
MIXED MOCK MODULARITY OF SPECIAL DIVISORS

PHILIP ENGEL, FRANÇOIS GREER, AND SALIM TAYOU

Abstract. We prove that the generating series of special divi-
sors in toroidal compactifications of orthogonal Shimura varieties
is a mixed mock modular form. More precisely, we find an explicit
completion using theta series associated to rays in the cone decom-
position. The proof relies on intersection theory at the boundary
of the Shimura variety.
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1. Introduction

Let (L, ·) be a non-degenerate even lattice of signature (2, n) with
quadratic form Q(x) = 1

2
x · x. Associated to L is a type IV Hermitian

symmetric domain D, defined as a connected component of

{Cx ∈ P(LC)
∣∣x · x = 0, x · x̄ > 0}.

It is a complex manifold of dimension n. Let O+(L) denote the group
of orthogonal transformations of L which preserves the component D,
and let Γ ⊂ O+(L) be a finite index subgroup which acts trivially on
the discriminant group L∨/L, where L∨ is the dual lattice.

The arithmetic quotient XΓ := Γ\D is a connected complex Shimura
variety of orthogonal type. It parameterizes polarized Hodge structures
on the lattice L with Hodge numbers (1, n, 1). Such Hodge structures
arise naturally in the study of polarized K3 surfaces when n = 19, and
additionally of elliptic curves, abelian surfaces with real multiplication,
and abelian surfaces, when n = 1, 2, 3, respectively.
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There is a countable family of divisors, called special divisors1, which
are the images of orthogonal Shimura varieties associated to sublat-
tices of L of signature (2, n − 1). Geometrically, they correspond to
Noether–Lefschetz loci for the polarized variation of Hodge structure
parameterized byXΓ. For every β ∈ L∨/L andm ∈ −Q(β)+Z, there is
an associated special divisor Zo(β,m) ⊂ XΓ defined in Equation 3.1.1.
We denote its class in the cohomology group H2(XΓ,Q) by [Zo(β,m)].
Define [Zo(0, 0)] to be the first Chern class of the dual of the Hodge
bundle on XΓ. The special cycles can be packaged in the following
generating series with values in H2(XΓ,Q)⊗ C[L∨/L]:∑

β∈L∨/L

∑
m∈−Q(β)+Z

[Zo(β,m)]⊗ vβqm. (1.0.1)

In an influential paper [Bor99], Borcherds proved that Equation 1.0.1
is a vector-valued modular form of weight 1 + n

2
and representation ρL

valued in Pic(XΓ), where ρL denotes the Weil representation associ-
ated to the discriminant lattice (L∨/L,Q). His proof relied on earlier
work [Bor98], which constructed meromorphic modular forms on XΓ

whose zeroes and poles are special divisors. A cohomological version
was known previously by the work of Kudla–Millson [KM90], see also
[Gar18], and Hirzebruch-Zagier in the case of Hilbert modular varieties
[HZ76].

This paper is concerned with the modularity behavior of Equation
1.0.1, in compactifications of the variety XΓ. In general, XΓ is non-
compact and admits several compactifications. The first compactifica-
tion was constructed by Satake [Sat60] and Baily-Borel [BB66] and is
called the Baily-Borel compacitification. It is typically singular at the
boundary, which has codimension at least n− 1.

We will be interested in the toroidal compactifications XΓ ↪→ XΣ
Γ ,

first constructed in [AMRT10]. They always have divisorial bound-
ary, but are non-unique, depending on certain combinatorial data Σ.
This data consists, for each isotropic line I ⊂ L, of a polyhedral cone
decomposition ΣI of the positive cone of the hyperbolic lattice I⊥/I.
These decompositions ΣI must additionally be Γ-invariant. We refer
to Section 3.3 for more details.

We will assume that the chosen polyhedral cone decomposition is
simplicial, so thatXΣ

Γ has finite quotient singularities. It is also possible
to choose Γ and Σ so that XΣ

Γ is a smooth projective algebraic variety,
although this is not necessary for our main results.

Theorem 1.1. The generating series∑
β∈L∨/L

∑
m∈−Q(β)+Z

[Z(β,m)]⊗ vβqm (1.0.2)

1or Heegner divisors
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of cohomology classes of Zariski closures Z(β,m) := Zo(β,m), valued
in H2(XΣ

Γ ,Q) ⊗ C[L∨/L], is a mixed mock modular form of weight
1 + n/2 with respect to ρL.

Mixed mock modular forms are holomorphic parts of mixed harmonic
Maass forms which have been studied by [BF04, BFOR17] and which
we define in Section 2.2.

To give a more precise form of the above theorem, we introduce
some notation: for any isotropic plane J ⊂ L, the lattice M := J⊥/J
is negative definite and has an associated theta series ΘM of weight
n
2
− 1 and representation ρM . The image of this theta series under

an operator between Weil representations pLM is a modular form of the
same weight, but for the representation ρL.

On the other hand, for any isotropic line I ⊂ L and a ray R≥0c in
the cone decomposition ΣI with c · c = 2N > 0, the lattice c⊥ ⊂ I⊥/I
is negative definite, and we can similarly consider the theta series Θc⊥

which is a vector-valued holomorphic modular form of weight n−1
2

and
representation ρc⊥ . The theta series ΘN of the one dimensional lattice
Zc also plays a role: there exists a weak harmonic Maass form FN of
weight 3/2 and representation ρZc called the Zagier Eisenstein series,
whose shadow is proportional to ΘN , see Section 2.3. Our main theorem
has the following more precise form.

Theorem 1.2. The generating series∑
β∈L∨/L

∑
m∈Q(β)+Z

[Z(β,m)]⊗ vβqm −
1

2

∑
(I,c)

pLc⊥⊕Zc
(
Θc⊥ ⊗ F+

N

)
⊗∆I,c

+
1

12

∑
J

E2(q) · pLM (ΘM)⊗∆J

valued in H2(XΣ
Γ ,Q) ⊗ C[L∨/L] is a holomorphic modular form of

weight 1 + n
2
and representation ρL.

Here ∆J and ∆I,c ⊂ XΣ
Γ are the boundary divisors of the toroidal

compactification XΣ
Γ , associated to (Γ-orbits of) isotropic planes J ⊂ L

and rays R≥0c ∈ ΣI . As pLM (ΘM) and pL
c⊥⊕Zc

(
Θc⊥ ⊗ F+

N

)
are mixed

harmonic Maass forms, Theorem 1.2 implies Theorem 1.1.
Using Margulis’ super-rigidity theorem, we prove that the first Betti

number of XΣ
Γ vanishes when n ≥ 3 or if n = 2 and Γ is an irreducible

lattice, see Section 4.1. We get the following corollary.

Corollary 1.3. Assume either n ≥ 3 or the Witt index of L is 1 and
n = 2. Then the generating series in Equation 1.0.2 is also a mixed
mock modular form in Pic(XΣ

Γ )Q of weight 1+ n
2
and representation ρL.

1.1. Strategy of the proof. We prove Theorem 1.2 by showing that
the pairing of the generating series 1.0.2 with every homology class in
H2(XΣ

Γ ,Q) is a holomorphic modular form of weight 1+ n
2
and level ρL.
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For this, we prove a splitting theorem stating that the second homology
of XΣ

Γ is rationally generated by the homology of the open part XΓ and
the classes of algebraic curves C ⊂ XΣ

Γ contracted in the Baily-Borel
compactification. For homology classes supported in the open part,
we use Kudla–Millson’s result [KM90] as an input to deduce that the
generating series is modular.

Our second contribution is to compute the intersection of the special
divisors with the curves C ⊂ XΣ

Γ in the boundary. The classes of such
curves are generated by the one-dimensional toric boundary strata of
XΣ

Γ . We use tools from toric geometry to explicitly compute such
intersection numbers.

The resulting generating series is a theta series of a real hyperbolic
lattice, with a piecewise linear weighting determined by the cone de-
composition ΣI . We find suitable non-holomorphic completions à la
Zwegers, and prove that they are non-holomorphic modular forms by
a theorem of Vigneras [Vig77]. Finally, we determine the theta series
explicitly, in terms of the rays in the cone decomposition. In some
sense, our approach is closer to the original approach of Hirzebruch
and Zagier [HZ76] for Hilbert modular surfaces.

1.2. Comparison with earlier work. A similar result has been proved
by Bruinier and Zemel in [BZ22]. In their paper, they analyze the
vanishing order of the automorphic forms constructed by Borcherds
[Bor95], using an explicit expression of its Petersson metric from [Bru02,
Bor98]. Bruinier and Zemel compute explicitly the vanishing orders of
the Borcherds products along the boundary components to deduce the
modularity statement.

Our desire to understand their paper from an intersection theoretic
point of view, in the spirit of Hirzebruch–Zagier’s seminal work [HZ76],
was the starting point of our investigations. One question remaining
from their paper is the rationality of the coefficients along the type III
boundary divisors, to which our approach yields an positive answer.
Our approach is more geometric, and yields unconditional results in
cohomology when n = 2 and the Witt index of L is 2.

There has also been earlier work of [Pet15] in the context of moduli
space of K3 surfaces of dimension 19 and with compacitifcations involv-
ing only type II boundary components. In the case of modular curves,
our work generalizes results of Zagier [Zag75] and Funke [Fun02].

We are hopeful that this work might extend to modularity results for
higher codimension cycles, as well as to other contexts where Borcherds
products are not available but Kudla–Millson’s results are still valid.

1.3. Organization of the paper. In Section 2, we review the Weil
representation, introduce mixed mock modular forms, and prove the
mixed modularity of theta series with piecewise linear weights on hy-
perbolic lattices. In Section 3, we review in detail the construction
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of toroidal compactifications, and prove the main intersection formula
of special divisors with toric boundary curves. In Section 4, we prove
the splitting theorems for second homology that allow us to reduce the
modularity computations to toric boundary curves of the toroidal com-
pactification. We assemble the pieces of the proof of Theorem 1.2 in
Section 5.

We work over C throughout.

2. Weil representation and vector-valued modular forms

In this section, we recall the Weil representation and define vector-
valued mixed mock modular forms following [BF04], [BFOR17], and
[Zag09]. Using a theorem of Vignéras [Vig77], we prove that cer-
tain theta series of hyperbolic lattices with piecewise linear weights
are mixed mock modular forms. Then, we relate them to theta series
of rays in the positive cone of the hyperbolic lattice.

2.1. Weil representation. Let (Λ, ·) be an even lattice of signature
(b+, b−), with bilinear form

Λ× Λ→ Z
(x, y) 7→ x · y

and quadratic form Q(x) = 1
2
x · x ∈ Z. Let Λ∨ be the dual lattice of

Λ, defined as
Λ∨ := {x ∈ ΛQ

∣∣x · y ∈ Z, ∀y ∈ Λ}.
The discriminant lattice Λ∨/Λ is a finite abelian group of cardinality

DΛ = | det(ei · ej)i,j| where {ei} form a basis of Λ. It is endowed with
a Q/Z-valued quadratic form:

Q : Λ× Λ→ Q/Z
x 7→ Q(x).

