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Let Φ(x, y) denote the number of integers n ∈ [1, x] free of 
prime factors ≤ y. We show that but for a few small cases, 
Φ(x, y) < .6x/ log y when y ≤ √

x.
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1. Introduction

The sieve of Eratosthenes removes the multiples of the primes p ≤ y from the set of 
positive integers n ≤ x. Let Φ(x, y) denote the number of integers remaining. Answering 
a question of Ford, the first-named author [7] recently proved the following theorem.

Theorem A. When 2 ≤ y ≤ x, Φ(x, y) < x/ log y.
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If y >
√
x, then Φ(x, y) = π(x) − π(y) + 1 (where π(t) is the number of primes 

in [1, t]), and so by the prime number theorem, Theorem A is essentially best possible 
when x1−ε < y < εx. When y ≤ √

x, there is a long history in estimating Φ(x, y), and in 
particular, we have the following theorem, essentially due to Buchstab (see [13, Theorem 
III.6.4]).

Theorem B. For ω(u) the Buchstab function and u = log x/ log y ≥ 2 and y ≥ 2,

Φ(x, y) = x

log y

(
ω(u) + O

(
1

log y

))
.

The Buchstab function ω(u) is defined as the unique continuous function on [1, ∞)
such that

uω(u) = 1 on [1, 2], (uω(u))′ = ω(u− 1) on (2,∞).

Below is a graph of ω(u) for u ∈ [1, 8] generated by Mathematica. It is known that 
limu→∞ ω(u) = e−γ = 0.561459483566885 . . . (where γ is the Euler–Mascheroni con-
stant) and that ω(u) oscillates above and below its limiting value infinitely often. The 
minimum value of ω(u) on [2, ∞) is 1/2 at u = 2 and the maximum value M0 is 
0.567143290409783 . . . , occurring at u = 2.76322283417162 . . . . In particular, it follows 
from Theorem B that if c > M0 and y ≤ √

x with y sufficiently large depending on the 
choice of c, that Φ(x, y) < cx/ log y. In addition, using an inclusion–exclusion argument 
plus the fact that the Mertens product 

∏
p≤y(1 − 1/p) < M0/ log y for all y ≥ 2, the 

inequality Φ(x, y) < cx/ log y can be extended to all 2 ≤ y ≤ √
x, but now with x

sufficiently large depending on c.
In light of Theorem A and given that Φ(x, y) is a fundamental (and ancient) function, 

it seems interesting to try and make these consequences of Theorem B numerically 
explicit. We prove the following theorem.



K. Fan, C. Pomerance / Journal of Number Theory 254 (2024) 169–183 171
Theorem 1. For 3 ≤ y ≤ √
x, we have Φ(x, y) < .6x/ log y. The same inequality holds 

when 2 ≤ y ≤ √
x and x ≥ 10.

To prove this we use some numerically explicit estimates of primes due to Rosser–
Schoenfeld, Büthe, and others. In addition we use a numerically explicit version of the 
upper bound in Selberg’s sieve.

Theorem B itself is also appealing. It provides a simple asymptotic formula for Φ(x, y)
as y → ∞ which is applicable in a wide range. Writing

Φ(x, y) = x

log y

(
ω(u) + Δ(x, y)

log y

)
,

one may attempt to establish numerically explicit lower and upper bounds for Δ(x, y) in 
the range y ≤ √

x for suitably large y ≥ y0, where y0 ≥ 2 is some numerically computable 
constant. More precisely, de Bruijn [3] essentially showed that for any given ε > 0, one 
has

Φ(x, y) = μy(u)eγx log y
∏
p≤y

(
1 − 1

p

)
+ O(x exp(−(log y)3/5−ε))

for all x ≥ y ≥ 2, where

μy(u) :=
u−1∫
0

ω(u− v)y−v dv.

Recently, the first-named author [8] proved numerically explicit versions of this result 
applicable for y in wide ranges.

