishezon in this generality.

Meta-De�nition 4.16. We de�ne data of GAGA type on X to be
a collection of holomorphic data DataX to which the GAGA theorem
applies, upon restriction to a projective scheme Z ∈ D||.

Example 4.17. An example of data of GAGA type would be DataX =
(F •,∇) where F • is a descending �ltration of holomorphic vector bun-
dles on X and ∇ is a holomorphic connection on F 0. For any parallel
analytic space Z ∈ D||, the restriction of F • to Z is a �ltration F •Z of
algebraic vector bundles, by Serre's GAGA theorem [Ser56].
Similarly, a well-known extension of GAGA implies that the restric-

tion of ∇ to a connection ∇Z on F 0
Z is an algebraic connection.

Meta-Theorem 4.18. Let DataX be data of GAGA type on X.

We say that an irreducible, closed analytic subspace D0 ⊂ D|| has
maximal variation with respect to DataX if the isomorphism type of
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the restriction of this data to Z ∈ D0 is determinative in an analytic

open set U ⊂ D0: (Zs,Datas) 6' (Zt,Datat) for all s 6= t ∈ U .
Then Theorem 4.14 still holds: D0 is Moishezon.

Proof. By GAGA, the restriction of DataX to any Z ∈ D0 is alge-
braic data, denoted DataZ . The general form of such algebraic data,
together with Z, is parameterized by an algebraic variety (adding rigid-
ifying data corresponding to an algebraic group action as necessary),
admitting an algebraic compacti�cation HData. Then, we apply the
same argument as in Theorem 4.14 to the classifying map

D0 99K HData

Z 7→ (Z,DataZ)

to conclude that D0 is Moishezon. �

Example 4.19. For the data of GAGA type (F •,∇) discussed in Ex-
ample 4.16, HData can be concretely constructed as follows.
Let D0 be an irreducible component of D|| containing Z and with

maximal variation with respect to (F •,∇). Denote by π : Z→ D0 the
universal �at family and f : L→ Z the universal polarizing bundle.
LetH be the component of the Hilbert scheme that |nL|maps Z into.

The Hilbert polynomials P • of the vector bundles F •Z which arise from
restricting F • are constant along Z ∈ D0. We may choose integers
mp, np � 0 for which any vector bundle (even coherent sheaf) with
Hilbert polynomial P p over any Z ∈ H is a quotient of the form

(−mpL)⊕np � F p
Z .

For instance, choose mp uniformly over all of H so that F p
Z(mpL) is

globally generated with vanishing higher cohomology. Then for a �xed
np, there is a surjection O⊕np

Z � F p
Z(mpL) corresponding to a basis of

global sections. Furthermore, this quotient is uniquely determined by
the induced surjection

H0(Z, (kpL)⊕np)� H0(Z, F p
Z((mp + kp)L))

for all kp large enough. We can ensure that h0(Z, kpL) is constant over
all of H. So this de�nes an embedding of the relative moduli space of
coherent sheaves with Hilbert polynomial P p over H into a Grassman-
nian bundle Gr(Vp) of the vector bundle Vp := π∗(kpL)⊕np . This is the
standard construction, due to Grothendieck [Gro60], of an embedding
of the quot-scheme into a Grassmannian, performed relatively over H.
The inclusion F p

Z ↪→ F p−1
Z is an element H0(Z, (F p

Z)∗ ⊗ F p−1
Z ). This

vector space includes into H0(Z, (mpL)⊕np ⊗ F p−1
Z ) and by choosing

mp � mp−1, we can ensure that the latter receives a surjection from
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H0(Z, (mpL)⊕np ⊗ (−mp−1L)⊕np−1). Thus, the inclusion F p
Z ↪→ F p−1

Z is
determined by an np×np−1-matrix of global sections of (mp−mp−1)L,
uniquely up to a subspace of this vector space of matrices. Choosing
kp so that kp−1 + mp−1 = kp + mp we can insure that F p

Z ↪→ F p−1
Z is

induced by an inclusion Vp,Z ↪→ Vp−1,Z of the �bers over Z ∈ H.
Thus, the isomorphism type of F •Z as a �ltered vector bundle can be

rigidi�ed in terms of �ag-like data Fl(F •Z) involving subspaces of, and
morphisms between, the Vp vector bundles. Furthermore, the isomor-
phism type of F •Z is uniquely determined by a J ′-orbit on Fl(F •Z), for
J ′ an algebraic group. Concretely, J ′ is the group of changes-of-basis
of H0(Z, F p

Z(mpL)) and changes-of-lift of the inclusions F p
Z ↪→ F p−1

Z .
Let Hfilt be the principal J ′-bundle consisting of a �ltered vector

bundle F •Z on some Z ∈ H with Hilbert polynomial P •, together with
its rigidifying data in Fl(F •Z). We have a forgetful map Hfilt → H.
Over Hfilt, we construct the relative moduli space Ho