Let Mp2(R) be the double metaplectic cover of SL2(R) whose ele-
ments consist of pairs (M,φ), where

M =

(
a b
c d

)
∈ SL2(R)

and φ is a holomorphic function on the Poincaré upper half-plane H
such that φ(τ)2 = cτ+d, for all τ ∈ H. The group Mp2(Z) is generated
by the following elements (see [Ser77, P.78]):

T =

((
1 1
0 1

)
, 1

)
and S =

((
0 −1
1 0

)
, τ 7→

√
τ

)
.

The Weil representation ρΛ associated to (Λ, ·) is defined as the
unique representation

ρΛ : Mp2(Z)→ GL(C[Λ∨/Λ])
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such that the elements S and T act in the following way:

ρΛ(T )vγ = e2πiQ(γ)vγ,

ρΛ(S)vγ =
i
b−−b+

2√
|Λ∨/Λ|

∑
δ∈Λ∨/Λ

e−2πi(γ·δ)vδ,
(2.1.1)

where γ ∈ Λ∨/Λ and (vγ)γ∈Λ∨/Λ is the canonical basis of C[Λ∨/Λ].
Let Λ1 ⊂ Λ be a finite index sublattice. Then we have inclusions

Λ1 ⊆ Λ ⊆ Λ∨ ⊆ Λ∨1 .

Let H = Λ/Λ1. It is a subgroup of Λ∨1 /Λ1 and its orthogonal with
respect to · is equal to Λ∨/Λ1. Moreover, the subquotient H⊥/H is
isomorphic to Λ∨/Λ, the discriminant lattice of Λ. Let p : H⊥ → Λ∨/Λ
be the projection map. We can then define the following two maps:

pΛ
Λ1

: C[Λ∨1 /Λ1]→ C[Λ∨/Λ]

vγ 7→

{
vp(γ) if γ ∈ H⊥,
0 otherwise,

(2.1.2)

pΛ1
Λ : C[Λ∨/Λ]→ C[Λ∨1 /Λ1]

vδ 7→
∑

γ∈H⊥, p(γ)=δ

vγ. (2.1.3)

These operators intertwine the Weil representations on both sides.

Let I ⊂ Λ be a totally isotropic sublattice. The lattice I⊥/I is
a non-degenerate lattice whose discriminant group can be realized as
a subquotient of Λ∨/Λ: Let ΛI be the lattice generated by Λ and
IQ∩Λ∨. Then the discriminant group of ΛI is in fact isomorphic to the
discriminant group of I⊥/I. Hence we make the following definition.

Definition 2.1. If I ⊂ Λ is a totally isotropic subspace, then we define

pΛ
I⊥/I := pΛ

ΛI
and p

I⊥/I
Λ := pΛI

Λ .

These operators intertwine the Weil representations on both sides.

2.2. Weak harmonic Maass forms and mixed mock modular
forms. Let k ∈ 1

2
Z. Following [BF04, Section 3], recall the following

definition.

Definition 2.2. A weak harmonic Maass form of weight k and repre-
sentation ρΛ is a twice-differentiable function f : H → C[Λ∨/Λ] that
satisfies:

(1) f(γ.τ) = φ(τ)2kρΛ(γ, φ)f(τ) for all (γ, φ) ∈ Mp2(Z);
(2) there exists C > 0 such that f(τ) = O(eCy) as y → +∞,

τ = x+ iy (uniformly in x);
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(3) ∆kf = 0 where

∆k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
is the hyperbolic Laplace operator in weight k.

We denote by Hk(ρΛ) the C-vector space of weak harmonic Maass
forms of weight k and representation ρΛ. By [BF04, Equation (3.2)],
any such form f has a unique decomposition f = f+ + f− where f+ is
holomorphic and f− is called the non-holomorphic part of f .

If f− = 0 then f is a weakly holomorphic modular form. Denote
by M !

k(ρΛ) the space of weakly holomorphic modular forms of weight
k and representation ρΛ. The shadow operator on Hk(ρΛ) is

ξk(f) = 2iyk∂τf ∈ Hk(ρΛ). (2.2.1)

By [BF04, Prop. 3.2], ξk(f) ∈ M !
2−k(ρΛ) and the kernel of ξk is

equal to M !
k(ρΛ). The following definition is inspired from [BFOR17,

Definition 5.16] and is originally due to Zagier [Zag09]. We give here a
generalization for vector-valued modular forms.

Definition 2.3. A vector-valued mock modular form of weight k is the
holomorphic part f+ of a weak harmonic Maass form f of weight k.

If f : H→ C[Λ∨1 /Λ1] and g : H→ C[Λ∨2 /Λ2] are two functions which
satisfy relation (1) in Definition 2.2, the function

f ⊗ g : H→ C[Λ∨1 /Λ1]⊗ C[Λ∨2 /Λ2]

can be seen naturally as a function valued on C[Λ∨/Λ] where Λ =
Λ1⊕Λ2. Then f ⊗ g satisfies the same invariance relation with respect
to ρΛ∨/Λ ' ρΛ∨1 /Λ1

⊗ ρΛ∨2 /Λ2
. Furthermore, if Λ ⊆ Λ′ is a sublattice of

finite index, then we have natural morphisms of vector spaces given by
Equation 2.1.2 and Equation 2.1.3:

pΛ′

Λ : Hk(ρΛ)→ Hk(ρΛ′) and

pΛ
Λ′ : Hk(ρΛ′)→ Hk(ρΛ)

which commute with the shadow operator. In particular, they preserve
the holomorphic and weakly holomorphic modular forms.

The following definition is a slight generalization of Definition 13.1
from [BFOR17].

Definition 2.4. A mixed harmonic Maass form of weight (k, `) and
representation ρΛ is a function h of the form

h =
N∑
j=1

pΛ
Λj⊕Λ⊥j

(fj ⊗ gj),

where Λj ⊆ Λ is a non-degenerate sublattice, fj is a weakly holomor-
phic vector-valued modular form of weight k with representation ρΛj
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and gj is vector-valued weak harmonic Maass form of weight l and rep-
resentation ρΛ⊥j

. If g+
j is the holomorphic part of gj then by definition,

h+ =
N∑
j=1

pΛ
Λj⊕Λ⊥j

(fj ⊗ g+
j ),

is a mixed mock modular form.

Remark 2.5. One easily checks that h+ is the holomorphic part of h
and hence a different expression of h yields the same function h+.

If we fix a weight k ∈ 1
2
Z and a representation ρΛ, then we can also

define mixed mock modular forms of total weight k as follows.

Definition 2.6. A mixed harmonic Maass form of weight k and rep-
resentation ρΛ is a function which can be expressed as a finite sum∑

k1+k2=k

hk1,k2

where each hk1,k2 is a mixed harmonic Maass form of weight (k1, k2) and
representation ρΛ. By definition, its holomorphic part

∑
k1+k2=k h

+
k1,k2

is a mixed mock modular form of weight k and representation ρΛ.

2.3. Zagier’s Eisenstein series. Let N ≥ 1 and assume in this sec-
tion that Λ = Zx is endowed with the bilinear form x · x = 2N . The
discriminant lattice is then isomorphic to Z/2NZ.

The vector-valued theta series associated to Λ is expressed as

Θ 1
2
,N =

∑
n∈Z

q
n2

4N v[n] ∈M 1
2
(ρN) , (2.3.1)

where [n] ∈ Z/2NZ is the congruence class. It is a holomorphic mod-
ular form of weight 1

2
and representation ρN .

Recall the shadow operator of Equation 2.2.1 is

ξ 3
2

: H 3
2
(ρN)→M !

1
2
(ρN) .

In their seminal paper [HZ76], see also [Zag75], [BFOR17, Theorem
6.3], Hirzebruch and Zagier construct for N = 1 a particular weak har-
monic Maass form F1 ∈ H 3

2
(ρ1), Zagier’s Eisenstein series, satisfying

ξ 3
2

(F1) = − 1

8π
Θ 1

2
,1.

The holomorphic part of this form has the important property that all
its Fourier coefficients are rational numbers of arithmetic significance.
In what follows, we recall the construction for general N ≥ 1 following
[BS17, Theorem 4.3] and discussion preceding it. We also refer the
reader to [Bor98, Lemma 9.5].

Let r ∈ Z/2NZ and let D ∈ Z<0 such that D2 ≡ r2 (4N). Let QN,D,r

be the set of integral binary quadratic forms Q : x 7→ ax2 +bxy+cy2 of
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discriminant D = b2− 4ac with N |a and b ≡ r (2N). The group Γ0(N)
acts on this set with finitely many orbits and the order of a stabilizer
wQ = 1

2
|StabQ(Γ0(N))| is finite. Define

H(D, r) :=
∑

QN,D,r/Γ0(N)

1

wQ
.

For t ≥ 0, let β(t) = 1
2π

∫∞
1
u−

3
2 e−πtudu and let (vr)r∈Z/2NZ be the

canonical basis of C[Λ∨/Λ]. We define

FN(τ) = −1

6
v0 +

∑
r∈Z/2NZ

∞∑
D≡r2 (4N)

D<0

H(D, r)q
−D
4N vr

+

√
N
√
y

∑
n∈Z

β

(
yn2

N

)
q−

n2

4N v[n]. (2.3.2)

A straightforward computation shows, see [BS17, Theorem 4.3 (1)],

Lemma 2.7. The series FN is an element of H 3
2
(ρN). Moreover,

ξ 3
2
(FN) = −

√
N

8π
Θ 1

2
,N .

2.4. Vignéras’ modularity criterion. We recall in this section Vi-
gnéras’ modularity criterion [Vig77, Théorème 1], see also [FK17, The-
orem 2.3], which will be our main tool for constructing mixed mock
modular forms.

Let (Λ, Q) be a quadratic space of signature (p, q). If we choose a
basis of ΛR in which Q has the shape Q(x) =

∑p
i=1 x

2
i−
∑p+q

i=p+1 x
2
i , then

the Euler differential operator E and the Laplace differential operator
∆ associated to Q are:

E =

p∑
i=1

xi
∂

∂xi
, ∆ =

p∑
i=1

∂2

∂x2
i

−
p+q∑
i=p+1

∂2

∂x2
i

.

We have the following theorem, see [Vig77, Théorème 1] applied to
the quadratic space (Λ,−Q).

Theorem 2.8. Let p be a twice differentiable function on ΛR that sat-
isfies the following assumptions:

(1) The differential equation

(E − 1
4π

∆)p = kp

holds for an integer k.
(2) Let f : x 7→ p(x)e2πQ(x). Then D(f) and x 7→ R(x)f(x) are in

L2(Rp+q) ∩ L1(Rp+q) for every derivation D of order at most 2
and every polynomial R of degree at most 2.
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Then the series

y
k
2

∑
λ∈Λ∨

p(λ
√
y)q−Q(λ)v[λ], q = e2πiτ ,

converges absolutely and defines a non-holomorphic modular form of
weight k + p+q

2
and representation ρΛ.

Here [λ] ∈ K∨/K denotes the class of λ in the discriminant group.

Remark 2.9. In [Vig77, Théorème 1], the above theorem is stated for
scalar modular forms by introducing a level and a character, but the
vector-valued version follows easily from the proof, especially formulas
(1) and (3) in loc. cit..

2.5. Hyperbolic lattices. We specialize our discussion from before to
hyperbolic lattices. Let (K, ·) be an even lattice of signature (1, n− 1).
Let CK be a connected component of {x ∈ KR |x · x > 0}. Then for
any v1, v2 in CK , we have v1 · v2 > 0.

