
ISOMORPHISMS BETWEEN MODULI SPACES

AARON LANDESMAN

1. INTRODUCTION

Today, we will be studying various connections between three moduli
spaces of objects in non-abelian Hodge theory.

Fix a smooth projective variety X. We use the following notation:
(1) We use RB(X, r) denotes the moduli space of r-dimensional represen-

tations Hom(π1(X), GLr(C)).
(2) We use MB(X, r, ζ) for the quotient (which is a scheme) of this by the

conjugation action GLr(C) on these representations, with basepoint
ζ ∈ X, whose points are in bijection with semisimple representations.

(3) We use Rdr(X, r, ζ) for the rigidified moduli space of flat bundles
(V,∇) of rank r, together with a chosen isomorphism of a fiber Vζ '
Cr, for ζ ∈ X a point.

(4) We use Mdr(X, r) for the moduli space of flat bundles (V,∇) of rank
r.

(5) We use RDol(X, r) for the rigidified moduli space of Higgs bundles
(E, θ : E → E⊗Ω1

X) of rank r, together with an isomorphism of a
fiber Ex ' Cr.

(6) We use MDol(X, r) for the quotient of RDol(X, r) by the action of GLr
altering the chosen isomorphism. This quotient has geometric points
in bijection with polystable Higgs bundles of rank r.

Remark 1.1. The spaces RB, Rdr, RDol are actual moduli spaces with universal
families. The quotients are schemes, which do not have universal families,
but their geometric points are in bijection with the above prescribed objects.

The main results of today are about comparing these different moduli
spaces.

Theorem 1.2. There is an analytic, but not algebraic, isomorphism Rdr(X, r, ζ) '
RB(X, r). This is compatible with the GLr(C) action and so induces an analytic
isomorphism Mdr(X, r) ' MB(X, r).

Theorem 1.3. There is a bijection of the underlying sets of geometric points
Rdr(X, r)→ RDol(X, r) which induces a homeomorphism Mdr(X, r) ' MDol(X, r).
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However, the bijection Rdr(X, r)→ RDol(X, r) is not in general continuous with
respect to the analytic topology.

Remark 1.4. The above isomorphisms also hold for smooth projective maps
X → S, over a base scheme S.

Example 1.5. Some parts of the above theorems aren’t too difficult to see.
For example, let’s see why the analytic isomorphism Rdr(X, r) ' RB(X, r)
cannot be algebraic. Let’s focus on the case X is a curve of genus g and
r = 1. The point is that RB ' (C×)2g is affine as it corresponds to specifying
a tuple of 2g nonzero complex numbers, where each generator of π1(X)
lands. On the other hand, in this case, there is a surjective projection map
Mdr(X, r) → Pic0

X which sends (L ,∇) 7→ L . Since Pic0
X is not affine, the

analytic isomorphism cannot be algebraic. Alternatively, one can recover
X from Pic0

X, so the algebraic structure of Mdr(X, 1) depends on X, and
even lets you recover X. However, the algebraic structure of MB(X, r) is
independent of X.

Further, in this case the moduli space of Higgs bundles can be identified
with Pic0

X ×Ag corresponding to a line bundle L and a Higgs field L →
L ⊗Ω1

X, where we can identify the Higgs field with an element of the g-
dimensional vector space H0(X, Ω1

X). There is a homeomorphism (C×)2g '
Pic0

X ×Ag by writing both as R2g × (S1)2g but this isomorphism is quite
non-algebraic.

2. THE ANALYTIC ISOMORPHISM BETWEEN DE RHAM AND BETTI MODULI
SPACES

The idea of this isomorphism is to show that both spaces, Rdr(X, r) and
RB(X, r) represent the same functor on the category of analytic spaces. Once
we have this, we will have a natural identification of these analytic spaces.
Namely, we need to prove the following two results which describe the
functors associated to RB and Rdr.

Lemma 2.1. RB(X, r, ζ) represents the functor which assigns to S the set of iso-
morphism classes of pairs (F , β) where F is a locally free sheaf of f−1(OS) rank r
modules, for f : X× S→ S the structure map, and β : F |ζ ' Or

S.