2. A prime lemma

Let π(x) denote, as usual, the number of primes p ≤ x. Let

li(x) =
x∫

0

dt

log t ,

where the principal value is taken for the singularity at t = 1. There is a long history in 
trying to find the first point when π(x) ≥ li(x), which we now know is beyond 1019. We 
prove a lemma based on this research.

Lemma 1. Let β0 = 2.3 × 10−8. For x ≥ 2, we have π(x) < (1 + β0)li(x).
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Proof. The result is true for x ≤ 10, so assume x ≥ 10. Consider the Chebyshev function

θ(x) =
∑
p≤x

log p.

We use [10, Prop. 2.1], which depends strongly on extensive calculations of Büthe [4,5]
and Platt [11]. This result asserts in part that θ(x) ≤ x − .05

√
x for 1427 ≤ x ≤ 1019

and for larger x, θ(x) < (1 + β0)x. One easily checks that θ(x) < x for x < 1427, so we 
have

θ(x) < (1 + β0)x, x > 0.

By partial summation, we have

π(x) = θ(x)
log x +

x∫
2

θ(t)
t(log t)2 dt

<
(1 + β0)x

log x +
10∫
2

θ(t)
t(log t)2 dt + (1 + β0)

x∫
10

dt

(log t)2 .

Since 
∫
dt/(log t)2 = −t/ log t + li(t), we have

π(x) < (1 + β0)li(x) +
10∫
2

θ(t)
t(log t)2 dt + (1 + β0)(10/ log 10 − li(10))

< (1 + β0)li(x) − .144. (1)

This gives the lemma. �
After checking for x ≤ 10, we remark that an immediate corollary of (1) is the in-

equality

π(x) − k < (1 + β0)(li(x) − k), 2 ≤ k ≤ π(x), k ≤ 107. (2)

3. Inclusion–exclusion

For small values of y ≥ 2 we can do a complete inclusion–exclusion to compute Φ(x, y). 
Let P (y) denote the product of the primes p ≤ y. We have

Φ(x, y) =
∑

d|P (y)

μ(d)
⌊x
d

⌋
. (3)

As a consequence, we have
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Table 1
Small y.

y interval x bound max
[2, 3) 22 .61035
[3, 5) 51 .57940
[5, 7) 96 .55598
[7, 11) 370 .56634
[11, 13) 613 .55424
[13, 17) 1603 .56085
[17, 19) 2753 .54854
[19, 23) 6296 .55124
[23, 29) 17539 .55806
[29, 31) 30519 .55253
[31, 37) 76932 .55707
[37, 41) 1.6 × 105 .55955
[41, 43) 2.9 × 105 .55648
[43, 47) 5.9 × 105 .55369
[47, 53) 1.4 × 106 .55972
[53, 59) 3.0 × 106 .55650
[59, 61) 5.4 × 106 .55743
[61, 67) 1.2 × 107 .55685
[67, 71) 2.4 × 107 .55641

Φ(x, y) ≤
∑

d|P (y)

μ(d)x
d

+
∑

d|P (y)
μ(d)=1

1 = x
∏
p≤y

(
1 − 1

p

)
+ 2π(y)−1. (4)

We illustrate how this elementary inequality can be used in the case when π(y) = 5, 
that is, 11 ≤ y < 13. Then the product in (4) is 16/77 < .207793. The remainder term 
in (4) is 16. And we have

Φ(x, y) < .207793x + 16 < .6x/ log 13

when x ≥ 613. There remains the problem of dealing with smaller values of x, which we 
address momentarily. We apply this method for y < 71.

Pertaining to Table 1, for x beyond the “x bound” and y in the given interval, we have 
Φ(x, y) < .6x/ log y. The column “max” in Table 1 is the supremum of Φ(x, y)/(x/ log y)
for y in the given interval and x ≥ y2 with x below the x bound. The max statistic was 
computed by creating a table of the integers up to the x bound with a prime factor ≤ y, 
taking the complement of this set in the set of all integers up to the x bound, and then 
computing (j log p)/n where n is the jth member of the set and p is the upper bound of 
the y interval. The max of these numbers is recorded as the max statistic.

