O-MINIMALITY AND AX-SCHANUEL

The topic of the seminar this semester will be the Ax—Schanuel Theorem, a
result in functional transcendence theory which appears, for example, in the recent
work of Dimitrov—Gao—Habegger on uniform Mordell that we studied last semester.
There are many avatars of the Ax—Schanuel Theorem in varying contexts; for this
seminar we will focus on the following simple case.

Theorem 1 (Ax—Schanuel). Let f1,..., fn € C[[t1,...,tm]] be power series over C
in m variables which are Q-linearly independent modulo C. Then the transcendence
degree of the field extension

(C(fla .. -7fnveXp(f1)> s anp(fn))

over C is at least
n + rk(J)

where J is the Jacobian matriz: J;, = ngZ,

The proof we will follow is the short proof by Tsimerman in [5]. The key technical
input in Tsimerman’s argument is the Counting Theorem of Pila-—Wilkie [7], a result
which is of independent but related interest in the theory of unlikely intersections.
Informally speaking, the Pila—Wilkie Theorem says that “most” rational points in
a “nice” subset X C R” lie in semialgebraic subsets® of X of positive dimension. To
make this precise, let us write X2 C X for the union of all positive-dimensional
semialgebraic subsets of X, and X" := X \ X? for the remainder (the “transcen-
dental part”). For T' > 0 we write

X"Q,T)={ze X" NQ" : h(z) <T}

for the set of rational points in X' of naive height < 7. Then the Pila-—Wilkie
Theorem says the following.

Theorem 2 (Pila-Wilkie). Suppose that X C R™ is definable in an o-minimal
expansion of R. Then for any € > 0 there exists a constant ¢ such that

#X"(Q,T) < cT°
for all T > 0.

Already the statement—and certainly the proof—of the Pila-Wilkie Theorem
involves the theory of o-minimality, a powerful tool from model theory with recent
applications to the study of period maps in complex Hodge theory. The most
part of this seminar series will be devoted to developing enough of the theory of
o-minimality to prove the Pila—Wilkie Counting Theorem.

Here, we will take a slightly unorthodox approach inspired by the syntax-free
exposition of o-minimality in [4, Chapter 2]. We will use a minimal amount of
model-theoretic language, avoiding talking about things like signatures, languages,

Date: Spring 2022.
1A semialgebraic subset of R™ is a subset cut out by polynomial inequalities, or a finite union
of such. For example, the set {z,y € R? : 22 <y < 23} is semialgebraic in R2.
1



2 O-MINIMALITY AND AX-SCHANUEL

theories and interpretations; instead we will develop all the model theory we need
phrased in terms of the basic calculus of definable sets and functions. As such,
while we will largely follow the exposition of [2] and [3], we will also refer to the
self-contained appendix of this programme in some of the more foundational talks.
Hopefully by de-emphasising the syntactic aspects of model theory, the concepts
we need will be more readily accessible to number theorists.

1. FUNCTIONAL TRANSCENDENCE

Alex will give an introductory talk giving an overview of the course.

2. O-MINIMAL STRUCTURES

The aim of this talk is to introduce the basic language of definable sets and
functions, which will be used continually through the rest of the talks. In this
language, we then formulate the notion of an o-minimal structure and give some
examples. The talk should follow [1, §1-3], and should include at least the following:

e [§1] Define a structure on a set M. Give some examples of structures.
Discuss structures generated by some basic sets.

e [§1] Define definable subsets. State that definable subsets are closed under
finite unions, intersections, complements, products, projections.

e [§2] Define definable functions. State their basic properties: images and
preimages of definable sets by definable functions are definable; compos-
ites of definable functions are definable; a definable bijection has definable
inverse. Prove one or two of these properties.

e [§3] Define an o-minimal structure on an ordered field® R. Give examples:
Ralg; Rexp7 Ran7 Ran,exp-

e Give some examples and non-examples of definable sets/functions in o-
minimal structures: z — /z and (z,y) — max{x,y} are definable in Ryg;
x + sin(z) is not definable in any o-minimal structure on R.

e [§3] State and prove the theorem of definable choice.

Remark. This talk and the next form a related whole, and you may find it useful
to work together with the following speaker. In particular, if the material above
seems like too much for a single talk, you could consider moving the discussion of
definable choice to the next talk.