Data → Hfilt of
algebraic connections ∇ on F 0. We could also work with the algebraic
subloci of Ho

Data for which ∇ is �at, or ∇(F p) ⊂ F p−1⊗Ω1 on (Zred)sm.
Take an algebraic compacti�cation Ho

Data ↪→ HData.
As in Theorem 4.14, we have a principal J-bundle P → D0 with

J = PGL(N+1) corresponding to changes of basis of H0(Z, nL). Over
P, we have a principal J ′-bundle P′ → P consisting of the space of
all rigidifying data for F •Z as above. We also have a �at, algebraic
connection ∇Z on F 0

Z . So there is a holomorphic classifying map P′ →
HData, which is J ′- and J-equivariant for the actions on the source and
target. The remainder of the argument of Theorem 4.14 applies.

5. Algebraicity of the non-abelian Hodge locus

We now apply the general results of the previous section to the po-
larized distribution manifold (XΓ, T

||, L, h) where XΓ = Γ\D for Γ co-
compact, T || is the Gri�ths distribution, L is the Gri�ths line bundle,
and h is the equivariant hermitian metric. Let G = G1 × · · · × Gk be
the decomposition of the semisimple group G = Gad(R)+ into R-simple
factors. These give the C-simple factors of GC by [Sim92, 4.4.10].
We have a decomposition D = D1×· · ·×Dk and on each factor Di we

have a �ltered vector bundle with �at connection. Let (F •i ,∇i) be the
pullbacks of these to D. Then, they descend to XΓ even when Γ does
not split as a product of lattices Γi ⊂ Gi. Let Vi denote the C-local
system on XΓ of �at sections of (F 0

i ,∇i).

De�nition 5.1. We de�ne the Hodge data of GAGA type

HodgeXΓ
= {(F •i ,∇i)}i=1,...,k
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to be this k-tuple of �ltered �at vector bundles.

Remark 5.2. It is important to remark that the universal �ltered �at
vector bundle (F •,∇) =

⊕
i(F

•
i ,∇i) is not the same data of GAGA

type as above! For instance, it may be impossible to tell how (F •,∇)
splits, upon restriction to some Z ⊂ XΓ.

Remark 5.3. Let Z ∈ D|| be reduced and irreducible. Suppose Z̃ → Z

is a resolution of singularities. Then Z̃ admits a Z-PVHS by pulling
back (VZ, F

•,∇). The pullback of HodgeXΓ
= {(F •i ,∇i)}i=1,...,k consti-

tutes the data of a splitting of the corresponding R-VHS into factors.
Let V be the local system of �at sections of ∇Z̃ .

The Z-PVHS on Z̃, and thus, the period map Φ: Z̃ → XΓ, is recov-
erable from (Z,HodgeZ) and one critical missing piece of information:
the location of the integral lattice VZ,∗ ↪→ V∗ in a �ber over some base

point ∗ ∈ Z̃�this is the only data which cannot be captured coherently
on XΓ itself, and to which GAGA cannot be applied.

Now, we leverage the fact that the lattice VZ,∗ must be invariant
under parallel transport.

Proposition 5.4. Let Z ∈ D|| be irreducible and reduced, and suppose

Z̃ → Z is a resolution of singularities. Let (VZ, F
•) be the correspond-

ing pullback Z-PVHS and let ∗ ∈ Z̃ be a base point. Let

ρ : π1(Z̃, ∗)→ GL(VZ,∗)

be the monodromy representation and let H =
∏

i∈I Gi ⊂ G be the

collection of simple factors in which im ρ is Zariski-dense. Fixing a

frame of VZ,∗, the in�nitesimal changes-of-frame which give rise to a

lattice preserved by ρ are contained in∏
i∈I

C×
∏
i/∈I

gl(Vi).

Proof. An in�nitesimal change-of-frame a ∈ gl(V∗) resulting in a new
monodromy-invariant lattice is exactly a matrix commuting with im(ρ),
and thus commuting with H(R). Since Vi is an irreducible representa-
tion of (Gi)C, Schur's lemma implies that a acts by a scalar λi on each
summand Vi ⊂ V for which Gi ⊂ H. �

De�nition 5.5. Given any analytic subspace Z ⊂ XΓ we de�ne ΓZ as
the image of π1(Z̃)→ Γ for some resolution of singularities Z̃ → Zred.

