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1. Introduction

The sieve of Eratosthenes removes the multiples of the primes p < y from the set of
positive integers n < x. Let ®(x,y) denote the number of integers remaining. Answering
a question of Ford, the first-named author [7] recently proved the following theorem.

Theorem A. When 2 <y <z, ®(x,y) < z/logy.
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If y > /x, then ®(z,y) = n(z) — n(y) + 1 (where m(t) is the number of primes
in [1,¢]), and so by the prime number theorem, Theorem A is essentially best possible
when 217¢ < y < ex. When y < /z, there is a long history in estimating ®(z,y), and in
particular, we have the following theorem, essentially due to Buchstab (see [13, Theorem
I11.6.4)).

Theorem B. For w(u) the Buchstab function and uw =logz/logy > 2 and y > 2,

The Buchstab function w(u) is defined as the unique continuous function on [1, o)
such that

uw(u) =1on [1,2], (uw(u)) =w(u—1)on (2,00).

Below is a graph of w(u) for u € [1,8] generated by Mathematica. It is known that
limy, 0o w(u) = e = 0.561459483566885 ... (where v is the Euler—Mascheroni con-
stant) and that w(u) oscillates above and below its limiting value infinitely often. The
minimum value of w(u) on [2,00) is 1/2 at u = 2 and the maximum value M, is
0.567143290409783 .. ., occurring at u = 2.76322283417162. ... In particular, it follows
from Theorem B that if ¢ > My and y < /x with y sufficiently large depending on the
choice of ¢, that ®(z,y) < cx/logy. In addition, using an inclusion—exclusion argument
plus the fact that the Mertens product [[,., (1 —1/p) < Mo/logy for all y > 2, the
inequality ®(z,y) < cz/logy can be extended to all 2 < y < /z, but now with =
sufficiently large depending on c.

In light of Theorem A and given that ®(x,y) is a fundamental (and ancient) function,
it seems interesting to try and make these consequences of Theorem B numerically
explicit. We prove the following theorem.
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Theorem 1. For 3 < y < /x, we have ®(x,y) < .6x/logy. The same inequality holds
when 2 <y < /z and x > 10.

To prove this we use some numerically explicit estimates of primes due to Rosser—
Schoenfeld, Biithe, and others. In addition we use a numerically explicit version of the
upper bound in Selberg’s sieve.

Theorem B itself is also appealing. It provides a simple asymptotic formula for ®(z, y)
as y — oo which is applicable in a wide range. Writing

Bo) = o (w) + 522,

one may attempt to establish numerically explicit lower and upper bounds for A(z,y) in
the range y < /x for suitably large y > yo, where yo > 2 is some numerically computable
constant. More precisely, de Bruijn [3] essentially showed that for any given € > 0, one
has

O(x,y) = py(w)eTzlogy [ | <1 — %) + O(x exp(—(log y)?/5~))

for all x > y > 2, where

1y (12) 1= Tw(u—v)y” dv.
0

Recently, the first-named author [8] proved numerically explicit versions of this result
applicable for y in wide ranges.

2. A prime lemma

Let 7(x) denote, as usual, the number of primes p < xz. Let

T

. dt
11(1’) :/@,

0

where the principal value is taken for the singularity at ¢ = 1. There is a long history in
trying to find the first point when 7(z) > li(x), which we now know is beyond 10'°. We
prove a lemma based on this research.

Lemma 1. Let By = 2.3 x 1078, For x > 2, we have m(x) < (1 + Bo)li(z).
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Proof. The result is true for z < 10, so assume x > 10. Consider the Chebyshev function

0(z) = Z log p.

p<z

We use [10, Prop. 2.1], which depends strongly on extensive calculations of Biithe [4,5]
and Platt [11]. This result asserts in part that 6(z) < x — .05y/z for 1427 < z < 10'°
and for larger z, 6(z) < (14 Bo)x. One easily checks that 8(x) < x for x < 1427, so we
have

O(z) < (1+ Bo)z, z>0.