As one can see, for y ≥ 3 the max statistic in Table 1 is below .6. However, for the 
interval [2, 3) it is above .6. One can compute that it is < .6 once x ≥ 10.

This method can be extended to larger values of y, but the x bound becomes pro-
hibitively large. With a goal of keeping the x bound smaller than 3 × 107, we can extend 
a version of inclusion-exclusion to y < 241 as follows.

First, we “pre-sieve” with the primes 2, 3, and 5. For any x ≥ 0 the number of integers 
n ≤ x with gcd(n, 30) = 1 is (4/15)x + r, where |r| ≤ 14/15, as can be easily verified by 
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looking at values of x ∈ [0, 30]. We change the definition of P (y) to be the product of 
the primes in (5, y]. Then for y ≥ 5, we have

Φ(x, y) ≤ 4
15

∑
d|P (y)

μ(d)x
d

+ 14
152π(y)−3.

However, it is better to use the Bonferroni inequalities in the form

Φ(x, y) ≤ 4
15

∑
j≤4

∑
d|P (y)
ν(d)=j

(−1)j x
d

+
4∑

i=0

(
π(y) − 3

i

)
= xs(y) + b(y),

say, where ν(d) is the number of distinct prime factors of d. (We remark that the ex-
pression b(y) could be replaced with 14

15b(y).) The inner sums in s(y) can be computed 
easily using Newton’s identities, and we see that

Φ(x, y) ≤ .6x/ log y for x > b(y)/(.6/ log y − s(y)).

We have verified that this x bound is smaller than 30,000,000 for y < 241 and we have 
verified that Φ(x, y) < .6x/ log y for x up to this bound and y < 241.

This completes the proof of Theorem 1 for y < 241.

4. When u is large: Selberg’s sieve

In this section we prove Theorem 1 in the case that u = log x/ log y ≥ 7.5 and y ≥ 241. 
Our principal tool is a numerically explicit form of Selberg’s sieve.

Let A be a set of positive integers a ≤ x and with |A| ≈ X. Let P = P(y) be a set 
of primes p ≤ y. For each p ∈ P we have a collection of α(p) residue classes mod p, 
where α(p) < p. Let P = P (y) denote the product of the members of P. Let g be the 
multiplicative function defined for numbers d | P where g(p) = α(p)/p when p ∈ P. We 
let

V :=
∏
p∈P

(1 − g(p)) =
∏
p∈P

(
1 − α(p)

p

)
.

We define rd(A) via the equation
∑
a∈A
d|a

1 = g(d)X + rd(A).

The thought is that rd(A) should be small. We are interested in S(A, P), the number of 
those a ∈ A such that a is coprime to P .

We will use Selberg’s sieve as given in [9, Theorem 7.1]. This involves an auxiliary 
parameter D < X which can be freely chosen. Let h be the multiplicative function 
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supported on divisors of P such that h(p) = g(p)/(1 −g(p)). In particular if each α(p) = 1, 
then each g(p) = 1/p and h(p) = 1/(p −1), so h(d) = 1/ϕ(d) for d | P , where ϕ is Euler’s 
function. Henceforth we will make this assumption (that each α(p) = 1). Let

J = JD =
∑
d|P

d<
√
D

h(d), R = RD =
∑
d|P
d<D

τ3(d)|rd(A)|,

where τ3(d) is the number of ordered factorizations d = abc, where a, b, c are positive 
integers. Selberg’s sieve gives in this situation that

S(A,P) ≤ X/J + R. (5)

Note that if D ≥ P 2, then

J =
∑
d|P

h(d) =
∏
p∈P

(1 + h(p)) =
∏
p∈P

(1 − g(p))−1 = V −1,

so that X/J = XV . This is terrific, but if D is so large, the remainder term R in (5) is 
also large, making the estimate useless. So, the trick is to choose D judiciously so that 
R is under control with J being near to V −1.

Consider the case when each |rd(A)| ≤ r, for a constant r. In this situation the 
following lemma is useful.