Lemma 5.6. Let Zν → Zred be the normalization. Then, ΓZ ⊂ Γ is

the image of π1(Zν). It is also the image of π1(U) for any dense open

subset U ⊂ (Zred)sm.
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Proof. Let Zν
sm denote the nonsingular locus. Then π1(Zν

sm)� π1(Zν)
is surjective. The same property holds for the inverse image of Zν

sm or

U in any desingularization. Thus, π1(Z̃), π1(Zν
sm), π1(Zν), π1(U) all

have the same image in Γ = π1(XΓ). �

Proposition 5.7. Let Z ∈ D|| be irreducible and reduced. The group

ΓZ only jumps in size, in an open neighborhood of Z ∈ D||.

Proof. Let (C, 0) → D|| be an analytic arc, and consider the pullback
family Z → (C, 0), with Z0 = Z. Let W = Zν be the normalization of
the total space. The general �ber Wt is normal, so ΓZt = im(π1(Wt))
by Lemma 5.6. This is the same group for all t ∈ C \0 if we assume (as
we may) that W is a �ber bundle over C \ 0. There is a deformation-
retraction W →W0 to the central �ber. Tracing an element of π1(Wt)
through the retraction, we get a free homotopy from any γt ∈ π1(Wt)
to an element γ0 ∈ π1(W0).
Conversely, we can lift any element of π1(W0) to an element of

π1(Wt): We have π1(W0) = π1(W) = π1(W \ ((W0)sing ∪ Wsing)) be-
cause W is normal and (W0)sing ∪Wsing has codimension 2. Thus, any
element of π1(W0) = π1(W) can be represented by a loop in W avoid-
ing both (W0)sing and Wsing. Then, this loop can be deformed o� its
intersection with (W0)sm as (W0)sm is a locally smooth divisor in Wsm.
So we can represent the loop in W \ W0. Finally, π1(W \ W0) is a
Z-extension of π1(Wt) because it is a �ber bundle over the punctured
disk C \ 0.
Thus, ΓZt = im(π1(W0)). Then the natural morphismW0 → Z0 = Z

is a �nite birational morphism because Z is reduced. Thus, it factors
the normalization Zν → W0 → Z and so im(π1(Zν)) = ΓZ ⊂ ΓZt =
im(π1(W0)). Thus ΓZ only jumps in size. �

Remark 5.8. The same statement holds, up to passing to a �nite
index subgroup of ΓZ , when Z is generically non-reduced.

Theorem 5.9. If Z ⊂ XΓ is irreducible, reduced, and ΓZ is Zariski-

dense in G, then any irreducible component C ⊂ D|| containing Z
has maximal variation with respect to HodgeXΓ

. In particular, C is

Moishezon by Meta-Theorem 4.18.

Proof. We must �nd an analytic open set U ⊂ C for which

(Zs, {(F •i ,∇i)}) 6' (Zt, {(F •i ,∇i)})
for all s 6= t ∈ U . Choose U to be a small neighborhood of Z ∈ C.
Since Z is irreducible and reduced, we can assume that Zt is irreducible
and reduced for all t ∈ U . Applying Proposition 5.7, we may ensure
that all Zt ∈ U satisfy the property that ΓZt is Zariski-dense in G. It
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su�ces to show there are no holomorphic arcs C → U for which the
isomorphism type of (Zt, {(F •i ,∇i)}) is constant over all t ∈ C.
Choose a smooth base point ∗ ∈ Zt. Then by Proposition 5.4, the

only deformations of the lattice VZ,∗ ⊂ V∗ which remain invariant under
∇Z̃t

are those which di�er by scaling each summand of V =
⊕

Vi by
some λi ∈ C∗. But such scaling does not change the period map, as
the Hodge �ag F • =

⊕
F •i is also preserved by this scaling action.

Thus, HodgeXΓ
is determinative on U�if it were non-determinative,

the �xed data (Zt, {(F •i ,∇i)}) would admit a �at deformation of the
local system VZ which induced a non-isomorphic Hodge �ltration. �

Remark 5.10. One could as easily have worked with Barlet spaces,
since the support morphism [·] : C → B|| will be bimeromorphic onto
its image, under the assumptions of Theorem 5.9. The disadvantage is
that the embedding into a compact, algebraic parameter space, as in
Example 4.19, is unclear for Barlet spaces.

Theorem 5.11. Let Y → S be a smooth projective family over a

quasiprojective variety S. Then the non-abelian Hodge locus of compact

type NHLc(Y/S,GLn) is algebraic.

Proof. Let Ys be a �ber. As we saw in Section 2, the data of a Z-PVHS
on Ys with generic Mumford-Tate group G ⊂ GLn and monodromy H
is completely determined by

(1) a holomorphic, Gri�ths transverse period map Φs : Ys → XΓH

whose monodromy image is Zariski-dense, and
(2) a point in DH′ corresponding to a summand on which the Z-

PVHS is locally constant.