Proof. Affineness of RB implies that maps S→ RB are identified with Hom(π1(X, ζ), GLr(H0(S, OS))).
The usual correspondence between representations and local systems with a
framing, obtained by passing to the universal cover and looking at the mon-
odromy action of the fundamental group then applies to give the functorial
bijection. �
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Lemma 2.2. Rdr(X, r, ζ) represents the functor which assigns to S the set of iso-
morphism classes of pairs (F , β) where F is a locally free sheaf of f−1(OS) rank r
modules, for f : X× S→ S the structure map, and β : F |ζ ' Or

S.

Proof. The definition of Rdr identifies this with the functor assigning to S
the set of (E,∇, α) where E is a holomorphic vector bundle on X, ∇ : E→
E⊗Ω1

X×S/S is a flat connection, and α : E|ζ ' On
S is a frame. We want to

identify this with the functor in the statement of the lemma.
The bijection is given by sending (E,∇, α) to the locus of flat sections

(ker∇, α). Conversely, let f : X× S→ S be the structure map. Given a local
system F , one obtains E by taking E = F ⊗ f−1(OS)

OX×S and taking the
connection ∇ = 1⊗ dX×S/S.

The key issue is to verify this is a bijection. By passing to an open covering,
one can reduce to the case that X is a small open disc. We can similarly
reduce to the case that S ⊂ V, for V a small open disc. In the case S is a point,
this is the classical Riemann-Hilbert correspondence. A similar proof works
when S is any smooth base. However, we need to verify this for general S
which may fail to be smooth. One can deduce from this the case that S is an
Artinian analytic space (corresponding to a local Artinian ring). In the case
dim X = 1, one can extend the trivial bundle E to a trivial bundle on U ×V.
Here, flatness holds automatically because we are in relative dimension 1,
so Ω2 = 0. The result then holds in this case because U ×V is smooth, and
one can use this to restrict the bijection to U × S. For the general case, one
can induct on the dimension of U, using the fact that the result holds on
smooth lower dimensional objects, as well as on all infinitesimal thickenings
of lower dimensional objects. We omit the details. �

3. THE MAP ON REPRESENTATION VARIETIES IS NOT CONTINUOUS

Recall Rdr parameterizes flat bundles and RDol parameterizes polystable
Higgs bundles with a framing, i.e. we specify an isomorphism to a fixed
vector space at a point. This has the effect of rigidfying the moduli problem
so that these actually have universal families over them, i.e., they are the
moduli stacks of flat bundles/polystable Higgs bundles with a framing

When we forget the framing and take the quotient by GLn parameterizing
these isomorphisms to a fixed vector space, we obtain that the bijection
Mdr ' Rdr we have previously seen induces a homeomorphism between
these spaces. However, although this bijection lifts to Rdr → RDol it is not
continuous at the semistable points.

We now want to explain this through an example.

Remark 3.1. It is actually continuous if one works restricts to stable Higgs
bundles and irreducible flat bundles.
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Consider X a genus 1 curve over C and x ∈ X a point. Let E = OX ⊕OX
the trivial rank 2 bundle together with a a fixed isomorphism Ex ' C2. For
any fixed t ∈ R, define the Higgs field

θt,a :=
(

0 dz
0 at dz

)
By looking at the matrix, we see limt→0 θt,a = 0. In particular this limit is

independent of a. Let Ψ : RDol → Rdr denote the bijection between Higgs
bundles and flat bundles. We will see that limt→0 Ψ(θt,a) depends on a. In
particular, the map Ψ cannot be continuous, as the image of a limit point is not
the limit point of the image. (The relevant spaces are separated/Hausdorff
so limit points are unique.)

Now, let’s compute where these Higgs fields are sent under Ψ. Let K be
the constant Hermitian metric so that for e, f local sections of E we have
e, f = e1 f1 + e2 f 2.

Lemma 3.2. The connection associated to the Higgs field θ with the above constant
metric is d + (θ + θ).

Proof. Recall how we constructed the associated connection. We write D =
∂ + θ. Then, we let θ be the adjoint of θ and let ∂ be the adjoint of ∂. This
means

∂(e, f ) = (∂e, f ) + (e, ∂K f )

(θe, f ) = (e, θK f ).

In this sense θK is the adjoint matrix of θ. To compute ∂K, we may observe
that

∂ ∑
i

ei fi = ∑
i

∂(ei) f i + ∑
i

ei∂( f i).