Let E(x) = 2
∫ x

0
e−πt

2
dt be the Gauss error function and define

ψ(x) = xE(x) + 1
2π
E ′(x). One can easily check that ψ satisfies the

following differential equation:

xψ′(x) +
1

2π
ψ′′(x) = ψ. (2.5.1)

Moreover, we have

E(x) = sgn(x)(1− 2

∫ ∞
|x|

e−πt
2

dt),

and we can thus write:

ψ(x) = xE(x) +
1

2π
E ′(x) = |x|+ β(x2), (2.5.2)

where for t ≥ 0,

β(t) =
1

2π

∫ ∞
1

u−
3
2 e−πtudu.

The importance of the functions E and ψ is that they are smooth ap-
proximations of the sign and the absolute value functions respectively,
and they will help us build smooth approximations to the piecewise lin-
ear functions appearing in the intersection formulas of special cycles.

For a collection of vectors {ci}i∈S in the closure of the positive cone
CK that satisfy

∑
i∈S aici = 0, define the function

p+(λ) :=
∑
i∈S

ai|λ · ci|

and consider the formal power series:

Θ+ =
∑
λ∈K∨

p+(λ)q−Q(λ)v[λ] ∈ C[K∨/K][[q
1

DK ]].

Our goal in the next two sections is to analyze the convergence and the
modularity properties of this series.
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2.6. Case of non-isotropic vectors. Let c ∈ CK and define

φc(λ) :=

√
c · c
2
ψ

(√
2λ · c√
c · c

)
for λ ∈ KR.

Then using Equation (2.5.1), one can check that:(
E − 1

4π
∆
)
φc = φc. (2.6.1)

Now consider the special case where (ci)i∈S is a finite set of primitive
integral elements of the positive cone CK ∩K, such that

∑
i∈S aici = 0,

with ai ∈ Z non-zero integers. Let ci · ci = 2Ni > 0. Define

p(λ) : =
∑
i∈S

aiφci(λ)

=
∑
i∈S

ai
√
Niψ

(
λ · ci√
Ni

)
. (2.6.2)

Proposition 2.10. Let ci be a collection of (non-isotropic) primitive
integral vectors of CK which satisfy

∑
i aici = 0 for some integers ci.

Then the function p satisfies the conditions of Theorem 2.8.

The proof of this proposition is inspired from the proof of Proposition
2.4 in [Zwe02]. We first prove the following lemma.

Lemma 2.11. Let (ci)i∈S be a finite set of distinct integral elements
of CK which satisfies a relation of the form

∑
i aici = 0, where ai are

non-zero numbers and let p+(λ) =
∑

i ai|λ · ci|. Let U denote the open
set of elements λ ∈ KR where the function λ 7→ p+(λ) does not vanish.
Then there exists an euclidean norm || · || on KR such that:

(1) If all ci ∈ CK, then −Q(λ) ≥ ||λ||2 for all λ ∈ U.
(2) In general, −Q(λ) ≥ ||λ|| for all λ ∈ U ∩K.

Proof. Notice that S has cardinality at least 3 and that whenever λ · ci
have the same sign for all i ∈ S, then the function λ 7→ p+(λ) vanishes.
Hence U is contained in the set where the linear forms λ 7→ λ · ci don’t
have all the same sign. In particular, U is a finite union over (i, j) of
the sets U(i,j) where λ · ci ≥ 0 and λ · cj ≤ 0. So it suffices to prove the
lemma for each U(i,j). Fix such pair and call it (1, 2).
First case: Assume that c1 and c2 are not isotropic. Write

λ = λc⊥1 +
λ · c1

c1 · c1

c1. Then

0 ≥ λ · c2 = λc⊥1 · c2 +
λ · c1

c1 · c1

c1 · c2 =⇒

(λ · c1)(c1 · c2)

c1 · c1

≤ −λc⊥1 · c2.
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Let c̃2 be the orthogonal projection of c2 to c⊥1 . By Cauchy–Schwarz
inequality, we have

(λc⊥1 · c2)2 = (λc⊥1 · c̃2)2 ≤ (λc⊥1 · λc⊥1 )(c̃2 · c̃2).

Hence we get

(λ · c1)2

|c1 · c1|
≤ |c1 · c1|

(c1 · c2)2
(λc⊥1 · λc⊥1 )

(
c2 · c2 −

(c1 · c2)2

c1 · c1

)
≤
(

1− (c2 · c2)(c1 · c1)

(c1 · c2)2

)
|λc⊥1 · λc⊥1 |.

Let µ > 0 such that 1−µ
1+µ

= 1− (c2·c2)(c1·c1)
(c1·c2)2 . Then one can check that

−Q(λ) ≥ µQc1(λ), (2.6.3)

where Qc1 is a positive definite quadratic form defined by:

Qc1(λ) := −Q(λc⊥1 ) +
(λ · c1)2

2(c1 · c1)
.

Second case: Assume now that c1 is isotropic and c2 and is still
anisotropic. The lattice (c1, c2) has signature (1, 1) so its orthogonal
M ⊂ K is negative definite. We can write

λ = n1c1 + n2c2 + v,

where v ∈ M∨. Then by assumption x · c1 = n2(c1 · c2) ≥ 0 which
implies that n2 ≥ 0 and λ · c2 = n1(c1 · c2) + n2(c2 · c2) ≤ 0. So

n2(c2 · c2) ≤ −n1(c1 · c2),

and in particular, n1 ≤ 0.
On the other hand,

−Q(λ) = −n1n2(c1 · c2)− n2
2

c2 · c2

2
−Q(v)

= −n1n2(c1 · c2)

2
− n2

n1(c1 · c2) + n2(c2 · c2)

2
−Q(v)

≥ n2
2|c2 · c2| −Q(v).

If n2 6= 0, then since λ and c1 are in K, we have that |n2(c1 · c2)| ≥ 1,
hence we get also −Q(λ) ≥ |n1|

2
and therefore

−3Q(λ) ≥ |n1|+ n2
2|c2 · c2| −Q(v)� ||λ||

for the euclidean norm ||λ||2 = n2
1 + n2

2 −Q(v).
If n2 = 0, then there exists c3 such that λ · c3 > 0, otherwise all λ · ci

would have the same sign for i 6= 1 and hence

p(λ) = 2a1|λ · c1| = 2a1|n2(c1 · c2)|,
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contradicting the fact that p does not vanish on λ. From the inequality
λ · c3 > 0 we get then:

n1(c1 · c3) + n2(c2 · c3) + c̃3 · v > 0,

where c̃3 is the projection of c3 to M . From Cauchy-Schwartz inequal-
ity, we have:

|n1(c1 · c3)| ≤ |n2(c2 · c3)|+
√

(v · v)(c̃3 · c̃3),

from which it follows that there exists a constant µ1 > 0 such that

−Q(λ) ≥ µ1

(
n2

1 + n2
2 −Q(v)

)
,

and we can choose again the euclidean norm ||λ||2 = n2
1 + n2

2 −Q(v).
Last case: Assume now that both c1 and c2 are isotropic. Then we

can introduce c′2 = c1 + c2 which is not isotropic and notice that U1,2

is contained in U1,2′ ∪ U2′,2 and hence we use the previous analysis on
each of them. This finishes the proof of the lemma. �

We are now ready to prove Proposition 2.10.

Proof Proposition 2.10. Condition (1) follows from Equation 2.6.1. We
only need to prove condition (2). By Equation 2.5.2, we have the
decomposition for x ∈ R

ψ(x) = |x|+ β(x2).

This corresponds to a decomposition

p(λ) = p+(λ) + p−(λ),

where p+(λ) =
∑

i ai|λ · ci|. From the estimate β(t)� e−πt, for t ≥ 0,
we get that

|p−(λ)eπ(λ·λ)| �
∑
i∈S

e
−π
[
−λ·λ+2

(λ·ci)2

ci·ci

]
�
∑
i∈S

e−2πQci (λ),

where as before, Qc(λ) = −Q(λc⊥) + (λ·c)2

2(c·c) is the positive quadratic
form associated to a positive integral vector c.

The function p+ vanishes if all the linear forms λ 7→ λ · ci have the
same sign when i ∈ S. Hence, in the region where it is non-vanishing,
by (1) in Lemma 2.11, there exists an Euclidean norm on KR such that:

|p+(λ)eπ(λ·λ)| ≤ |p+(λ)e−π||λ||
2|.

Combining the two previous estimates, this proves that for any poly-
nomial R, the function λ 7→ R(λ)p(λ)eπ(λ·λ) is in L2(Rn) ∩ L1(Rn).

For the first order derivatives, notice that

ψ′(x) = E(x) = sgn(x)− sgn(x) · 2
∫ ∞
|x|

e−πt
2

dt.
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For any non-zero vector v ∈ KR, the partial derivative ∂vp can then
be decomposed accordingly as

(∂vp)
+(λ) + (∂vp)

−(λ).

One can easily check that the function (∂vp)
+ vanishes on the region

where all the λ 7→ λ · ci have the same sign. Furthermore, we have the
estimate ∫ ∞

|x|
e−πt

2

dt� e−πx
2

,

which implies in a similar way that

|(∂vp)−(λ)eπ(λ·λ)| �
∑
i∈S

e−2πQci (λ).

For the second order derivative, since ψ′′(x) = e−πx
2 , we get immedi-

ately for any two non-zero vectors v, v′ ∈ KR the estimate

|∂v∂v′p(λ)e−π(λ·λ)| �
∑
i∈S

e
−π
[
λ·λ−2

(λ·ci)2

ci·ci

]
≤
∑
i∈S

e−2πQci (λ).

Hence the result. �

As it appeared in the previous proof, the function p is a smooth
approximation of the function p+(λ) =

∑
i∈S ai|λ ·ci|. By Theorem 2.8,

Θ(τ) =
1
√
y

∑
λ∈K∨

p(
√
yλ)q−Q(λ)v[λ]

=
1
√
y

∑
γ∈K∨/K

∑
λ∈γ+K

p(
√
yλ)q−Q(λ)vγ

transforms like a non-holomorphic modular form of weight 1 + n
2
and

representation ρK , where (vγ)γ∈K∨/K is the usual basis of the C-vector
space C[K∨/K].

The holomorphic part of this series is equal to the series introduced
at the end of Section 2.4:

Θ+(τ) =
∑
λ∈K∨

p+(λ)q−Q(λ)v[λ].

The non-holomorphic part is equal to

∑
i∈S

aiΘ
ci
K(τ),

where ci · ci = 2Ni and the series Θci
K is an absolutely convergent series

given as follows:
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Θci
K(τ) =

√
Ni√
y

∑
λ∈K∨

β

(
y(λ · ci)2

Ni

)
q−Q(λ)v[λ]

=

√
Ni√
y
pKc⊥i ⊕Zci

( ∑
λ=δ+

n
2Ni

ci

δ∈(c⊥i )∨, n∈Z

β

(
yn2

Ni

)
q
− n2

4N2
i
Q(ci)−Q(δ)

v[δ] ⊗ v[n]

)

=

√
Ni√
y
pKc⊥i ⊕Zci

[( ∑
δ∈(c⊥i )∨

q−Q(δ)v[δ]

)
⊗

(∑
n∈Z

β

(
yn2

Ni

)
q
− n2

4Ni v[n]

)]

= pKc⊥i ⊕Zci

(
Θc⊥i
⊗ F−Ni

)
Here Θc⊥i

is the theta series of the negative definite lattice c⊥i which is
a holomorphic modular form of weight n−1

2
and representation ρc⊥i and

F−Ni
is the non-holomorphic part of the generalized Zagier Eisenstein

series introduced in Section 2.3. In particular, the non-holomorphic
part of

Θ−
∑
i∈S

aip
K
c⊥i ⊕Zci

(Θc⊥i
⊗ FNi

).

vanishes. Therefore, it is a holomorphic modular form of weight 1 + n
2

and representation ρK . We have thus proven the following theorem.