By partial summation, we have

m(x) = 6(=) +/ 6() dt

~ logx t(logt)?
2

x

10
<(1+5°)I+/t(19(t) dt+(1+ﬂo)/ dt
2

log x ogt)? (logt)?”
10

Since [dt/(logt)? = —t/logt + li(t), we have

10
m(z) < (14 Bo)li(z) + / t(fgp dt + (14 B0)(10/ log 10 — 1i(10))

< (14 Bo)li(z) — .144. (1)
This gives the lemma. O

After checking for x < 10, we remark that an immediate corollary of (1) is the in-

equality
m(z) —k < (1+ Bo)(li(z) — k), 2<k<m(z), k<107, (2)
3. Inclusion—exclusion

For small values of y > 2 we can do a complete inclusion—exclusion to compute ®(z,y).
Let P(y) denote the product of the primes p < y. We have

Oay) = Y ud) |5 (3)

d|P(y)

As a consequence, we have
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Table 1
Small y.

y interval  z bound max
[2,3) 22 .61035
(3,5) 51 .57940
[5,7) 96 .55598
[7,11) 370 .56634
[11,13) 613 .55424
[13,17) 1603 .56085
[17,19) 2753 .54854
(19, 23) 6296 .55124
[23,29) 17539 .55806
[29,31) 30519 .55253
[31,37) 76932 .55707
[37,41) 1.6 x 10°  .55955
[41, 43) 2.9 x 10°  .55648
(43, 47) 5.9 x 10°  .55369
47,53 1.4 x 108 .55972
[

53,59 3.0 x 10°  .55650
[

[59,61) 5.4 x 10° 55743
[61,67) 1.2 x 107 .55685
[67,71) 2.4 x 107 .55641

O(z,y) < Y u(d)§+ doi=z]] (1;>+2w<y)1_ (@)

d|P(y) d\(g’)(y)l p<y
u(d)=

We illustrate how this elementary inequality can be used in the case when 7 (y) = 5,
that is, 11 <y < 13. Then the product in (4) is 16/77 < .207793. The remainder term
in (4) is 16. And we have

O(z,y) < .207793z + 16 < .6x/log 13

when x > 613. There remains the problem of dealing with smaller values of z, which we
address momentarily. We apply this method for y < 71.

Pertaining to Table 1, for x beyond the “x bound” and y in the given interval, we have
®(x,y) < .62/logy. The column “max” in Table 1 is the supremum of ®(x,y)/(z/logy)
for y in the given interval and = > 3? with o below the z bound. The max statistic was
computed by creating a table of the integers up to the x bound with a prime factor < y,
taking the complement of this set in the set of all integers up to the x bound, and then
computing (jlogp)/n where n is the jth member of the set and p is the upper bound of
the y interval. The max of these numbers is recorded as the max statistic.

As one can see, for y > 3 the max statistic in Table 1 is below .6. However, for the
interval [2,3) it is above .6. One can compute that it is < .6 once z > 10.

This method can be extended to larger values of y, but the x bound becomes pro-
hibitively large. With a goal of keeping the = bound smaller than 3 x 107, we can extend
a version of inclusion-exclusion to y < 241 as follows.

First, we “pre-sieve” with the primes 2, 3, and 5. For any x > 0 the number of integers
n < z with ged(n,30) = 1is (4/15)z + r, where |r| < 14/15, as can be easily verified by
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looking at values of z € [0,30]. We change the definition of P(y) to be the product of
the primes in (5,y]. Then for y > 5, we have

4 r 14
d w(d)= + —2””
(z, y)_15dlp§() (d)5 +
Yy

However, it is better to use the Bonferroni inequalities in the form

=YY - §+§:( )—xd>+wm,

j<4 d|P(y)

v(d)=j
say, where v(d) is the number of distinct prime factors of d. (We remark that the ex-
pression b(y) could be replaced with 12b(y).) The inner sums in s(y) can be computed
easily using Newton’s identities, and we see that

O(x,y) < .6z/logy for x> bly)/(.6/logy — s(y)).

We have verified that this  bound is smaller than 30,000,000 for y < 241 and we have
verified that ®(x,y) < .62/logy for 2 up to this bound and y < 241.
This completes the proof of Theorem 1 for y < 241.

4. When wu is large: Selberg’s sieve

In this section we prove Theorem 1 in the case that u = logz/logy > 7.5 and y > 241.
Our principal tool is a numerically explicit form of Selberg’s sieve.

Let A be a set of positive integers a < z and with |A| = X. Let P = P(y) be a set
of primes p < y. For each p € P we have a collection of a(p) residue classes mod p,
where a(p) < p. Let P = P(y) denote the product of the members of P. Let g be the
multiplicative function defined for numbers d | P where g(p) = a(p)/p when p € P. We
let

v [Ta- st = TJ (1- ).

pEP pEP p

We define rq(A) via the equation

The thought is that r4(.A) should be small. We are interested in S(.A, P), the number of
those a € A such that a is coprime to P.