Therefore, it is enough to find ∂K which satisfies

∂K fi = ∂( f i)

We can simply take ∂K f = ∂ f .
Then, we define

D′′ = ∂ + θ

D′K = ∂K + θK = ∂ + θ.

We then take the associated connection to be D = D′′+ D′K = ∂+ ∂+ θ + θ =

d + (θ + θ). This shows that if we start with a connection θ, the resulting
connection is d + θ + θ. �

Let’s use the above to compute Ψ(θt,a).
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Proposition 3.3. Ψ(θt,a) depends on a.

Proof. Note that θ is not flat with respect to the constant connection because
if we set D = d + A where A = θ + θ, we do not have D2 = 0, i.e., we do
not have dA = A ∧ A, as we find dA = 0 but A ∧ A has nonzero upper left
hand entry. However, set

ga,t =

(
1 1/at
0 1

)
We find

φa,t := g−1
a,t θa,tga,t =

(
0 0
0 ad dz.

)
If we take A := φa,t + φa,t We find 0 = dA = A2 which shows that d + A is a
flat connection. Using Lemma 3.2, if we take φa,t and K to be the constant
metric, the associated bundle is flat, and so gives the corresponding flat
bundle. Transforming back to our original basis, we find the flat bundle
corresponding to the Higgs field θ is

ga,t

(
0 0
0 at dz + atdz

)
g−1

a,t =

(
0 dz + at

at dz
0 ad dz + atdz.

)
Now, we take the limit as t→ 0. For the Higgs bundle, this approaches(

0 dz
0 0

)
and is independent of a. However, for the flat bundle, this is(

0 dz + a
a dz

0 0

)
and depends on a. �

Corollary 3.4. The bijection Rdr ' RDol is not continuous.

Proof. Since the Higgs bundle is independent of a but the flat bundle depends
on a, the correspondence cannot be continuous since the limit of the Higgs
bundles cannot be sent under Ψ to all of these simultaneous distinct limits of
flat bundles. �

4. THE HOMEOMORPHISM BETWEEN BETTI AND DOLBEAULT MODULI
SPACES

The main goal of this section is to explain the basic idea of the proof of the
following.
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Theorem 4.1. The bijection on geometric points of Mdr → MDol in fact induces a
homeomorphism.

This is the last part of Theorem 1.3 we have yet to explain.
To explain the relation, we need to recall the basic bijection between Mdr

and MDol. If we start with (E, D) there is a way to decompose the connection
into D = D′ + D′′ with D′K = ∂ + θ and D′′K = ∂ + θ, where θ is a Higgs field.
These operators depend on a choice of metric K, and one can choose a special
harmonic metric (making Λ(D′′)2 = 0) so that the flat bundle yields a Higgs
bundle. Conversely, given a Higgs bundle, one can find a Harmonic metric
K and define a corresponding operator DK yielding the structure of a flat
bundle. Altogether, this Harmonic bundle and Harmonic metric interpolates
between flat bundles and Higgs bundles.the rest of

this section
morally de-
scribes the
idea, but I
didn’t care-
fully go
through all
the details,
and so what
I say may be
slightly off

The main difficult input is the following:

Proposition 4.2. Choose a sequence of harmonic bundles Vi on X with Harmonic
metric Ki so that the coefficient of the corresponding Higgs field θi are uniformly
bounded in L1 norm. Then there is a harmonic bundle V with harmonic metric K
and a subsequence {i′} of the above bundles so that the Vi converge to V as harmonic
bundles, and the same holds for ∂, ∂, θ, θ

Proof. In the case we only wanted to the above property for Higgs bundles,
in place of harmonic bundles, this would essentially be properness of the
Hitchin map. This properness of the Hitchin map can be proven algebraically.

To get this convergence property for Harmonic metrics (which is essen-
tially a version of sequential compactness, hence properness) we can use
Uhlenbeck’s weak compactness lemma, which says that if the curvatures
of a sequence of bundles are uniformly bounded, the Vi converge to some
unitary V with unitary connection ∂ + ∂ so that ∂ + ∂− ∂i + ∂i converge to 0
as differential operators on Lp functions.