Theorem 2.12. Let (ci)i∈S be a finite set of integral vectors of CK
with a relation

∑
i∈S aici = 0, ai ∈ Z. Then the function Θ+ is a mixed

harmonic Maass form of weight 1 + n
2
and representation ρK. More

precisely, the function

Θ+ −
∑
i∈S

aip
K
c⊥i ⊕Zci

(Θc⊥i
⊗ F+

Ni
).

is a holomorphic modular form of weight 1 + n
2
and representation ρK.

2.7. Case of isotropic vectors. We now analyze the general case
where the vectors ci are allowed to be isotropic. For each isotropic
vector ci, let Mi := c⊥i /ci be the associated negative definite lattice.

We can write ∑
i∈S1

aici = −
∑
i∈S2

aici,

where S1 is the set of indices where ai > 0 and S2 is the set of indices
where ai < 0. Define c :=

∑
i∈S1

aici, so that c is a rational vector in
the positive cone CK .

For ε > 0, define

ci(ε) :=

{
ci + ε c∑

`∈S1
a`

if i ∈ S1

ci − ε c∑
`∈S2

a`
if i ∈ S2.
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Notice that the relation
∑

i aici(ε) = 0 still holds and for ε small
enough, the vectors ci(ε) all lie in the positive cone CK .

For λ ∈ KR, let p+(λ) =
∑

i ai|λ · ci| and consider again the series:

Θ+ =
∑
λ∈K∨

p+(λ)q−Q(λ)v[λ] ∈ C[K∨/K][[q
1

DK ]].

Our goal in this section is to prove the following theorem.

Theorem 2.13. Let (ci)i∈S be a finite set of integral vectors of CK

with a relation
∑

i aici = 0, ai ∈ Z. Then the series Θ+ converges
absolutely for τ ∈ H where q = e2πiτ to a holomorphic function which
is a mixed mock modular form. More precisely, the function

Θ+ −
∑

Q(ci)>0

aip
K
c⊥i ⊕Zci

(Θc⊥i
⊗ F+

Ni
) +

1

6

∑
Q(ci)=0

aiE2p
K
D

(
Θc⊥i /ci

)
is a holomorphic modular form of weight 1 + n

2
and representation ρK.

Proof. We first prove the convergence of Θ+: by Lemma 2.11, there
exists an euclidean norm || · || such that in the region U ∩ K∨ where
λ 7→ p(λ) does not vanish, we have −Q(λ) ≥ ||λ||. So for every m ∈

1
DK

Z, the number of vectors λ ∈ K∨ such that |Q(λ)| ≤ m is finite
and upper bounded by a polynomial in m. This implies the uniform
absolute convergence of Θ+ on compact subsets of H to a holomorphic
function on H.

To obtain the mixed mock modularity, we approach Θ+ with a se-
quence of mixed mock modular theta series. Let ε > 0 be small enough
so that all the vectors ci(ε) are in the positive cone CK .

Consider the holomorphic function on H:

Θε(τ) =
∑
λ∈K∨

p+
ε (λ)q−Q(λ)v[λ] ∈ C[K∨/K][[q

1
DK ]]

where p+
ε (λ) :=

∑
i ai|λ·ci(ε)|. The above series is absolutely convergent

and uniformly convergent on compact subsets of H. Notice also that,
as ε→ 0, pε(λ)→ p(λ) for every λ ∈ K∨.

Lemma 2.14. As ε → 0, Θ+
ε (τ) → Θ+(τ) uniformly in τ in compact

regions of H.

Proof. Note that in the region where (λ 7→ λ · ci)i∈S all have the same
sign, the functions p+ and pε both vanish. Indeed, if all the linear forms
λ 7→ λ · ci have the same sign, then λ 7→ λ · c also has the same sign as
them, and hence for any ε > 0, the linear forms λ 7→ λ · ci(ε) have the
same sign. Hence the function p+

ε vanishes. Let U be the complement
of the above region. Then, using Lemma 2.11, we have for any τ ∈ H
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with Im(y) > B:∣∣∣∣Θ+
ε (τ)−Θ+(τ)

∣∣∣∣ ≤ ∑
λ∈K∨∩U

∑
i∈S

|ai|(|λ · ci| − |λ · ci(ε)|)e2πyQ(λ)

≤ ε
∑

λ∈K∨∩U

∑
i∈S

|ai||λ · c|e−2πB||λ||.

Hence the result. �

Let pε be the completion of p+
ε as in Equation (2.6.2). Then by

Proposition 2.10 and Theorem 2.8, the function:

Θ̂ε(τ) =
1
√
y

∑
λ∈K∨

p(
√
λ)q−Q(λ)v[λ]

transforms like a non-holomorphic modular form of weight 1 + n
2
and

representation ρK . As ε→ 0, its holomorphic part converges to Θ+ by
Lemma 2.14 and we will analyze the convergence of its non-holomorphic
part. For ε > 0, the non-holomorphic part is given as the sum over i
of terms of the form:

Θ
ci(ε)
K (τ) =

√
Ni(ε)

y

∑
λ∈K∨

β

(
y(λ · ci(ε))2

Ni(ε)

)
q−Q(λ)v[λ].

If ci is not isotropic, then, as ε→ 0, Ni(ε)→ Ni 6= 0 and the quadratic
form λ 7→ (λ·ci(ε))2

Ni(ε)
−2Q(λ) limits to the positive definite quadratic form

2Qc1 , hence there exists A > 0 depending only on c and c1 such that
for ε ≤ A, we have for every λ ∈ KR the inequality

(λ · ci(ε))2

Ni(ε)
− 2Q(λ) ≥ Qc1(λ) ≥ 0.

Hence, using the estimate β(t)� e−πt, we get∣∣∣∣β (y(λ · ci(ε))2

Ni(ε)

)
q−Q(λ)

∣∣∣∣� 1

2π
e
−πy

(
(λ·ci(ε))2

Ni(ε)
−2Q(λ)

)

� e−πyQc1 (λ).

This implies the uniform convergence and hence we can interchange
the limit as ε→ 0 with the sum over λ ∈ K∨ yielding the convergence
of the function Θ

ci(ε)
K to Θci

K introduced in the previous section.

We now identify the limit of Θ
ci(ε)
K when ci is an isotropic vector.

To simplify the notations and the computations hereafter, assume that
i = 1 and up to rescaling ε, that c is primitive integral in K and
c1(ε) = c1 + εc. Let M be the orthogonal of U = Zc1 + Zc in K.
Denote the intersection matrix of U by(

0 a
a 2b

)
.
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then the dual lattice U∨ is generated by a−1c1 and a−1c̃ where c̃ =
c − 2 b

a
c1. The lattice M maps injectively to a finite index sub-lattice

of M1 = c⊥1 /c1 and we have the chain of inclusions

U ⊕M ⊆ K ⊆ K∨ ⊆ U∨ ⊕M∨.

Hence every element of K∨ has a decomposition a−1(n1c1 +n2c̃) + γ
where γ ∈M∨

1 , n1, n2 ∈ Z. We denote by [n1, n2] ∈ (Z/aZ)2 the image
of a−1(n1c1 + n2c̃) in U∨/U . We have that Θ

c1(ε)
K (τ) equals

√
N1(ε)

y
pKU⊕M

( ∑
n1,n2∈Z
γ∈M∨

β

(
y(n2 + εn1)2

εa+ ε2b

)
q−

n1n2

a
+
n2

2b

a2 −Q(γ)v[n1,n2] ⊗ v[γ]

)

=

√
N1(ε)

y
pKU⊕M

[( ∑
n1,n2∈Z

β

(
y(n2 + εn1)2

εa+ ε2b

)
q−

n1n2

a
+
n2

2b

a2 v[n1,n2]

)

⊗

(∑
γ∈M∨

q−Q(γ)v[γ]

)]
.

Notice that because β(t) � e−πt, the first sum above is absolutely
convergent for ε small enough and N1(ε)

ε
= a+ bε. Furthermore, we can

decompose the first sum according to n2 = 0 or n2 6= 0 as:√
N1(ε)

y

∑
n1,n2∈Z

β

(
y(n2 + εn1)2

εa+ ε2b

)
q−

n1n2

a
+
n2

2b

a2 v[n1,n2]

=

(√
N1(ε)

2π
√
y

∑
n1∈Z

∫ ∞
1

u−
3
2 e
−πyu

εn2
1

a+bεdu

)
v[n1,0]

+

√
N1(ε)

y

∑
n1,n2∈Z, n2 6=0

β

(
y(εn1 + n2)2

aε+ bε2

)
q−

n1n2

a
+
n2

2b

a2 v[n1,n2].

Write v[n1,0] = v[n1]. The first sum can be rewritten using dominated
convergence and Poisson’s summation formula as follows:∑
n1∈Z

∫ ∞
1

u−
3
2 e
−πyu

εn2
1

a+bεduv[n1] =

∫ ∞
1

u−
3
2

∑
n1∈Z

e
−πyu

εn2
1

a+bεduv[n1]

=

∫ ∞
1

u−
3
2

√
a+ εb

a
√
yuε

∑
n1∈Z

e
−
πn2

1(a+bε)

yuε duv[n1] .

The last sum, multiplied by 1
2π

√
N1(ε)
y

, converges uniformly as ε→ 0

to its constant term which is 1
2πy

∫∞
1
u−2 = 1

2πy
. As for the second sum,
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we can write it using the estimate β(t)� e−πt as:∣∣∣∣∣
∣∣∣∣∣
√
N1(ε)

y

∑
n1,n2∈Z,n2 6=0

β

(
y(n2 + εn1)2

εa+ bε2

)
q−

n1n2

a
+
n2

2b

a2 v[n2]

∣∣∣∣∣
∣∣∣∣∣

�

√
N1(ε)

y

∑
n1,n2∈Z,n2 6=0

e
−πy

(
n2

2

(
2b
a2 +

1
ε(a+bε)

)
−2bεn1n2

a(a+bε)
+ε

n2
1

a+bε

)
.

By computing the discriminant of the quadratic form in the exponent
above, we see that there exists A1 such that for ε ≤ A1, the following
inequality holds for every n1, n2 ∈ Z:

n2
2

(
2b

a2
+

1

εa+ bε

)
− 2bεn1n2

a(a+ bε)
+ ε

n2
1

a+ bε
≥ 1

2a

(
n2

2

ε
+ εn2

1

)
.