We will use Selberg’s sieve as given in [9, Theorem 7.1]. This involves an auxiliary
parameter D < X which can be freely chosen. Let h be the multiplicative function
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supported on divisors of P such that h(p) = g(p)/(1—g(p)). In particular if each a(p) = 1,
then each g(p) = 1/p and h(p) =1/(p—1), so h(d) = 1/¢(d) for d | P, where ¢ is Euler’s
function. Henceforth we will make this assumption (that each a(p) = 1). Let

J=1Jp= Z h(d), R=Rp= 273(d)|7’d(«4)|,
d|P d|p
d<vD d<D

where 75(d) is the number of ordered factorizations d = abe, where a,b, ¢ are positive
integers. Selberg’s sieve gives in this situation that

S(A,P) < X/J+R. (5)

Note that if D > P2, then

J=Y hd) =[]0 +nrm)=[Q-9@) "=V

d|P pEP peEP

so that X/J = XV. This is terrific, but if D is so large, the remainder term R in (5) is
also large, making the estimate useless. So, the trick is to choose D judiciously so that
R is under control with J being near to V1.

Consider the case when each |ry(A)| < r, for a constant r. In this situation the
following lemma is useful.

Lemma 2. Suppose that |rq(A)| < r for alld < D, d | P(y). Fory > 241, we have

Proof. Let 7(d) = 72(d) denote the number of positive divisors of d. Note that

Py (EHRICH)

One can show that for y > 241 the first product on the right is smaller than .95(logy)?,
but we will only use the “cleaner” bound (log)? (which holds when y > 53). Thus,

S on@=Y S S Y1

dlB () a1 P e N rth
2 —1
<DZ <Dlogy) H(1+> .
j<D P<y p

JIP(y) pEP
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This completes the proof. 0O

To get a lower bound for J in (5) we proceed as in [9, Section 7.4]. Recall that we are
assuming each a(p) = 1 and so h(d) = 1/¢(d) for d | P.
Let

1
=2 L

d>/D

d|p

so that I + J = V1. Hence
J=V'-I=V""'1-1V), (6)

so we want an upper bound for IV. Let € be arbitrary with € > 0. We have

. d2€ . p26
I<D Zsz 11 <1+p_1>,

d|P peEP

and so, assuming each a(p) = 1,

v <D= ] <1 + p%p_ 1) — (D, P,e). (7)

pEP

In particular, if y > 241 and each |r4(A)| < r, then

-1
S(A,P)< XV (1- f(D,P,s))’1 +rD(logy)? H <1 + ;) ) (8)

We shall choose D so that the remainder term is small in comparison to XV, and once
D is chosen, we shall choose € so as to minimize f(D,P,e¢).

4.1. The case when y < 500,000 and u > 7.5.

We wish to apply (8) to estimate ®(x,y) when u > 7.5, that is, when x > y”5. We
have a few choices for A4 and P. The most natural choice is that A is the set of all
integers < z, X = x, and P is the set of all primes < y. In this case, each |rg(A)| < 1,
so that we can take r =1 in (8). Instead we choose (as in the last section) .4 as the set
of all integers < x that are coprime to 30 and we choose P as the set of primes p with
7 < p <y. Then X = 4z/15 and one can check that each |rg(A)| < 14/15, so we can
take r = 14/15 in (8). Also,
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-1
H 2 3

(1 + _> - 14’
p<y p 14
pEP

when y > 5. With this choice of A and P, (8) becomes

-1

-1 1
O(z,y) <XV |[1-D7° H <1 + 2 ) + gD(logy)Q, (9)

7<p<y p

when y > 241.

Our “target” for ®(x,y) is .6z/logy. We choose D here so that our estimate for the
remainder term is 1% of the target, namely .006x/logy. Thus, in light of Lemma 2, we
choose

D = .03z/(logy)?.

We have verified that for every value of y < 500,000 and x > 37 that the right side
of (9) is smaller than .6z/logy. Note that to verify this, if p,¢ are consecutive primes
with 241 < p < ¢, then S(A,P) is constant for p < y < ¢, and so it suffices to show the

right side of (9) is smaller than .6x/log g. Further, it suffices to take z = p™-®

, since as x
increases beyond this point with P and ¢ fixed, the expression f(D,P,e) decreases. For
smaller values of y in the range, we used Mathematica to choose the optimal choice of e.
For larger values, we let € be a judicious constant over a long interval. As an example,

we chose € = .085 in the top half of the range.
4.2. When y > 500,000 and v > 7.5.

As in the discussion above we have a few choices to make, namely for the quantities

7.5

D and ¢. First, we choose x = y”%, since the case x > y”° follows from the proof of the

case of equality. We choose D as before, namely .03z /(log y)3. We also choose
e=1/logy.