Since the θi are uniformly bounded, one deduces that the coefficients of its
characteristic polynomial are uniformly bounded, which one can show im-
plies the |θi|Ki are uniformly bounded. The curvatures F∂i+∂i

= −φiφi − φiφi,
using flatness of the bundle, which implies the hypothesis for Uhlenbeck’s
compactness lemma.

Once one obtains this convergence of harmonic bundles, one can further
massage terms to obtain convergence of the remaining operators. We omit
several tricky details. �

Let J denote the standard unitary metric on Cr and let RJ
Dol(X, ζ, r) ⊂

RDol(X, ζ, r) denote the subset of (E, β) for E a Harmonic Higgs bundle on
Xs and β : Eζ ' Cr a frame, so that E has a Harmonic metric K with Kζ = J.
The harmonic metric turns out to be determined by its restriction to a fiber.
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Similarly, define RJ
dr(X, ζ, r) ⊂ Rdr(X, ζ, r) as the subset of (E, β) where E

is a semisimple vector bundle with flat connection on X and Eζ ' Cr is a
frame with a harmonic metric K on E with Kζ = J.

Corollary 4.3. If we have a sequence (Ei, βi) ∈ RJ
Dol(X, ζ, r) in the preimage of

a compact set of MDol(X, r). After passing to a subsequence, we can find (E, β)
so that there are C∞ isomorphisms Ei ' E so that the θi and ∂i converge to (θ, ∂)
associated to E and βi converge to β. A similar statement holds with flat bundles in
place of Higgs bundles.

Proof. Using the Hitchin map, and the assumption that Ei lie in the preimage
of a compact set, we find the eigenvalues of the θi are uniformly bounded.
Using Proposition 4.2, we can assume there are C∞ bundle isomorphisms so
that the θi and ∂i converge to θ, ∂. Then, using compactness of the unitary
group, we can also assume the βi converge to β.

The argument for flat bundles is more involved, and we omit it. �

Proposition 4.4. The bijection of sets RDol ' Rdr induces a homeomorphism
RJ

Dol(X, ζ, r) ' RJ
dr(X, ζ, r). Quotienting by the unitary group, we obtain the

desired homeomorphism MJ
Dol(X, ζ, r) ' MJ

dr(X, ζ, r).

Proof. We’ll just show the forward direction is continuous. Start with a
sequence (Ei, βi) ∈ RJ

Dol(X, ζ, r) converging to (E, β). We want to show
that the flat bundles corresponding to (Ei, βi) converge to the flat bundle
corresponding to (E, β). We can restrict to a subsequence to assume all points
lie over a compact set in MDol(X, ζ, r). By passing to a further subsequence,
we can apply Proposition 4.2 to assume the (Ei, β) converge to a harmonic
bundle V. The point is now that this V and the Vi let us see both sides of
the Dolbeault and de Rham moduli spaces, in order to deduce the desired
continuity. By Proposition 4.4 the d′′i and ∇i associated to the flat bundles Vi
converge to d′′ and ∇ for V, and the βi converge to β. Similarly, the Higgs
bundles associated to the Vi converge to the Higgs bundles corresponding to
V. This is what we wanted to show. �

5. AN APPLICATION TO PVHS

Recall there is a C× scaling action on MDol given by

C× ×MDol(X)→ MDol(X)

t, (E, θ) 7→ (E, tθ) .

The fixed points of this action are precisely those Higgs bundles which
underly a PVHS. The reason for this is that being a fixed point essentially
gives a grading on the bundle, which corresponds to the Hodge structure.
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This tells us we can deform any Higgs bundle to a bundle underlying a
VHS. As a corollary of the homeomorphism between Higgs bundles and
representations, (where one has to think a little bit more carefully about
reducible representations) we obtain the following:

Corollary 5.1. Any irreducible representation ρ : π1(X) → GLr(C) can be
deformed to a representation ρ′ : πx(X)→ GLr(C) so that the corresponding flat
vector bundle underlies a complex VHS.

REFERENCES


	1. Introduction
	2. The analytic isomorphism between de Rham and Betti moduli spaces
	3. The map on representation varieties is not continuous
	4. The homeomorphism between Betti and Dolbeault moduli spaces
	5. An application to PVHS
	References