Hence combining the previous inequalities and Poisson summation for-
mula we get:∣∣∣∣∣

∣∣∣∣∣
√
N1(ε)

y

∑
n1,n2∈Z, n2 6=0

β

(
y(n2 + εn1)2

εa+ bε2

)
q−

n1n2

a
+
n2

2b

a2 v[n2]

∣∣∣∣∣
∣∣∣∣∣

�

√
N1(ε)

y

∑
n1,n2∈Z, n2 6=0

e
−πy

2a

(
n2

2

ε
+εn2

1

)

�

(√
ε

y

∑
n1∈Z

e−
πy
2a
εn2

1

)( ∑
n2∈Z,n2 6=0

e−
πy
2a

n2
2

ε

)

�

(√
2aN1(ε)

y
√
ε

∑
n1∈Z

e
−2πa

n2
1

yε

)( ∑
n2∈Z,n2 6=0

e−
πy
2a

n2
2

ε

)
,

and by normal convergence, the last product converges to 0 as ε → 0.
We conclude that the limit of Θ

c1(ε)
K as ε→ 0 is equal to 1

2πy
pKM(ΘM) =

1
2πy
pKM1

(ΘM1) where M1 = c⊥1 /c1, which is the non-holomorphic part
of the mixed mock modular form −1

6
E2 · pKM1

(ΘM1), where E2(τ) =

1− 24
∑

n≥1 σ1(n)qn. Let E∗2(τ) = E2(τ)− 3
πy

be the completion of E2

to a non-holomorphic modular form.
Notice that

Θ̂ε −
∑

Q(ci)>0

aip
K
c⊥i ⊕Zci

(Θc⊥i
⊗ FNi

) +
∑

Q(ci)=0

aip
K
M1

(ΘM1)⊗ 1
6
E∗2

transforms like a holomorphic modular form of weight 1+n
2
with respect

to ρK . Hence by letting ε→ 0, it still transforms appropriately and the
previous computations show that its non-holomorphic part vanishes,
whereas its holomorphic part is equal to

Θ+ −
∑

Q(ci)>0

aip
K
Kci⊕Zci

(Θc⊥i
⊗ F+

Ni
) +

∑
Q(ci)=0

ai
6
E2p

K
Mi

(ΘMi
)
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which concludes the proof of Theorem 2.13. �

3. Orthogonal Shimura varieties

In this section, we give an explicit description of the special divisors
in toroidal compactifications of orthogonal Shimura varieties and we
derive the main intersection formula, see Theorem 3.13, of special di-
visors with curves contained in the boundary. For general references
on toroidal compactifications, the reader may consult [AMRT10] or
[BZ22, Fio16, Loo03] for the orthogonal case.

3.1. Baily-Borel compactification. Let (L, ·) be an even lattice of
signature (2, n), let L∨ be its dual lattice and let D be the associated
Hermitian symmetric domain, a connected component of

{Cx ∈ P(LC)
∣∣x · x = 0, x · x > 0}.

It embeds into its compact dual

Dc := {Cx ∈ P(LC)
∣∣x · x = 0}

which is a quadric hypersurface in the projective space P(LC) ' Pn+1.
Let Γ ⊂ O+(L) be a subgroup of the stable orthogonal group, defined

as the kernel of the reduction O+(L) → O(L∨/L). Then Γ acts on
D and the quotient has the structure of a complex orbifold, it is an
orthogonal Shimura variety. The restriction of the tautological line
bundle OPn+1(−1) to D is naturally Γ-equivariant and hence descends
to an orbi-line bundle L on XΓ := Γ\D, called the Hodge bundle. For
any β ∈ L∨/L and m ∈ −Q(β) + Z, we define the special divisor of
discriminant (β,m) in XΓ to be:

Zo(β,m) =
⋃

λ∈β+L
Q(λ)=−m

{x ∈ D
∣∣x · λ = 0} mod Γ. (3.1.1)

By the Baily-Borel theorem [BB66], the line bundle L is ample and
sections of its powers determine an embedding of the quotient XΓ into
a projective space. The closure of the image is a projective variety, and
is by definition the Baily-Borel compactification: XΓ ↪→ XBB

Γ .
This compactification can be described more explicitly using the ra-

tional boundary components of D in its topological closure D ⊂ Dc.

Definition 3.1. The rational boundary components DI of D are in
bijection with primitive isotropic sublattices I ⊂ L as follows:

DI := {Cx ∈ D ⊂ Dc
∣∣ span{Rex, Imx} = IR}.

Notation 3.2. The possible ranks of an isotropic sublattice of L are 1
and 2. To distinguish them, we henceforth use the letter I when the
rank is 1 and the letter J when the rank is 2.
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Definition 3.3. For a rank 1 isotropic lattice, DI is a point. For a
rank 2 isotropic lattice, DJ is a copy of the upper half-plane H. We
call these boundary components Type III and Type II respectively.

Remark 3.4. The terminology of Type II and III comes from the classi-
fication [Kul77, PP81] of one-parameter degenerations of K3 surfaces.

One defines the rational closure of D to be

D+ := D ∪J DJ ∪I DI ⊂ D,

endowed with a horoball topology near the boundary components DI

and DJ . An explicit topological description of the Baily-Borel compact-
ification is thenXBB

Γ = (Γ\D)BB = Γ\D+. Thus, boundary components
of (Γ\D)BB are the

(1) Type III components, which are points, in bijection with Γ-
orbits of isotropic lines I ⊂ L, and

(2) Type II components, which are modular curves StabΓ(J)\H, in
bijection with Γ-orbits of isotropic planes J ⊂ L.

The closures of Type II modular curves in (Γ\D)BB contain Type III
boundary points, which form the cusps of the modular curves. Such
incidences correspond to Γ-orbits of inclusions I ⊂ J ⊂ L.

3.2. Special divisors at the Type III boundary. We now describe
the geometry of special divisors of D near a cusp. Let I = Zδ ⊂ L be
a primitive isotropic sublattice. Given any point Cx ∈ D, there is a
unique representative x ∈ LC for which x · δ = 1—we cannot have
x · δ = 0 for signature reasons. This defines an embedding of D into
the affine hyperplane {x ∈ LC

∣∣x · δ = 1}.
Let UI ⊂ StabΓ(I) be the unipotent radical of the integral parabolic

stabilizer of I. Consider an integral (but non-orthogonal) decomposi-
tion L∨ = Zδ′ + I⊥L∨ with δ′ · δ = 1. Then we can write

x = δ′ + x0 + cδ

where x0 lies in {δ, δ′}⊥C ' (I⊥/I)C and c ∈ C is uniquely determined
by the property that x · x = 0. Let K := I⊥/I. The action of some
γ ∈ UI necessarily takes the form:

δ 7→ δ

v 7→ v − (v · w)δ for v ∈ I⊥

δ′ 7→ δ′ + w − (δ′ · w)δ − 1
2
(w · w)δ for some w ∈ K.

This formula above doesn’t depend on how w is lifted into I⊥.
On the coordinate x0 ∈ KC, the unipotent radical UI acts by a finite

index subgroup of the translation groupK. In the full stable orthogonal
group, we get the full translation group K. Thus,

UI\D ↪→ UI\(UI ⊗ C) ' (C∗)n
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admits a torus embedding. This torus UI⊗C∗ = UI\(UI)C is isogenous
to the torus K\KC = K ⊗ C∗.

We analyze the special divisors in the above torus embedding. It
suffices to restrict to UI = K—in the more general case where UI ( K,
we just take the inverse images of the special divisors under the isogeny
UI\KC → K\KC. Consider

Zo(λ̃) := {x ∈ D
∣∣x · λ̃ = 0} mod Γ

for some primitive λ̃ ∈ L∨ which passes through the cusp of (Γ\D)BB

corresponding to I. Choose a representative of the Γ-orbit for which
λ̃ ∈ I⊥L∨ . Let λ be the image of λ̃ under reduction to I⊥L∨/Isat

L∨ = K∨,
where Isat

L∨ is the saturation of I in L∨.
Note that the vector λ ∈ K∨ may not be primitive. Write λ = uλprim

where λprim ∈ K∨ is primitive. The lifts of λ to λ̃ ∈ I⊥L∨ are the set

{uλ̃prim + k
d
δ
∣∣ k ∈ Z}

where d is the imprimitivity of δ ∈ L∨ and λ̃prim is a lift of λprim. Such
a lift is primitive in L∨ if and only if gcd(k, u) = 1. Furthermore, there
exists some γ ∈ K for which γ(λ̃prim) = λ̃prim + δ. So a collection
of coset representatives of the K-action on {uλ̃prim + k

d
δ
∣∣ k ∈ Z} is

provided by taking all 0 ≤ k < du.
The equation of Zo(λ̃) in coordinates x0 ∈ KC is the affine hyper-

plane
x0 · λ = −δ′ · λ̃ ∈ Q.

Under the exponentiation isomorphism K\KC → K⊗C∗, the equation
of Zo(λ̃) becomes a torsion translate of a character hypersurface

χλprim(z) = zλ
prim

= exp(−2πik
du
− 2πiδ′ · λ̃prim)

where z ∈ (C∗)n is the coordinate-wise exponential of x0 ∈ KC.

Proposition 3.5. Let λ ∈ K∨ have imprimitivity u. In the torus
embedding UI\D ↪→ UI ⊗C∗ there are dϕ(u) special divisors associated
to lifts of λ to a primitive vector λ̃ ∈ I⊥L∨, each one being a torsion
translate of the hypersurface χλprim(z) = 1.

Proof. When UI = K, the proposition follows from the above compu-
tation of the K-coset representatives of lifts of λ. When UI ( K, the
hypersurface χλprim(z) = 1 may break into multiple character hyper-
surfaces in UI ⊗ C∗—this occurs exactly when λprim ∈ K∨ becomes
imprimitive in the character group U∨I ⊃ K∨. But the equations of
the special divisors are still pulled back from K⊗C∗ along the isogeny
UI ⊗ C∗ → K ⊗ C∗, reducing the proposition to the UI = K case. �

Corollary 3.6. Let Zo
I (β,m) ⊂ Zo(β,m) be the union of the compo-

nents of Zo(β,m), see 3.1.1, whose Zariski closure in (Γ\D)BB con-
tains the Type III cusp associated to I. The pullback of Zo

I (β,m) to
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UI\D ⊂ UI ⊗ C∗ is⋃
λ∈pKL (β)+K
Q(λ)=−m

{u translates of χλprim(z) = 1}

where u = u(λ) is the imprimitivity of λ.

Proof. Note that Zo(β,m) ranges over both primitive and imprimitive
vectors. So it contains the divisors Zo(µ̃) associated to primitive lifts of
u′λprim ranging over the divisors u′ | u. By the formula

∑
u′|u ϕ(u′) = u

and Proposition 3.5, there are du special divisors associated to lifts of λ,
whose classes may vary in the discriminant group L∨/L. Observe that
the classes [λ̃] of lifts of λ equidistribute in the classes β ∈ L∨/L which
push to the class [λ] = pKL (β) ∈ K∨/K. Hence there are exactly u
translates of the hypersurface χλprim(z) = 1 appearing in Zo

I (β,m). �

3.3. Toroidal compactification. We now describe the toroidal com-
pactification in a neighborhood of the Type III cusps. As above, let
I ⊂ L denote an isotropic line, and let K := I⊥/I. Define a finite
index subgroup ΓI ⊂ O+(K) by the exact sequence

0→ UI → StabΓ(I)→ ΓI → 0.