3. CALCULUS IN AN O-MINIMAL STRUCTURE

In this talk we further develop the theory of o-minimal structures on a general
ordered field R. The punchline here is that any o-minimal structure R looks a
lot like R: one can make sense of continuous and differentiable functions, and
staples from calculus such as the intermediate value theorem hold (if one restricts
attention to definable functions). The talk should follow [1, §4] ([2, §3.2] is also a
good reference), and should include the following:

e Define the topology on definable sets induced from the order topology on R.

Prove that interiors, closures and boundaries of definable subsets are defin-
able [1, Lemma 4.1].

2Although we are only ultimately interested in o-minimal structures R, in order to apply the
compactness theorem at one point it will be necessary to work over a general ordered field R.
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e State (and optionally prove) that for a definable function f: U — V, the
locus in U where f is continuous is definable.

e Define definably connected sets [1, Definition 4.2]. Prove that the image
of a definably connected set under a definable continuous function is again
definably connected [1, Lemma 4.4].

e State and prove the definable intermediate value theorem [1, Proposition 4.5].
State that every definable continuous function on a closed interval attains
a maximum [1, Proposition 4.7].

e Define an r-fold differentiable function U — R™ where U C R™ (you can
just do the case n = m = 1 if it makes the definition easier to state).
Prove/observe that if f: U — R™ is a definable function with U C R"
definable, then the locus in U where f is r-fold differentiable is definable,
and all of the r-fold partial derivatives of f are definable.

e State and prove Rolle’s Theorem [1, Proposition 4.10].

Remark. One consequence of the intermediate value theorem is that any ordered
field R admitting an o-minimal structure is automatically real-closed. That is, every
odd-degree polynomial with coefficients in R has a root in R, and every positive
element of R has a square root. We will not use this fact in the seminar, but could
be worth mentioning here for context.

4. CELL DECOMPOSITION

This talk proves the cell decomposition theorem following [2, §§4.1-4.4] or [3,
Chapter 3], whichever you find best.

e State the monotonicity theorem [2, Theorem 4.1].

e Prove the uniform finiteness in R? following [2, Proposition 4.7, Corollary
4.8].

e Define cells [2, §4.3], their properties and definition of cell decompositions.

e State Theorem 4.12 and Proposition 4.17. Sketch the proof of Proposition
4.17.

e Sketch the proof of the cell decomposition theorem following [2, §4.4].

e If time permits, say few words about the C'*) version of the Cell Decom-
position theorem [2, Theorem 4.36].

This section is quite long, and it may not be possible to treat this all within a
single talk. On the other hand, the following talk is relatively short, so you could
black-box e.g. the monotonicity theorem and ask the next speaker to cover the
proof.

5. DIMENSION THEORY

In this talk introduces the notion of the dimension of a definable set, following
[2, §4.4], and should cover the following topics:

e Definition of the dimension of a definable set [2, Def. 4,19].

e Statement and proof of the basic properties of dimension [2, Proposition 4.20].

e Using the trivialization theorem of definable maps [3, Chapter 9, Theorem
1.2] as a black box, prove that if f: X — Y is a definable function, then
the set of points in Y whose fibre has dimension % is definable for all k£ € N.
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6. ELEMENTARY EXTENSIONS AND THE COMPACTNESS THEOREM

This talk contains the only “true” model theory we need for the Pila—Wilkie
Counting Theorem: the compactness theorem®. For us, the importance of the
compactness theorem is that it makes certain results in the theory of o-minimality
automatically uniform in families. For example, it is a theorem that (in an o-
minimal structure) every definable set X of dimension 0 is finite. Compactness
allows us to upgrade this immediately to the following relative result: for any
definable function f: X — Y of fibre dimension 0 there is a positive integer N such
that every fibre of f has size < N.

In order to apply the compactness theorem, we have to work not just in a single
o-minimal structure, but also in so-called elementary extensions. This talk should
follow [1, §§7-8], and should cover the following topics:

e Define elementary extensions. Discuss extending basic definable subsets
and functions.

e Introduce the definition of ultrafilters. Describe how to construct elemen-
tary extensions via ultrapowers [1, Definition 7.5].

e State and prove the compactness theorem [1, Theorem 7.7].

e State and prove that elementary extensions of o-minimal structures are
again o-minimal [1, Theorem 8.2].

e (Optional): re-proof of the uniform boundedness theorem [2, Proposition 4.7]

using the compactness theorem®.

Remark. The compactness theorem says something about coverings (V;);cs in-
dexed by any set I. You may find it simpler expositionally to just prove the special
case that 7 = N and the sets 1y C V5 C ... are nested. (Though we will need the
full version.)