Our goal is to prove a small upper bound for f(D,P,¢e) given in (7). We have

p2571
» .

f(D,P,e) < D% exp Z

7<p<y

We treat the two sums separately. First, by Rosser—Schoenfeld [12, Theorems 9, 20],
one can show that

1
—Z; < —loglogy — .26

<y
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for all y > 2, so that

1
— ) = < —loglogy — .26+ 31/30 (10)

T<p<y
for y > 7. For the second sum we have
y
Soop =T 4 (n(y) -y 4 / (1 — 2¢)(m(t) — 4)t> 2 dt.
7<p<y 11

At this point we use (2), so that

> p < (i) - A / (1= 2)(1(r) — )¢* 2 ds

11<p<y 11

— (li(11) — 41121 4 1i(2)|”
11

= (li(11) — 4)11%5 7 4 1i(y*e) —1i(11%),
and so

- +5 >0 Pt < T 4 (li(11) — 4)11% 7 4 1(y%) — 1i(11%). (11)
0 7<p<ly

There are a few things to notice, but we will not need them. For example, 1i(y%¢) = li(e?)
and 1i(11%%) ~ log(11%¢ — 1) + 1.

Let S(y) be the sum of the right side of (10) and 1 4 5y times the right side of (11).
Then

f(D,P,e) < D750,
The expression XV in (9) is
A1(-5)
p<y

We know from [10] that this product is < e~7/logy for y < 2 x 10°, and for larger values
of y, it follows from [6, Theorem 5.9] (which proof follows from [6, Theorem 4.2] or |2,
Corollary 11.2]) that it is < (14 2.1 x 107°)e~7/logy. We have
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- 1
(a,y) < XV(1- J(D,P.e) " + - Dllogy)” (12)
.006x
logy

< (1421 %1079 (1-D=eSW) ™ 4

evlogy

We have verified that (1 — D_Ees(y))_1 is decreasing in y, and that at y = 500,000 it is
smaller than 1.057. Thus, (12) implies that

1.057x  .006z  .5995z
+ < .
eYlogy  logy logy

®(z,y) < (1+2.1x107°)
This concludes the case of u > 7.5.
5. Small u

In this section we prove that ®(x,y) < .57163z/logy when u € [2,3), that is, when
Y <z <y’

For small values of y, we calculate the maximum of ®(x,y)/(z/logy) for y*> <z < ?
directly, as we did in Section 3 when we checked below the x bounds in Table 1 and the
bound 3 x 10”7. We have done this for 241 < y < 1100, and in this range we have

O(z,y) < .56404%, Y2 <<y, 241 <y <1100.
ogy

Suppose now that y > 1100 and y? < = < y>. We have

O(z,y) =m(x) —n(y) + 1+ Z m(x/p) —7(p) + 1). (13)

y<p<az'/?

Indeed, if n is counted by ®(z,y), then n has at most 2 prime factors (counted with
multiplicity), so n = 1, n is a prime in (y,x] or n = pq, where p,q are primes with

y<p<q<a/p
Let p; denote the jth prime. Note that

L ;t)j—- 1 + om(t)
Thus,
> () -1 Sr( 2 — (@) — Cn)? + oa(y),
and so _
B(r,y) = 7o)~ My)+ Y wla/p) (14)
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where

1 1 1 3
M(z,y) = 3r(e2) = Sr(@?) = Sr(w)? + Snly) — 1.

We use Lemma 1 on various terms in (14). In particular, we have (assuming y > 5)
®(z,y) < (L+folli(x) + Y (L+ follix/p) = M(z,y). (15)
y<p<wzl/?
Via partial summation, we have

> li(w/p) =2V > !

y<p<zl/? y<p<zl/?

(16)

- / (n@/ﬂ%) 3 %dt.

v y<p<t

For 1100 < t < 10* we have checked numerically that

1
0< Z — —loglogt — B < .00624,
p<t

where B = .261497 ... is the Meissel-Mertens constant. Further, for 10* < ¢t < 106,

1
0< Y = —loglogt — B < .00161.

p<t

(The lower bounds here follow as well from [12, Theorem 20].) It thus follows for 1100 <
y < 10% that

1 log(x'/?) 1 logt
> 5 <log ="+ 51, > —>log—— — B, (17)

y<p<azl/? p y<p<t

where (; = .00624. Now suppose that y > 10%. Using [6, Eq. (5.7)] and the value 4.4916
for “n3” from [2, Table 15], we have that