Lemma 2. Suppose that |rd(A)| ≤ r for all d < D, d | P (y). For y ≥ 241, we have

R ≤ r
∑
d<D
d|P (y)

τ3(d) ≤ rD(log y)2
∏
p≤y
p/∈P

(
1 + 2

p

)−1

.

Proof. Let τ(d) = τ2(d) denote the number of positive divisors of d. Note that

∑
d|P (y)

τ(d)
d

=
∏
p∈P

(
1 + 2

p

)
=

∏
p≤y

(
1 + 2

p

) ∏
p≤y
p/∈P

(
1 + 2

p

)−1

.

One can show that for y ≥ 241 the first product on the right is smaller than .95(log y)2, 
but we will only use the “cleaner” bound (log y)2 (which holds when y ≥ 53). Thus,

∑
d<D
d|P (y)

τ3(d) =
∑
d<D
d|P (y)

∑
j|d

τ(j) ≤
∑
j<D
j|P (y)

τ(j)
∑

d<D/j
d|P (y)

1

< D
∑
j<D
j|P (y)

τ(j)
j

< D(log y)2
∏
p≤y
p/∈P

(
1 + 2

p

)−1

.
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This completes the proof. �
To get a lower bound for J in (5) we proceed as in [9, Section 7.4]. Recall that we are 

assuming each α(p) = 1 and so h(d) = 1/ϕ(d) for d | P .
Let

I =
∑

d≥
√
D

d|P

1
ϕ(d) ,

so that I + J = V −1. Hence

J = V −1 − I = V −1(1 − IV ), (6)

so we want an upper bound for IV . Let ε be arbitrary with ε > 0. We have

I < D−ε
∑
d|P

d2ε

ϕ(d) = D−ε
∏
p∈P

(
1 + p2ε

p− 1

)
,

and so, assuming each α(p) = 1,

IV < D−ε
∏
p∈P

(
1 + p2ε − 1

p

)
=: f(D,P, ε). (7)

In particular, if y ≥ 241 and each |rd(A)| ≤ r, then

S(A,P) ≤ XV
(
1 − f(D,P, ε)

)−1 + rD(log y)2
∏
p≤y
p/∈P

(
1 + 2

p

)−1

. (8)

We shall choose D so that the remainder term is small in comparison to XV , and once 
D is chosen, we shall choose ε so as to minimize f(D, P, ε).

4.1. The case when y ≤ 500,000 and u ≥ 7.5.

We wish to apply (8) to estimate Φ(x, y) when u ≥ 7.5, that is, when x ≥ y7.5. We 
have a few choices for A and P. The most natural choice is that A is the set of all 
integers ≤ x, X = x, and P is the set of all primes ≤ y. In this case, each |rd(A)| ≤ 1, 
so that we can take r = 1 in (8). Instead we choose (as in the last section) A as the set 
of all integers ≤ x that are coprime to 30 and we choose P as the set of primes p with 
7 ≤ p ≤ y. Then X = 4x/15 and one can check that each |rd(A)| ≤ 14/15, so we can 
take r = 14/15 in (8). Also,
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∏
p≤y
p/∈P

(
1 + 2

p

)−1

= 3
14 ,

when y ≥ 5. With this choice of A and P, (8) becomes

Φ(x, y) ≤ XV

⎛
⎝1 −D−ε

∏
7≤p≤y

(
1 + p2ε − 1

p

)⎞⎠
−1

+ 1
5D(log y)2, (9)

when y ≥ 241.
Our “target” for Φ(x, y) is .6x/ log y. We choose D here so that our estimate for the 

remainder term is 1% of the target, namely .006x/ log y. Thus, in light of Lemma 2, we 
choose

D = .03x/(log y)3.