Let CK ⊂ KR denote the positive cone—a connected component of
the positive norm vectors in KR ' R1,n−1 and let C+

K denote its ra-
tional closure: The union of CK with all rational isotropic rays at its
boundary.

Definition 3.7. A Γ-admissible collection of fans (or simply fan) is
a collection Σ = {ΣI} of polyhedral decompositions ΣI = {σ} of C+

K

ranging over all primitive isotropic I ⊂ L, such that:
(1) the cones σ ⊂ C+

K are strictly convex, rational polyhedral cones,
and ΣI is closed under taking intersections and faces, and

(2) the collection Σ = {ΣI} is Γ-invariant with only finitely many
Γ-orbits of cones σ ∈ ΣI .

Equivalently, we can choose one polyhedral decomposition ΣI for
each Γ-orbit of isotropic line I, and require that it be ΓI-invariant,
with finitely many orbits of cones. A useful visualization is to consider
{Pσ}σ∈ΣI

which is a ΓI-periodic tiling of (rationally cusped) hyperbolic
(n− 1)-space PC+

K .
We extend the algebraic torus UI ⊗ C∗ by the infinite-type toric

variety X(ΣI) whose fan is ΣI . It admits an action of UI ⊗ C∗ whose
orbits are in bijection with the cones σ ∈ ΣI . The orbit corresponding
to σ is isomorphic to (UI/span(σ))⊗ C∗ ' (C∗)codim(σ).

Let VI be a ΓI-invariant, analytic tubular neighborhood of the Type
III strata of X(ΣI): These are the torus orbits corresponding to cones
σ satisfying σ ∩ CK 6= ∅—exactly the strata corresponding to cones σ
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which are neither the origin 0 ∈ K nor a rational isotropic ray. Such
cones σ only have finite stabilizers in ΓI , so we may assume that the
action of ΓI on VI is properly discontinuous. Let

AI := VI ∩ (UI ⊗ C∗)
be the intersection with the open torus orbit.

Choosing VI sufficiently small, we can ensure that ΓI\AI embeds into
Γ\D. This follows from the fact that a punctured neighborhood of the
Type III boundary component associated to I is locally modeled as the
quotient of some analytic open subset of D by the parabolic stabilizer
StabΓ(I). Then, we define the Type III extension of Γ\D to be the
glued analytic space

(Γ\D)Σ,III := (Γ\D) ∪ΓI\AI
(ΓI\VI)

with the union taken over all I.
Taking the further union with the Type II extensions ΓJ\VJ defined

in the following subsection gives the toroidal compactification:

XΣ
Γ = (Γ\D)Σ := (Γ\D)Σ,III ∪ΓJ\AJ

(ΓJ\VJ).

For any Σ, it admits a morphism (Γ\D)Σ → (Γ\D)BB.

Definition 3.8. We say that Γ is neat if the eigenvalues of every ele-
ment γ ∈ Γ acting on LC generate a torsion free subgroup of C∗.

Definition 3.9. We say that Σ is regular if every cone σ is a standard
affine cone (σ ∩ UI is isomorphic to Ndim(σ) as a monoid). More gen-
erally, Σ is simplicial if the generators of any cone σ ∈ ΣI are linearly
independent.

If Γ is neat and Σ is regular, then the toroidal compactification
(Γ\D)Σ is smooth with reduced normal crossings boundary, because
Γ, ΓI , ΓJ act freely on D and the respective toroidal extensions. Since
the toric variety associated to a simplicial cone σ has only finite quo-
tient singularities, it is a local Q-Poincaré duality space. For the same
reason, XΣ

Γ is a Q-Poincaré duality space (regardless of whether Γ is
neat) for any simplicial Σ.

Remark 3.10. We can and will assume that Γ is neat and Σ is regular.
One can reduce the main result of the paper for simplicial fans Σ and
arbitrary Γ to this case: By passing to a finite index subgroup Γ′ ⊂ Γ
we can make the action neat, and by refining Σ ≺ Σ′, we can make the
fan regular. We get a morphism

π : XΣ′

Γ′ → XΣ
Γ′ → XΣ

Γ

which is the composition of a birational morphism and a finite cover.
Then π∗ : H2(XΣ

Γ ,Q)→ H2(XΣ′

Γ′ ,Q) is an embedding.
The main theorem is proved by intersecting the Zariski closures

Z(β,m) = Zo(β,m) with curve classes C ∈ H2(XΣ
Γ ,Q). Such a class
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C can be expressed as [Γ : Γ′]C ≡ π∗D for some D ∈ H2(XΣ′

Γ′ ,Z) which
intersects the exceptional divisors of π to be zero: This is achieved by
using a wrong-way map D := (PD ◦ π∗ ◦ PD)(C). By push-pull,

Z(β,m) ·XΣ
Γ
C =

1

[Γ : Γ′]
π∗Z(β,m) ·XΣ′

Γ′
D

=
1

[Γ : Γ′]
Z(β,m) ·XΣ′

Γ′
D.

The last equality holds because D intersects the exceptional divisors
to be zero and the strict transforms of the Z(β,m)’s for Γ,Σ are the
Z(β,m)’s for Γ′,Σ′. The same equality holds for any boundary divisor
in XΣ

Γ associated to a ray in Σ. This implies that the pairing with D
of the generating series from Theorem 1.2 applied to XΣ′

Γ′ is equal (up
to the factor [Γ : Γ′]) to the pairing of C with the analogous series for
XΣ

Γ . This proves that the validity of Theorem 1.2 for XΣ′

Γ′ implies its
validity for XΣ

Γ .

3.4. The Type II boundary. We now roughly sketch the structure
of the Type II boundary component associated to the Γ-orbit of an
isotropic plane J ⊂ L.

Choose a basis J = Zδ⊕Zλ and as before, represent Cx ∈ D uniquely
by the x ∈ LC for which x ·δ = 1. Choose δ′, λ′ which generate a lattice
J ′ = Zδ′ + Zλ′ in L∨ realizing Hom(J,Z) and write

x = (δ′ + τλ′) + x0 + (c1δ + c2λ)

where x0 ∈ {δ, δ′, λ, λ′}⊥C ∼= (J⊥/J)C and c1, c2 ∈ C. The condition
x · x = 0 specifies that (c1, c2) ∈ L ⊂ C2 lies in an affine line L, and
the condition x · x > 0 further implies that (c1, c2) lies in a half-space
H(x0,τ) ⊂ L inside this line depending on (x0, τ) ∈ (J⊥/J)C × H. The
unipotent radical UJ ⊂ StabΓ(J) is an extension of the form

0→ Z→ UJ → TJ → 0

where TJ is a finite index translation subgroup

TJ ⊂ (J⊥/J)⊗ (Z⊕ Zτ) ⊂ (J⊥/J)C.

First taking the quotient by Z ⊂ UJ embeds Z\D as a holomorphic
punctured disk bundle (the punctured disks are Z\H(x0,τ)) over the
product (J⊥/J)C × H. We then quotient by the action of TJ . The
punctured disk bundle descends to one over a family of abelian varieties
TJ ⊗E . Here E → H is the universal elliptic curve whose fiber of τ ∈ H
is C/(Z⊕ Zτ).

We define VJ as a tubular neighborhood of the zero section of the
extension of UJ\D from a punctured disk bundle to a disk bundle.
Then the Type II toroidal extension (Γ\D)II is the result of gluing Γ\D
to ΓJ\VJ along a punctured tubular neighborhood ΓJ\AJ of the zero
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section. Here ΓJ is defined by the exact sequence

0→ UJ → StabΓ(J)→ ΓJ → 0

and is a finite index subgroup ΓJ ⊂ SL(J) × O(J⊥/J). The Type II
extension is notably independent of the choice of a fan Σ; it is the same
in every toroidal compactification, and the boundary divisor is always
isomorphic to ΓJ\(TJ ⊗ E).

Finally, we comment on how the Type II and III locus meet. Given
a flag of isotropic subspaces I ⊂ J ⊂ L, the quotient ΓI\VI contains
a tubular neighborhood of the intersection of the closure of the Type
II locus ΓJ\VJ with the Type III locus. This intersection is a maximal
degeneration of the family TJ⊗E of abelian varieties over the cusp of the
modular curve StabΓ(J)\DJ corresponding to I ⊂ J . More explicitly,
it is a Mumford degeneration, whose fan is the quotient fan associated
to the isotropic ray J ⊂ I⊥/I, necessarily a cone of ΣI . This fan is
the cone over a periodic polyhedral decomposition of (J⊥/J)R (put at
height 1), which is invariant under the action of StabJ(ΓI).

A special divisor Z(λ̃) intersects the Type II extension associated
to J if and only if we can represent λ̃ ∈ J⊥L∨ . Let M := J⊥/J . In
general, if we denote by J sat

L∨ the saturation of J in L∨, then the image
λ ∈ J⊥L∨/J sat

L∨ = M∨ may be imprimitive, and we can write λ = uλprim.
Essentially, the computations are the same as in the Type III case:
The primitive lifts of λ correspond to primitive u-torsion translates of
a character hypersurface {χλprim = 1} ⊂ TJ ⊗ E , which is a family of
codimension 1 abelian subvarieties of TJ ⊗ E .

Proposition 3.11. In any toroidal compactification, the intersection
of Z(β,m) with the boundary divisor ∆J associated to J is⋃

λ∈pML (β)+M
Q(λ)=−m

{u2 translates of χλprim(z) = 1}

There are u2 translates rather than u translates of the character
hypersurface, as the u-torsion on an elliptic curve has size u2.

3.5. Intersection formula. Let σ = span{c1, . . . , cn−1} ∈ ΣI be a
codimension 1 Type III face of a regular fan and let

σ+ = span(σ, c+)

σ− = span(σ, c−)

be the two maximal cones containing σ, so that σ+ ∩ σ− = σ. The
corresponding open torus orbit is isomorphic to C∗ and the closed stra-
tum is Cσ = P1. A small analytic neighborhood of Cσ ⊂ (Γ\D)Σ

is analytically-locally modeled by the toric variety with two maximal
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cones σ+, σ−, which is isomorphic to
SpecC[(σ+)∨] ∪ SpecC[(σ−)∨] ' Cn ∪Cn−1×C∗ Cn

' Tot(OP1(a1)⊕ · · · ⊕ OP1(an−1))

for some integers ai ∈ Z.
Since σ+, σ− are standard affine cones, det(c1, . . . , cn−1, c

+) = ±1
and det(c1, . . . , cn−1, c

−) = ∓1. Thus, there is an expression

c+ + c− +
n−1∑
i=1

aici = 0

for unique integers ai ∈ Z, identical to the integers as above.

Proposition 3.12. Let λ be primitive in K∨ and consider Z(λ) the
Zariski closure of the character hypersurface

Zo(λ) := {z ∈ K ⊗ C∗
∣∣χλ(z) = 1}

in the toric variety X(σ+, σ−), with σ, σ± as above. Then

Z(λ) · Cσ = 1
2

(|λ · c+|+ |λ · c−|+
∑

i ai|λ · ci|) .
In particular, if λ · c± and λ · ci all have the same sign, Z(λ) · Cσ = 0.