7. O-MINIMAL GEOMETRY

This talk is rather orthogonal to the rest of the seminar series: the one ingredient
we will need is the o-minimal Chow Lemma. The talk should cover the following
points:

e Recall briefly without proof the classical Chow lemma. Then, as a warm-
up, prove the affine version of o-minimal Chow following [9, Theorem 1.3.1],
specifically the second proof on page 8.

e For the general version, introduce the notion of a definable topological
spaces [9, Section 2], see also [3, Chapter 10]. Introduce the definabilization
functor [9, Definition 2.1.5] from algebraic varieties over C to definable
topological spaces.

31f you’ve taken a course in first-order logic, you will have already met a compactness theorem
there, which is a close cousin of the result we will use.

4The logic is circular here, of course: the uniform boundedness theorem is required to prove
cell decomposition, which is required in turn to prove that elementary extensions of o-minimal
structures are again o-minimal. So proving uniform boundedness this way is insufficient for de-
veloping the theory ab initio. But this does at least provide an example of how one can apply the
compactness theorem in practice.
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Introduce definable analytic spaces: start with basic definable analytic
spaces [9, Section 2.2] then definable analytic spaces [9, Section 2.3]. Intro-
duce the analytification functor. You can skip the whole discussion around
sheaves.

State the general version of o-minimal Chow [9, Corollary 3.4.4] and prove
it using a finite definable affine cover.

8. THE PiLA-WILKIE COUNTING THEOREM

In this talk, we will state and prove the Pila-—Wilkie Counting Theorem, following

e.g. [7].

The focus of this talk is the arithmetic content of the proof, so we will treat

the material in §§2-5 of [7] as a black box. The talk should contain the following:

State the Pila-Wilkie Counting Theorem [7, Theorem 1.8], as well as the
uniform version [7, Theorem 1.9].

e State the Main Lemma [7, Proposition 6.2].
e Prove uniform Pila-Wilkie Counting assuming the Main Lemma [7, §7].
e If time, indicate some of the proof of the Main Lemma assuming uniform

reparametrisation [7, Corollary 5.2] as a black box.

Remarks.

(1)

Pila and Wilkie give a third statement of their counting theorem [7, The-
orem 1.10], which is stronger even than [7, Theorem 1.9]. It is up to you
which version you prove: the proof in [7] is of the stronger result, but the
argument is easily adapted to prove the weaker result, and this may be
simpler expositionally.

I personally think that the structure of the proof becomes clearer if you
introduce an intermediate step, essentially a souped-up version of the Main
Lemma. For this, let’s define a k-cylinder® of degree d in R™ to be a subset
of R™ of the form

m m 'H,

ocesS

where S is the set of k+ 1-element subsets of {1,2,...,n} (empty if & > n),
y: R® — RFFL is the corresponding projection, and H, C R**! is a
hypersurface of degree d. A k-cylinder is an algebraic variety of dimension
at most k.

One then has the following generalisation of the Main Lemma (which is
the special case k =n — 1):

Proposition (Main Lemma, II). Let Y C R™ be definable, and let X C
R™ x Y. Suppose that the fibres of X — Y all have dimension < k. Then
for every € > 0 there exists a positive integer d and a positive constant c
such that

Xy(Q,T)

s contained in the union of at most ¢TI’ k-cylinders in R™ of degree < d
forallyeY.

51 made this terminology up.
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The key observation used in the proof is that if X C R"™ is definable of
dimension at most k, then every component of its intersection with a k-
cylinder ¥ is either semialgebraic (so contained in X#) or of dimension <
k — 1. So in order to bound the rational points on X' of height < T it
suffices to bound the rational points on (X NX)" uniformly in ¥ of a given
degree, and this can be done by induction.

9. REPARAMETRISATION OF DEFINABLE SETS

This talk provides the missing ingredient from the proof of Pila-Wilkie in the
existence of strong parametrisations of definable subsets of |0, 1[™. The talk should
follow [2, §85.2-5.3] or the original material in [7], and include the following:

Define strong r-parametrisations and strong r-reparametrisations [2, Defi-

nition 5.6].

Outline the inductive structure of the proof [2, Remark 5.16]. (We will not

cover the proof in full detail in the seminar, but the next three points will
indicate to the audience how some steps of the induction look like.)

Prove that every definable map F': ]0, 1[—]0, 1] admits a strong r-reparametrisation
for any r [2, Proposition 5.18].