We have verified that for every value of y ≤ 500,000 and x ≥ y7.5 that the right side 
of (9) is smaller than .6x/ log y. Note that to verify this, if p, q are consecutive primes 
with 241 ≤ p < q, then S(A, P) is constant for p ≤ y < q, and so it suffices to show the 
right side of (9) is smaller than .6x/ log q. Further, it suffices to take x = p7.5, since as x
increases beyond this point with P and ε fixed, the expression f(D, P, ε) decreases. For 
smaller values of y in the range, we used Mathematica to choose the optimal choice of ε. 
For larger values, we let ε be a judicious constant over a long interval. As an example, 
we chose ε = .085 in the top half of the range.

4.2. When y ≥ 500,000 and u ≥ 7.5.

As in the discussion above we have a few choices to make, namely for the quantities 
D and ε. First, we choose x = y7.5, since the case x ≥ y7.5 follows from the proof of the 
case of equality. We choose D as before, namely .03x/(log y)3. We also choose

ε = 1/ log y.

Our goal is to prove a small upper bound for f(D, P, ε) given in (7). We have

f(D,P, ε) < D−ε exp

⎛
⎝ ∑

7≤p≤y

p2ε − 1
p

⎞
⎠ .

We treat the two sums separately. First, by Rosser–Schoenfeld [12, Theorems 9, 20], 
one can show that

−
∑ 1

p
< − log log y − .26
p≤y
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for all y ≥ 2, so that

−
∑

7≤p≤y

1
p
< − log log y − .26 + 31/30 (10)

for y ≥ 7. For the second sum we have

∑
7≤p≤y

p2ε−1 = 72ε−1 + (π(y) − 4)y2ε−1 +
y∫

11

(1 − 2ε)(π(t) − 4)t2ε−2 dt.

At this point we use (2), so that

1
1 + β0

∑
11≤p≤y

p2ε−1 < (li(y) − 4)y2ε−1 +
y∫

11

(1 − 2ε)(li(t) − 4)t2ε−2 dt

= (li(y) − 4)y2ε−1 − (li(t) − 4)t2ε−1
∣∣∣y
11

+
y∫

11

t2ε−1

log t dt

= (li(11) − 4)112ε−1 + li(t2ε)
∣∣∣y
11

= (li(11) − 4)112ε−1 + li(y2ε) − li(112ε),

and so

1
1 + β0

∑
7≤p≤y

p2ε−1 < 72ε−1 + (li(11) − 4)112ε−1 + li(y2ε) − li(112ε). (11)

There are a few things to notice, but we will not need them. For example, li(y2ε) = li(e2)
and li(112ε) ≈ log(112ε − 1) + γ.

Let S(y) be the sum of the right side of (10) and 1 + β0 times the right side of (11). 
Then

f(D,P, ε) < D−εeS(y).

The expression XV in (9) is

x
∏
p≤y

(
1 − 1

p

)
.

We know from [10] that this product is < e−γ/ log y for y ≤ 2 ×109, and for larger values 
of y, it follows from [6, Theorem 5.9] (which proof follows from [6, Theorem 4.2] or [2, 
Corollary 11.2]) that it is < (1 + 2.1 × 10−5)e−γ/ log y. We have
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Φ(x, y) ≤ XV
(
1 − f(D,P, ε)

)−1 + 1
5D(log y)2 (12)

< (1 + 2.1 × 10−5) x

eγ log y
(
1 −D−εeS(y))−1 + .006x

log y .

We have verified that (1 −D−εeS(y))−1 is decreasing in y, and that at y = 500,000 it is 
smaller than 1.057. Thus, (12) implies that

Φ(x, y) < (1 + 2.1 × 10−5) 1.057x
eγ log y + .006x

log y <
.5995x
log y .

This concludes the case of u ≥ 7.5.

5. Small u

In this section we prove that Φ(x, y) < .57163x/ log y when u ∈ [2, 3), that is, when 
y2 ≤ x < y3.

For small values of y, we calculate the maximum of Φ(x, y)/(x/ log y) for y2 ≤ x < y3

directly, as we did in Section 3 when we checked below the x bounds in Table 1 and the 
bound 3 × 107. We have done this for 241 ≤ y ≤ 1100, and in this range we have

Φ(x, y) < .56404 x

log y , y2 ≤ x < y3, 241 ≤ y ≤ 1100.