Proof. Let X(F) be a finite type toric variety, and let vi be primitive
integral generators of the one-dimensional rays of F. There is a bijection
∆vi ↔ vi with toric boundary divisors. We have a linear equivalence

Z(λ) ≡
∑
i

max{0, λ · vi}∆vi

which can, for instance, be verified by intersecting Z(λ) with cocharac-
ters vi⊗C∗ ⊂ K⊗C∗. Note that replacing λ with −λ does not change
the answer, since∑

i

max{0, λ · vi}∆vi −
∑
i

max{0,−λ · vi}∆vi =
∑
i

(λ · vi)∆vi ≡ 0.

Applying this formula to the case at hand, we have
Z(λ) · P1 =max{0, λ · c+}∆c+ · P1 + max{0, λ · c−}∆c− · P1

+
∑
i

max{0, λ · ci}∆ci · P1

where P1 = Cσ. Re-expressing the function max{0, r} = 1
2
(|r|+ r) and

noting that
∑

i(λ · ci)∆ci ≡ 0, we get

Z(λ) ·P1 = 1
2
(|λ · c+|(∆c+ ·P1) + |λ · c−|(∆c− ·P1) +

∑
i |λ · ci|(∆ci ·P1)).

We now describe geometrically the toric boundary divisors associated
to c±, ci. In the total space interpretation

X(σ+, σ−) = Tot(OP1(a1)⊕ · · · ⊕ OP1(an−1)),

the divisors ∆c+ and ∆c− are the fibers over 0,∞ ∈ P1 and so ∆c± ·P1 =
1. The divisor ∆ci is Tot(OP1(a1)⊕ · · · ⊕ 0⊕ · · · ⊕OP1(an−1)), leaving
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out the ith line bundle factor. Hence the normal bundle to ∆ci is
the pullback of OP1(ai) to X(σ+, σ−) and so its restriction to the zero
section P1 has degree ai. We conclude

Z(λ) · Cσ = 1
2
(|λ · c+|+ |λ · c−|+

∑
i ai|λ · ci|).

as desired. �

Theorem 3.13. Let Cσ ⊂ XΣ
Γ be a one-dimensional Type III boundary

stratum of the toroidal compactification, corresponding to the cone σ =
σ+ ∩ σ− in the hyperbolic lattice K = I⊥/I. We have:∑

β∈L∨/L

∑
m∈−Q(β)+Z

(Z(β,m) · Cσ)vβq
m =

∑
λ∈K∨

p+(λ)pLK(v[λ])q
−Q(λ)

where [λ] is the class of λ in K∨/K, and

p+(λ) = 1
2
(|λ · c+|+ |λ · c−|+

∑
i

ai|λ · ci|)

is the piecewise linear function from Proposition 3.12.

Proof. Since Cσ is contracted in XBB
Γ , we have Z(0, 0) · Cσ = 0 be-

cause the Hodge bundle is ample on XBB
Γ . Next, observe that only the

components ZI(β,m) ⊂ Z(β,m) entering the Baily-Borel cusp asso-
ciated to I can possibly intersect P1 = Cσ. We wish to compute the
intersection number

Z(β,m) ·XΣ
Γ
Cσ = ZI(β,m) ·ΓI\X(ΣI) Cσ = ZI(β,m) ·X(ΣI) Cσ.

The first equality holds from the construction of the toroidal compacti-
fication, while the second equality holds because the action of ΓI freely
permutes the infinitely many P1s in the orbit ΓI ·Cσ. Thus, to compute
the intersection number with ZI(β,m) in ΓI\X(ΣI), it suffices to pull
back ZI(β,m) to the toric variety X(ΣI), then intersect the pullback
with a single orbit representative Cσ.

On the toric variety X(ΣI), we have by Corollary 3.6 that

ZI(β,m) ∼num

∑
λ∈pKL (β)+K
Q(λ)=−m

u(λ)Z(λprim)

where Z(λprim) is the closure of the character hypersurface and u(λ)
is the imprimitivity of λ. While this divisor is not finite, it is locally
finite in a neighborhood of the Type III toric boundary.

We take the intersection with Cσ using Proposition 3.12. It gives

ZI(β,m) ·X(ΣI) Cσ =
∑

λ∈pKL (β)+K
Q(λ)=−m

u(λ)p+(λprim),

which is a sum with only finitely many nonzero terms. Finally, observe
that p+(rλ) = rp+(λ) for any r ∈ R+, so u(λ)p+(λprim) = p+(λ). The
theorem follows. �
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4. Vanishing theorems and splitting criteria

We prove in this section the splitting statement 4.6 which allows us
to prove modularity separately in the boundary and in the interior of
XΣ

Γ . We refer to [Gre19, Lem. 26] for a similar application.

4.1. Vanishing from super-rigidity. The goal of this subsection is
to prove that the first Chern class map

c1 : Pic(XΣ
Γ )Q → H1,1(XΣ

Γ ,Q)

is an isomorphism. This implies that our modularity results for spe-
cial cycles automatically hold at the level of the Q-Picard group, even
though the methods are topological. Using the exponential exact se-
quence and the Hodge decomposition, it suffices to show that

H1(XΣ
Γ ,Q) = 0.

First, observe that by deforming loops away from the boundary strata
that have real codimension 2, we have surjectivity of the pushforward

π1(XΓ)→ π1(XΣ
Γ ).

Since H1 is the abelianization of π1, it suffices to prove that the interior
XΓ = Γ\D satisfies

H1(XΓ,Q) = 0.

Since D is contractible, this coincides with group cohomology of the
arithmetic group Γ. A consequence of Margulis super-rigidity [Mar91,
§7.6, Corollary 7.6.17], see also [WM14], is the following.

Theorem 4.1. Let G be a semisimple Lie group of rank r ≥ 2 and
Γ ⊂ G an irreducible arithmetic subgroup. Then we have H1(Γ, V ) = 0
for any Γ-module V .

Since O(p, q) has rank min(p, q), the desired vanishing statement
holds for any Γ ⊂ O(2, n) for n > 2 and V = Q the trivial module. In
the case n = 2, O(2, 2) is isogenous to SL(2) × SL(2), so we need to
assume that Γ is not commensurable to a product Γ1 × Γ2.

4.2. Splitting homology classes. Let X be a smooth complex vari-
ety, ∆ =

⋃
i ∆i ⊂ X a simple normal crossings divisor, and U = X \∆

its open complement. A basic question is: which rational homol-
ogy classes α ∈ H2(X,Q) can be expressed as α = α0 + α1 where
α0 ∈ H2(U,Q) and α1 ∈ H2(∆,Q)? In this case, we say that α splits.
Consider the covering of X by two open subsets:

X = U ∪N∆

where N∆ is a tubular neighborhood of ∆. Then ∆ is a deformation
retract of N∆. The Mayer-Vietoris sequence for rational homology with
this covering reads

H2(U)⊕H2(N∆)→ H2(X)
δ→ H1(N∗∆)→ H1(U)⊕H1(N∆)
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where N∗∆ denotes N∆ \ ∆. By exactness, α ∈ H2(X) can be split as
above if and only if δ(α) = 0. Since H1(U) always vanishes in our
desired application, we will use the following criterion whose proof is
immediate from the Mayer-Vietoris sequence.

Proposition 4.2. If the pushforward map H1(N∗∆) → H1(N∆) is in-
jective, then any class α ∈ H2(X) splits.

In the case where ∆ is irreducible and smooth, this criterion is easily
checked using a Gysin sequence.

Proposition 4.3. If ∆ is irreducible and smooth, then the pushforward
map H1(N∗∆) → H1(N∆) is injective if and only if the normal bundle
N∆/X has non-trivial Euler class.

Proof. Since ∆ is smooth, the punctured neighborhood N∗∆ retracts to
a circle bundle over ∆. The Gysin sequence for N∗∆ → ∆ reads:

H2(∆)→ H0(∆)→ H1(N∗∆)→ H1(∆)→ 0.

The first map in this sequence is given by cap product with e(N∆/X).
Since H0(∆) ' Q, this map is surjective if and only if e(N∆/X) 6= 0. By
exactness of the Gysin sequence, this in turn is equivalent to injectivity
of the map H1(N∗∆)→ H1(∆) ' H1(N∆). �

In the case where ∆ is reducible, N∆ is a plumbing of normal bundles
to the irreducible components ∆i. The splitting criterion can fail to be
satisfied even when the individual ∆i have non-trivial normal bundles,
e.g. for ∆ the triangle of lines in P2 we get N∗∆ deformation retracts to
T 3 while H1(∆) ' Q, so H1(N∗∆)→ H1(∆) cannot be injective.

To check the criterion of Prop. 4.2 in the context of toric boundary
divisors, we introduce the moment map. Let (X,∆) be a projective
toric variety of dimension n defined by a lattice polytope P in the
character lattice of X. The Hamiltonian action of T n ⊂ (C∗)n on X
defines a surjective map

µ : X → P

whose fiber at an interior point of P is T n, canonically identified with
the cocharacter lattice quotient. The fiber at a point in the relative
interior of a face of codimension k is T n−k. The pre-image of the
boundary ∂P ⊂ P is the toric boundary divisor ∆:

µ−1(∂P ) = ∆ =
⋃
i ∆i

with each facet Pi ⊂ ∂P giving a component ∆i ⊂ ∆. From this de-
scription, the punctured neighborhood N∗∆ retracts to µ−1(Sn−1) which
is diffeomorphic to Sn−1 × T n.

Consider now the Type III boundary divisors ∆I = ∪c∆I,c of a reg-
ular toroidal compactification XΣ

Γ lying over a Type III cusp of XBB
Γ .
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Here R≥0c ∈ ΣI are the one-dimensional cones of the fan ΣI supported
on the rational closure of the positive cone C+

K ⊂ KR, K = I⊥/I.
To get a polytope from ΣI requires a convex Z-piecewise linear func-

tion f : CK → R whose bending locus is ΣI and for which γ∗f − f is
linear for all γ ∈ ΓI . Such a function may not exist, as XΣ

Γ need not
be projective for some Σ. But, there is a combinatorial model for what
the polytope would be: the dual polyhedral complex (ΣI)

∨ which has
a cell Rcodim(σ)

+ for each cone σ ∈ ΣI . There is still a fibration

µ : X(ΣI)→ (ΣI)
∨

whose fiber over the relative interior of a codimension k stratum of
(ΣI)

∨ is T n−k.
Consider an analytic neighborhood of Type III toric boundary in the

unipotent quotient UI\D, called VI ⊂ X(ΣI) in Section 3.3. We have
a restricted fibration

µ : VI → PI ⊂ (ΣI)
∨.

The action of the group ΓI = StabΓ(I)/UI can be made equivariant
with respect to the fibration µ, as it acts torically.

The punctured neighborhood AI = VI ∩ (UI ⊗ C∗) of the toric
boundary fibers over the open cell O = Rn

+ ∩ PI and is thus a triv-
ial fiber bundle T n × O. The fibers of µ are, in the toric coordinates
(z1, . . . , zn) ∈ UI ⊗ C∗ given by |zi| = ri for ri ∈ R+. So the action
of ΓI on T n × O is, on the Tn factor, induced by the action of ΓI on
I⊥/I ⊃ UI = H1(Tn,Z).