Prove that every definable map F': ]0, 1[—]0, 1[? admits a strong r-reparametrisation
for any r [2, Lemma 5.19].

Prove that every open cell X C]0,1[?> admits a strong r-reparametrisation

for any r [2, Lemma 5.20].

Prove the existence of uniform strong r-parametrisations of definable fami-

lies of k-dimensional subsets of |0, 1[™ [2, Corollary 5.15] or see below. This
contains real model-theoretic input in the form of the compactness theorem,

so make sure to emphasise this in your presentation.

Remark. Because of our different approach to model theory in this seminar, the
argument required to deduce uniform strong r-parametrisations in families looks
a bit different to the exposition in [2, Corollary 5.15]. Here is one way to phrase
the argument in our language. Consider a definable subset X CJ]0,1["xY of fi-
bre dimension < k over Y. We may assume that X and Y are 0-definable. For
every N € N, every 0-definable set Z and every N-tuple of 0O-definable func-
tions ¢1,...,6n:]0,1[FxZ x Y — X over Y, let’s write Yz 1, .60 C Y for
the set of points y € Y for which there exists a point z € Z such that the
maps @1zy,---,ON,zy: |0, 1[F— X, are a strong r-parametrisation of X,.

The existence of strong r-parametrisations tells us that the subsets Yz 4,, . sx
cover Y. In fact, since we proved the existence of strong r-parametrisations for any
o-minimal structure, if R* is any elementary extension of R then the sets Y. 6t =

(Yz,4,,..

Lon)¥ cover Y*. So by the compactness theorem, Y is in fact covered by

a finite number of the sets Yz 4, 4, This gives the existence of uniform strong
r-parametrisation for X CJ0,1["xY".

10. PROOF OF AX—SCHANUEL

This talk finally proves the Ax—Schanuel Theorem following [5].

Explain carefully the equivalence between the different formulations of Ax—
Schanuel [5, Thm. 1.1, 1.2, 1.3]. State and prove Corollary 1.4.
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e Prove [5, Theorem 1.3] following [5, §2]. Highlight the role of o-minimality
in the proof (point counting and o-minimal Chow).

11. AX—SCHANUEL FOR SHIMURA VARIETIES

This talk introduces and sketches the proof of Ax—Schanuel for pure Shimura
varieties following [16, Part I].

e Introduce Shimura varieties [15, §2.4] and their weakly special subvarieties
[15, Theorem 3.5].

o Illustrate the above (and the below) with the case of A,, the moduli space
of principally polarized complex abelian varieties following for example [14].

e State Ax—Schanuel [16, Theorem 1.1, Theorem 1.2] and follow [16, Part I] to
sketch the proof. Introduce Siegel sets [14, Section 3.3] for A, and discuss
briefly Siegel sets for general Shimura varieties following [13, Section 3.1].

e State the definability of the uniformization map restricted to a Siegel set
[14, Theorem 1.1] and [13, Theorem 1.9]. Don’t give a proof but only ideas
if time permits.

e Follow [16, §4] to give a careful proof of Ax—Schanuel for Shimura varieties.

12. ADDENDUM: APPLICATION OF AX—SCHANUEL TO BETTI MAPS

In last semester’s seminar on the work of Dimitrov—Gao—Habegger, we black-
boxed one result on the non-degeneracy of Betti maps [10, Theorem 6.2]. In this
final talk of this seminar, we make the connection back to last semester by ex-
plaining how this result is proved, following [11]. A crucial step in the proof uses
a version of the Ax—Schanuel Theorem for universal abelian varieties, which is a
relative of the Ax—Schanuel Theorem we have studied in this seminar. The talk
should include the following:

e Recap the statement of [11, Theorem 1.2’] needed in the work of Dimitrov—
Gao-Habegger, including any necessary background on the Betti map (in
outline).

e State [11, Theorem 1.3], and use it to deduce [11, Theorem 1.27].

e Introduce the degeneracy loci [11, Definition 1.6]. State their key properties:
[11, Theorems 1.6 & 1.7].

e State (but do not prove) mixed Ax—Schanuel for the universal abelian va-
riety [12, Theorem 1.1] [11, Theorem 5.5].

e Prove (11, Theorem 1.7] for X C 2, following [11, §6], making sure to
emphasise the use of Ax—Schanuel in the proof.

e If time permits, give the statement of Theorem [11, Theorem 1.1] (which is
a consequence of [11, Theorems 1.7 & 1.8]), and discuss how to use this to
prove [11, Theorem 1.3], following [11, §10].
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