Thus, up to passing to a �nite index subgroup of �xed level, the
monodromy representation of such a Z-PVHS has a reduction of struc-
ture to the product G = H×H′ where the corresponding local system
has trivial monodromy on the summand associated to H′.
Hence, possibly passing to a smaller value of n, we can restrict our

attention to the (Ys,∇s) ∈ NHLc(Y/S,GLn) which underlie a Z-PVHS
V with Zariski-dense monodromy in the generic Mumford-Tate group.
By Corollary 3.18, only �nitely many representations of π1(Ys) of

compact type can appear in this manner. Thus, there is a �nite list
of compact Hodge manifolds XΓ which receive all the period maps for
such (Ys,∇s). So to prove the theorem, we may restrict our attention
to a single compact period target Γ\D = XΓ.
It remains to show: The space of pairs (Ys,Φs) of a �ber of Y → S,

together with a Gri�ths' transverse map Φs : Ys → XΓ with Zariski-
dense monodromy is an algebraic variety (and the maps into the relative
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de Rham and Dolbeault spaces are algebraic). We �rst prove that
each irreducible analytic component of the space of pairs (Ys,Φs) is
algebraic, then we prove that the number of components is �nite.
Fix an irreducible analytic component B ⊂ NHLc(Y/S,GLn). There

is an analytic Zariski open subset Bo ⊂ B on which im(Φs), taken
with its reduced scheme structure, form a �at family of closed analytic
subspaces of XΓ over Bo. So there is an irreducible component C ⊂ D||

for which im(Φs) ∈ C for (Ys,Φs) ∈ Bo.
Since Ys is smooth, the morphism Ys → Φs(Ys) factors through the

normalization Ys → Φs(Ys)
ν . Thus, Γim(Φs) contains the image of π1(Ys)

in Γ. Since we have restricted to the case where the monodromy is
Zariski-dense, C is Moishezon by Theorem 5.9.
Let Z→ C be the universal family. For all (Ys,Φs) ∈ Bo, the period

mapping Φs factors through the inclusion im(Φs) ↪→ Z as a �ber of the
universal family. That is, we have a map Ξ: Y ×S Bo → Z for which
Φ = πXΓ

◦ Ξ.
The analytic deformations of (Ys,Φs) in B are exactly the isomon-

odromic deformations of the local system VZ on Ys to nearby �bers,
which underlie a Z-PVHS. But for (Ys,Φs) ∈ Bo, these are exactly
the ways to deform the inclusion Ξs : Ys ↪→ Z of �bers. Since Y → S
is algebraic and Z → C is Moishezon, the irreducible component of
Homfiber(S,Z), the space of morphisms from a �ber of Y to a �ber of
Z, which contains (Ys,Ξs) ∈ Bo, is Moishezon.
The inclusion into MdR(Y/S,GLn) is Moishezon because ∇s is the

pull back along Ξs of the relative connection on F 0 on the universal
family over Z → C. The relative connection on F 0 is Moishezon, by
GAGA. Thus, Bo and its closure B are algebraic, as they are Moishezon
subsets of an algebraic variety. The inclusion into MDol(Y/S,GLn) is
Moishezon by the same reasoning, applied to the associated graded of
the universal Hodge �ag over Z→ C, equipped with its Higgs �eld.

Finally, it remains to prove that (1) only �nitely many irreducible
components C of the parallel Douady space appear, and (2) for each
one that appears, the number of irreducible components of the space
Homfiber(Y ,Z) is �nite.
Let F • be the Hodge �ltration on Ys coming from a period map

Φs : Ys → XΓ and let A→ Y be an ample line bundle on the universal
family. Then by Simpson [Sim94, Lemma 3.3], the vector bundles F p

enjoy the following property: If ms is an integer for which TYs(msA)
is globally generated, then µA(F p+1) ≤ µA(F p) + mn. Here µA is the
slope with respect to A. Note that µA(F 0) = 0 because F 0 has a �at
structure. We may choose an ms = m uniformly over all of S. We
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conclude that the slopes µA(F p) are bounded, in a way depending only
on Y → S. In turn, Ad−1 · det(F p) is bounded for all p, and so there
is an a priori bound on Ad−1 · L, where L is the Gri�ths bundle. It
follows that Ad−r · Lr is bounded for any r.
This bounds the Gri�ths volume of the image Φs(Ys) of any period

map, and so by Theorem 4.6, only �nitely many components of the par-
allel Barlet space B|| of XΓ occur as the support of period images from
Ys. The same �niteness holds for relevant components C of the paral-
lel Douady space, as we are taking period images with their reduced
scheme structure, see Remark 5.10.
Finally, the bounds on Ad−r ·Lr also bound the volume of the graph

Γ(Ξs) of a morphism (Ys,Ξs) ∈ Homfiber(Y ,Z), viewed as a subvariety of
Y ×Z. We conclude that there must be only �nitely many components
of Homfiber(Y ,Z). �
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