Let ∆ = XΣ
Γ \XΓ. The inclusion N∗∆ → N∆ is locally modeled by

ΓI\AI → ΓI\VI
in a neighborhood of the cusp I. Note that ∆I ⊂ ΓI\(VI \AI) and the
latter retracts to the former, by ΓI-equivariantly retracting the Type
II components of VI\AI to their intersection with the Type III locus.

Let ∆̃I = VI \AI be the ΓI-cover of ∆I . The deformation retraction
VI → ∆̃I can be made ΓI-equivariant.

Proposition 4.4. The morphism N∗∆I
→ ∆I induces an isomorphism

on H1. Both can be identified with the group homology H1(ΓI ,Q).

Proof. The Leray-Cartan spectral sequence computes the homology of
an orbifold quotient X/G as follows:

Hp(G,Hq(X,Q))⇒ Hp+q(X/G,Q).

The E2 page yields an exact sequence for computing H1:

H0(G,H1(X,Q))→ H1(X/G,Q)→ H1(G,H0(X,Q))→ 0.

The spectral sequence is functorial for G-equivariant morphisms, so
applying this to the ΓI-maps AI → VI → ∆̃I we get a morphism of
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exact sequences:

H0(ΓI , H1(T n,Q)) //

��

H1(N∗∆I
,Q) //

��

H1(ΓI ,Q) //

��

0

H0(ΓI , H1(∆̃I ,Q)) // H1(∆I ,Q) // H1(ΓI ,Q) // 0

We claim both groups on the far left vanish. First, H1(∆̃I ,Q) = 0

because ∆̃I is a union of toric varieties along toric overlaps. The upper
left group is H0(ΓI , (UI)Q) ' H0(ΓI , KQ)∗, the invariant subspace of
the standard representation. As ΓI ⊂ O+(K) is finite index, the Borel
Density Theorem implies it acts without fixed vectors on K. �

Theorem 4.5. Let X = XΣ
Γ , U = XΓ, and ∆ = XΣ

Γ \XΓ. Then every
homology class α ∈ H2(X,Q) splits.

Proof. Let ∆II :=
⋃
J ∆J and ∆III :=

⋃
I ∆I be the unions of the Type

II and III boundary components, respectively. We have ∆ = ∆II∪∆III.
Assuming Σ is taken fine enough, ∆II =

∐
J ∆J is a disjoint union of

smooth divisors, in bijection with orbits of isotropic planes J ⊂ L. On
the other hand, the union ∆III =

∐
I

⋃
c ∆I,c is a disjoint union of SNC

divisors, with one connected SNC divisor for each orbit of isotropic
line I ⊂ L. The dual complex of this divisor

⋃
c ∆I,c is the hyperbolic

orbifold ΓI\PCK .
Applying Proposition 4.3 to the Type II components, we can split

α relative to the boundary divisor ∆II. The normal bundle of each
component is anti-ample on the fibers of the contraction map to XBB

Γ ,
so it has non-trivial Euler class, as required.

Next, we apply Proposition 4.2 to the pair (X \∆II , ∆III \∆II). The
map H1(N∗∆)→ H1(N∆) is an isomorphism using Proposition 4.4. �

We have represented every class in H2(XΣ
Γ ,Q) as a linear combi-

nation of classes supported on either XΓ or ∆. We require a further
strengthening of this:

Theorem 4.6. Every homology class α ∈ H2(XΣ
Γ ,Q) can be repre-

sented as the sum of a cycle supported on the interior XΓ and an alge-
braic cycle contracted by the map to XBB

Γ .

Proof. By Theorem 4.5, we may express α as the sum of a class in
H2(XΓ,Q) and a class supported in the boundary ∆. We will treat
Type II and III boundary divisors separately. Recall from Section 3.4
that XΣ

Γ → XBB
Γ induces a fibration πJ : ∆J → BJ (in finite quotients

of abelian varieties) of each Type II toroidal boundary divisor over
the Type II Baily-Borel modular curve, and it contracts each Type III
boundary divisor ∆I to a point.

In Type II, suppose that αJ ∈ H2(∆J ,Q), and let LJ be the normal
bundle of the smooth divisor ∆J ⊂ XΣ

Γ . For any algebraic curve CJ
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contained in a fiber of πJ , we have LJ ·CJ < 0 because C is contracted
by the morphism to Baily-Borel. Thus, we can choose r ∈ Q for which

LJ · (αJ + rCJ) = 0.

After clearing denominators, a well-known theorem of Thom says
that N(αJ + rCJ) ∈ H2(∆J ,Z) can be represented by the fundamental
class of an immersed (real) oriented surface, S. The pullback of LJ
to S is a degree 0 complex line bundle, so it is smoothly trivial. By
flowing along a nowhere vanishing normal vector field, S is homologous
to a surface S ′ in XΣ

Γ \∆J . We can then express

αJ =
1

N
[S ′]− r[CJ ].

In Type III, suppose that αI ∈ H2(∆I ,Q). Recall that ∆I has simple
normal crossings with dual complex homeomorphic to the hyperbolic
manifold ΓI\PCK . From the E1-page of the Mayer-Vietoris spectral
sequence associated to the covering U of ∆I via neighborhoods of the
irreducible toric components, we obtain the following short exact se-
quence for H2(∆I ,Q), using that H1 vanishes for all toric varieties:

H2(U1,Q)→ H2(U0,Q)→ H2(∆I ,Q)→ H2(ΓI ,Q)→ 0.

Recall that the map N∗∆I
→ ∆I is the quotient of a ΓI-equivariant

map VI → ∆̃I . Now, we appeal to the same functoriality of the Leray-
Cartan spectral sequence as in Proposition 4.4, this time for H2 on the
E2-page, to obtain

H1(ΓI , H1(T n,Q)) //

��

H2(N∗∆I
,Q) //

��

H2(ΓI ,Q) //

��

0

H0(ΓI , H2(∆̃I ,Q)) // H2(∆I ,Q) // H2(ΓI ,Q) // 0.

Since ∆̃I is a union of toric varieties, the ΓI-coinvariants of H2(∆̃I ,Q)
are precisely the algebraic curve classes in ∆I . By a diagram chase,
αI can be expressed as: αI = T + CI where CI is in the image of
H0(ΓI , H2(∆̃I ,Q)) and T is in the image of H2(N∗∆I

,Q), so is supported
on the interior. There is a surjection⊕

cH2(∆I,c,Q)→ H0(ΓI , H2(∆̃I ,Q))

and since ∆I,c is a toric variety, H2(∆I,c,Q) is generated by algebraic
curve classes. �

Proposition 4.7. Every algebraic curve class which pushes forward to
zero along XΣ

Γ → XBB
Γ is homologically equivalent to a linear combina-

tion of one-dimensional Type III toric boundary strata.

Proof. This is shown in [AE21, Thm. 7.18]. Any such curve in Type II
can be degenerated into the Type III locus by limiting the image point
j ∈ BJ to a cusp of the modular curve. This reduces to the Type III
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case. One applies the torus action on a Type III toric boundary divisor
to further break any curve into one-dimensional torus orbits. �

5. Mixed mock modularity of special divisors

In this section, we assemble all the ingredients from previous sections
to prove the main theorems of the paper.

Let Σ be an admissible fan and assume that Σ is regular and Γ is
neat—the general case reduces to this one by Remark 3.10. Let I ⊂ L
be an isotropic line and let ΣI be the ΓI-invariant polyhedral cone
decomposition of the cone C+

K inside the hyperbolic lattice K = I⊥/I.
To prove Theorem 1.2 (which in turn implies Theorem 1.1), it suf-

fices, by Poincaré duality, to intersect the generating series of special
divisors with each class α ∈ H2(XΣ

Γ ,Q). By Theorem 4.6 and Proposi-
tion 4.7, any class α can be expressed as

α = α′ +
∑
σ

dσ[Cσ], dσ ∈ Q,

where α′ ∈ H2(XΓ,Q) and Cσ ' P1 are the Type III toric boundary
strata associated to codimension 1 cones σ ∈ ΣI ranging over all I.

Since the pairing of the generating series of special divisors with the
class α′ is a holomorphic modular form of weight 1 + n

2
and represen-

tation ρL by [KM90], we can assume that α′ = 0 and that α = [C] is
the class of a single toric curve determined by a cone σ.

By Theorem 3.13, the C[L∨/L]-valued generating series of intersect-
ing [C] with special cycles is equal to∑

λ∈K∨
p+(λ)q−Q(λ)pLK(v[λ]).

Here p+(λ) = 1
2
(|λ·c+|+|λ·c−|+

∑
i ai|λ·ci|) and {ci}

n−1
i=1 are generators

of the rays of σ, which, with c+, c−, respectively generate the maximal
cones σ+, σ− containing σ. To make the notation compatible with
Section 2, we declare cn := c+, cn+1 := c−, and an = an+1 = 1 so that
{ci}n+1

i=1 are a collection of integral vectors in C+
K for which

∑
aici = 0.

We have ∆I,ci · C = ai for all i = 1, . . . , n + 1. This holds even when
ci is isotropic, in which case ∆Ji · C = ai for the corresponding rank 2
isotropic lattice J = I ⊕ Zci.

For any non-isotropic ray R≥0c in ΣI , let Nc = Q(c) > 0 and let
c⊥ be the orthogonal complement of c in K. It is a negative definite
lattice of rank n− 1. Its vector-valued theta series

Θc⊥ =
∑

δ∈(c⊥)∨

q−Q(δ)v[δ] ∈ C[[q
1

D
c⊥ ]]⊗ C[(c⊥)∨/c⊥]
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is a holomorphic modular form of weight n−1
2

with respect to the Weil
representation ρc⊥ . Similarly, for any isotropic ray R≥0c, the vector-
valued theta series

ΘM =
∑
γ∈M∨

q−Q(γ)v[γ] ∈ C[[q
1

DM ]]⊗ C[M∨/M ]

is a holomorphic modular form of weight n
2
− 1 with respect to ρM ,

where M = c⊥/c. By Theorem 2.13, the function Θσ defined by∑
λ∈K∨

p+(λ)q−Q(λ)v[λ] −
∑

Q(ci)>0

ai
2
pKc⊥i ⊕Zci

(Θc⊥i
⊗ F+

Ni
) +

∑
Q(ci)=0

ai
12
E2p

K
Mi

(ΘMi
)

is a holomorphic modular form of weight 1 + n
2
and representation ρK .

On the other hand,[ ∑
β∈L∨/L

∑
m∈−Q(β)+Z

[Z(β,m)]⊗ vβqm−

∑
(I,c)

1

2
pLc⊥⊕Zc(Θc⊥ ⊗ F+

N )⊗∆I,c +
∑
J

1

12
E2p

L
M(ΘM)⊗∆J

]
· C =

∑
λ∈K∨

p+(λ)q−Q(λ)pLK(v[λ])−∑
Q(ci)>0

ai
2
pLc⊥i ⊕Zci

(Θc⊥i
⊗ F+

Ni
) +

∑
Q(ci)=0

ai
12
E2p

L
Mi

(ΘMi
) = pLK(Θσ)

is holomorphic modular form of weight 1 + n
2
and representation ρL.

Here i ranges only over 1, . . . , n+1 because all other components of the
boundary ∆ intersect C to be zero. Hence the pairing of the series in
Theorem 1.2 with [C] is a holomorphic modular form, which concludes
the proof.
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