Suppose now that y > 1100 and y2 ≤ x < y3. We have

Φ(x, y) = π(x) − π(y) + 1 +
∑

y<p≤x1/2

(π(x/p) − π(p) + 1). (13)

Indeed, if n is counted by Φ(x, y), then n has at most 2 prime factors (counted with 
multiplicity), so n = 1, n is a prime in (y, x] or n = pq, where p, q are primes with 
y < p ≤ q ≤ x/p.

Let pj denote the jth prime. Note that

∑
p≤t

π(p) =
∑

j≤π(t)

j = 1
2π(t)2 + 1

2π(t).

Thus,

∑
y<p≤x1/2

(π(p) − 1) = 1
2π(x1/2)2 − 1

2π(x1/2) − 1
2π(y)2 + 1

2π(y),

and so

Φ(x, y) = π(x) −M(x, y) +
∑

1/2

π(x/p), (14)

y<p≤x
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where

M(x, y) = 1
2π(x1/2)2 − 1

2π(x1/2) − 1
2π(y)2 + 3

2π(y) − 1.

We use Lemma 1 on various terms in (14). In particular, we have (assuming y ≥ 5)

Φ(x, y) < (1 + β0)li(x) +
∑

y<p≤x1/2

(1 + β0)li(x/p) −M(x, y). (15)

Via partial summation, we have

∑
y<p≤x1/2

li(x/p) = x1/2li(x1/2)
∑

y<p≤x1/2

1
p

−
x1/2∫
y

(
li(x/t) − x/t

log(x/t)

) ∑
y<p≤t

1
p
dt.

(16)

For 1100 ≤ t ≤ 104 we have checked numerically that

0 <
∑
p≤t

1
p
− log log t−B < .00624,

where B = .261497 . . . is the Meissel–Mertens constant. Further, for 104 ≤ t ≤ 106,

0 <
∑
p≤t

1
p
− log log t−B < .00161.

(The lower bounds here follow as well from [12, Theorem 20].) It thus follows for 1100 ≤
y ≤ 104 that

∑
y<p≤x1/2

1
p
< log log(x1/2)

log y + β1,
∑

y<p≤t

1
p
> log log t

log y − β1, (17)

where β1 = .00624. Now suppose that y ≥ 104. Using [6, Eq. (5.7)] and the value 4.4916 
for “η3” from [2, Table 15], we have that

∣∣∣∑
p≤t

1
p
− log log t−B

∣∣∣ < 1.9036/(log t)3, t ≥ 106.

Thus, (17) continues to hold for y ≥ 104 with .00624 improved to .00322. We thus have 
from (16)
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∑
y<p≤x1/2

li(x/p) < x1/2li(x1/2)
(

log log(x1/2)
log y + β1

)

−
x1/2∫
y

(
li(x/t) − x/t

log(x/t)

)(
log log t

log y − β1

)
dt.

(18)

Let R(t) = (1 + β0)li(t)/(t/ log t), so that R(t) → 1 + β0 as t → ∞. We write the first 
term on the right side of (15) as

x

u log yR(x) = R(yu)
u

x

log y ,

and note that the first term on the right of (18) is less than

R(yu/2) 2
u

(log(u/2) + β1)
x

log y .

For the expression 1
2π(x1/2)2 − 1

2π(x1/2) in M(x, y) we use the inequality π(t) >
t/ log t + t/(log t)2 when t ≥ 599, which follows from [1, Lemma 3.4] and a calculation 
(also see [6, Corollary 5.2]). Further, we use π(y) ≤ R(y)y/ log y for the rest of M(x, y).

Using these estimates and numerical integration for the integral in (18) we find that

Φ(x, y) < .57163 x

log y , y ≥ 1100, y2 ≤ x < y3.