1
’Z = _loglogt — B| < 1.9036/(logt)?, ¢ > 10°.
P

p<t

Thus, (17) continues to hold for y > 10* with .00624 improved to .00322. We thus have
from (16)
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> li(/p) < 2Mi(2/?) (@MJFBO

y<p<zl/? logy
21/2 (18)
. x/t logt
- [ (e gt ) (o oy 1) e
y

Let R(t) = (1 + Bo)li(t)/(t/logt), so that R(t) — 1+ 5y as t — oco. We write the first
term on the right side of (15) as

R
ulf R(z) = v logy’
gy u logy

S
~—
S

and note that the first term on the right of (18) is less than

x
logy’

R(y*)2 (og(u/2) + B1)

For the expression m(z'/?)? — i7(21/2) in M(z,y) we use the inequality m(t) >
t/logt + t/(logt)? when t > 599, which follows from [1, Lemma 3.4] and a calculation
(also see [6, Corollary 5.2]). Further, we use 7(y) < R(y)y/logy for the rest of M(z,y).

Using these estimates and numerical integration for the integral in (18) we find that

B(z,y) < 5TI63——, y>1100, 32 <z <y®.
logy

6. Iteration

Suppose k is a positive integer and we have shown that

O(z,y) <c (19)

klogy

for all y > 241 and u = logz/logy € [2,k). We can try to find some cg41 not much
larger than ¢ such that

) <
(z,y) < k1 0ay
for y > 241 and u < k+ 1. We start with c3, which by the results of the previous section
we can take as .57163. In this section we attempt to find ¢; for k < 8 such that cg < .6.
It would then follow from Section 4 that ®(z,y) < .6x/logy for all w > 2 and y > 241.
Suppose that (19) holds and that y is such that 2/t < ¢ < z/k We have

O(x,y) = (z,aF)+ D O(ax/pp). (20)

y<p<zl/k
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Indeed the sum counts all n < 2 with least prime factor p € (y,z/*], and ®(x,z'/*)
counts all n < z with least prime factor > z'/¥. As we have seen, it suffices to deal with
the case when y = ¢, for some prime go.

Note that if (19) holds, then it also holds for y = x'/*. Indeed, if  is a prime, then
O(x,y) = ®(x,y +¢) for all 0 < € < 1, and in this case ®(z,y) < cpz/log(y + ¢€), by
hypothesis. Letting ¢ — 0 shows we have ®(z,y) < cyz/logy as well. If y is not prime,
then for all sufficiently small € > 0, we again have ®(z,y) = ®(z,y + €) and the same
proof works.

Thus, we have (19) holding for all of the terms on the right side of (20). This implies
that

P(x,qy) < ckm(m + Z 1 ) (21)

qo<p<azl/k plogp

We expect that the parenthetical expression here is about the same as 1/logqo, so let
us try to quantify this. Let

—1 1 1 b bl
= 1m . < < + .
) ax{log w0 " log(a/F) " 2 plogp ¥ ==Y
qo<p<zt/k

Let ¢1 be the largest prime < 2/, so that

-1 1 1
Gk(QO):maX{ - + Y —:qo<qlsq3“/’“}-

loggo  logar == plogp
It follows from (21) that

CrX

1
d = b)) < —_— = 1 1 .
(529) = 005 < cxe o+ exlan) ) = 25 1+ e o)

Note that as k grows, €x(qo) is non-increasing since the max is over a smaller set of
primes ¢;. Thus, we have the inequality

®(z,qy) < c3(1+ €3(qo) log qo)’ , xt/? < go < 2V BT, (22)

logy

Thus, we would like

c3(1+ e3(qo) log go)® < .6 (23)

We have checked (23) numerically for primes go < 1000 and it holds for gg > 241.
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This leaves the case of primes > 1000. We have the identity

q1
1 o) . ) )i < | 2 >
) = + + [ ot + dt,
plogp ~ aologq?  aoga? T ) PO\ Eloger T Eloge

90<p<q1 %

via partial summation, where 6 is again Chebyshev’s function. First assume that ¢; <
10*°. Then, using [4], [5], we have 0(t) < t, so that

Z 1 g0 —9(qq) 1 1

2 - .
Wit Plogp qo(logqo)? ~ logqo logq

We also have [4], [5] that go — 6(qy ) < 1.95,/q0, so that one can verify that

1.95
Vo (log o)?

and so (23) holds for go > 1000. It remains to consider the cases when ¢; > 10!, which
implies ¢o > 10'*. Here we use |0(¢) — t| < 3.965t/(logt)?, which is from [6, Theorem
4.2] or [2, Corollary 11.2]. This shows that (23) holds here as well, completing the proof
of Theorem 1.

€3(qo) <

Data availability
No data was used for the research described in the article.
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