6. Iteration

Suppose k is a positive integer and we have shown that

Φ(x, y) ≤ ck
x

log y (19)

for all y ≥ 241 and u = log x/ log y ∈ [2, k). We can try to find some ck+1 not much 
larger than ck such that

Φ(x, y) ≤ ck+1
x

log y

for y ≥ 241 and u < k+1. We start with c3, which by the results of the previous section 
we can take as .57163. In this section we attempt to find ck for k ≤ 8 such that c8 < .6. 
It would then follow from Section 4 that Φ(x, y) < .6x/ log y for all u ≥ 2 and y ≥ 241.

Suppose that (19) holds and that y is such that x1/(k+1) < y ≤ x1/k. We have

Φ(x, y) = Φ(x, x1/k) +
∑

1/k

Φ(x/p, p−). (20)

y<p≤x
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Indeed the sum counts all n ≤ x with least prime factor p ∈ (y, x1/k], and Φ(x, x1/k)
counts all n ≤ x with least prime factor > x1/k. As we have seen, it suffices to deal with 
the case when y = q−0 for some prime q0.

Note that if (19) holds, then it also holds for y = x1/k. Indeed, if y is a prime, then 
Φ(x, y) = Φ(x, y + ε) for all 0 < ε < 1, and in this case Φ(x, y) ≤ ckx/ log(y + ε), by 
hypothesis. Letting ε → 0 shows we have Φ(x, y) ≤ ckx/ log y as well. If y is not prime, 
then for all sufficiently small ε > 0, we again have Φ(x, y) = Φ(x, y + ε) and the same 
proof works.

Thus, we have (19) holding for all of the terms on the right side of (20). This implies 
that

Φ(x, q−0 ) ≤ ckx

(
1

log(x1/k)
+

∑
q0≤p≤x1/k

1
p log p

)
. (21)

We expect that the parenthetical expression here is about the same as 1/ log q0, so let 
us try to quantify this. Let

εk(q0) = max
{

−1
log q0

+ 1
log(x1/k)

+
∑

q0≤p≤x1/k

1
p log p : yk < x ≤ yk+1

}
.

Let q1 be the largest prime ≤ x1/k, so that

εk(q0) = max
{

−1
log q0

+ 1
log q1

+
∑

q0≤p≤q1

1
p log p : q0 < q1 ≤ q

1+1/k
0

}
.

It follows from (21) that

Φ(x, y) = Φ(x, q−0 ) ≤ ckx

(
1

log q0
+ εk(q0)

)
= ckx

log y (1 + εk(q0) log q0).

Note that as k grows, εk(q0) is non-increasing since the max is over a smaller set of 
primes q1. Thus, we have the inequality

Φ(x, q−0 ) ≤ c3(1 + ε3(q0) log q0)j
x

log y , x1/3 < q0 ≤ x1/(3+j). (22)

Thus, we would like

c3(1 + ε3(q0) log q0)5 < .6 (23)

We have checked (23) numerically for primes q0 < 1000 and it holds for q0 ≥ 241.
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This leaves the case of primes > 1000. We have the identity

∑
q0≤p≤q1

1
p log p = −θ(q−0 )

q0(log q0)2
+ θ(q1)

q1(log q1)2
+

q1∫
q0

θ(t)
(

1
t2(log t)2 + 2

t2(log t)3

)
dt,

via partial summation, where θ is again Chebyshev’s function. First assume that q1 <

1019. Then, using [4], [5], we have θ(t) ≤ t, so that

∑
q0≤p≤q1

1
p log p <

q0 − θ(q−0 )
q0(log q0)2

+ 1
log q0

− 1
log q1

.

We also have [4], [5] that q0 − θ(q−0 ) < 1.95√q0, so that one can verify that

ε3(q0) <
1.95

√
q0(log q0)2

and so (23) holds for q0 > 1000. It remains to consider the cases when q1 > 1019, which 
implies q0 > 1014. Here we use |θ(t) − t| < 3.965t/(log t)2, which is from [6, Theorem 
4.2] or [2, Corollary 11.2]. This shows that (23) holds here as well, completing the proof 
of Theorem 1.

Data availability
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