
DEFINING EXPONENTIAL FUNCTIONS VIA LIMITS

STEVE FAN

Abstract. In this short note we prove a few classical properties of the exponential function
ex from the simple definition

ex := lim
n→∞

(
1 +

x

n

)n
.

This note is a result of the author’s curiosity in exploring and possibly teaching ex from a
different point of view.

1. The Exponential Function ex

In standard calculus textbooks, the exponential function ex is defined by

ex :=
∞∑
n=0

xn

n!
(1)

for all x ∈ R. The continuity of ex then follows from the uniform convergence of the power
series that defines it on closed and bounded intervals. Similarly, one can show that ex is
differentiable everywhere. An alternative way of defining ex is by considering the following
initial value problem

d

dx
f(x) = f(x),

f(0) = 1.

One defines ex to be the unique solution f(x) to this problem. One of the advantages of this
approach is that one has the differentiability of ex for free. However, there is a third method
when it comes to defining ex. It is well known that the constant e is commonly defined by

e := lim
n→∞

(
1 +

1

n

)n
.

It is hence natural to define ex by

ex := lim
n→∞

(
1 +

x

n

)n
. (2)

This definition was introduced by L. Euler [2] who actually derived the power series expansion
(1) from it (in a somewhat unrigorous way). Using Bernoulli’s inequality that (1 + x)n >
1 + nx holds for all positive integers n ≥ 2 and all nonzero x > −1, it is not hard to show
that for every x ∈ R \ {0}, the sequence {an(x)}∞n=1 defined by

an(x) :=
(

1 +
x

n

)n
is strictly increasing for n > max(0,−x). It is also not hard to prove that the sequence
{an(x)}∞n=1 is bounded for every fixed x ∈ R. Indeed, let us fix x ∈ R and denote by m the
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least positive integer greater than or equal to |x|. Then for sufficiently large n, we have

|an(x)| ≤
(

1 +
m

n

)n
≤
(

1 +
m

mn

)mn
=

(
1 +

1

n

)mn
,

where we have used the monotonicity of {an(x)}∞n=1. Since(
1 +

1

n

)n
= 2 +

n∑
k=2

(
n

k

)
1

nk
≤ 2 +

n∑
k=2

1

k!
< 2 +

n∑
k=2

1

k(k − 1)
= 3− 1

n
,

it follows that

|an(x)| ≤
(

3− 1

n

)m
for all sufficiently large n. This proves that {an(x)}∞n=1 is bounded for every fixed x ∈ R.
Here the treatment for (1 + 1/n)n is classical. However, the author discovered a slightly
different way to prove that the sequence {an(x)}∞n=1 is bounded for every fixed x ∈ R. The
starting point is another simple inequality due to Bernoulli:

(1 + x)n ≤ 1

1− nx
,

where n is a positive integer and x ∈ (−1, 1/n). This inequality can be proved easily by
induction. As a consequence of this inequality, we have

|an(x)| ≤
(

1 +
m

n

)n
≤
(

1 +
2m

2mn

)2mn

=

(
1 +

1

2n

)2mn

≤ 4m

for all sufficiently large n. This again proves that {an(x)}∞n=1 is bounded for every fixed x ∈ R.
Now it follows from the monotone convergence theorem that {an(x)}∞n=1 is convergent for
every x ∈ R. This justifies Euler’s definition (2). Moreover, the monotonicity of {an(x)}∞n=1

implies that for every x ∈ R \ {0}, the inequality

ex >
(

1 +
x

n

)n
holds for all n > max(0,−x). In particular, this yields ex > max(0, 1 +x) for all x ∈ R\{0},
by Bernoulli’s inequality. It is also clear from (2) that ex is increasing on R.

2. The Continuity and Differentiability of ex

Now we derive from (2) the fact that ex is continuous everywhere. Fixing x0 ∈ R and
ε > 0, we have

ex − ex0 = lim
n→∞

[(
1 +

x

n

)n
−
(

1 +
x0

n

)n]
= (x− x0) lim

n→∞

1

n

n−1∑
k=0

(
1 +

x

n

)n−1−k (
1 +

x0

n

)k
.

If |x− x0| < ε, then(
1 +

x0 − ε
n

)n
≤ 1

n

n−1∑
k=0

(
1 +

x

n

)n−1−k (
1 +

x0

n

)k
≤
(

1 +
x0 + ε

n

)n
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for sufficiently large n. It follows that

ex0−ε|x− x0| ≤ |ex − ex0| ≤ ex0+ε|x− x0| (3)

for all x ∈ (x0− ε, x0 + ε). This proves that ex is continuous at x0. Since x0 ∈ R is arbitrary,
we conclude that ex is continuous on R.

Now that we have established the continuity of ex, it follows immediately from (3) and
the monotonicity of ex that ex is differentiable with

d

dx
(ex) = ex > 0

for all x ∈ R. Thus ex is strictly increasing and ex ∈ C∞(R). From this the power series
expansion (1) of ex follows naturally from Taylor’s theorem. If f(x) is a differentiable function
satisfying f ′(x) = f(x), then

d

dx

(
f(x)

ex

)
=
f ′(x)− f(x)

ex
= 0

for all x ∈ R. This implies f(x) = Cex for all x ∈ R, where C ∈ R is a constant. Hence ex

is the unique solution to the initial value problem

d

dx
f(x) = f(x),

f(0) = 1.

We have thus shown that the definition (2) implies both the power series definition and the
differential equation definition of ex. One advantage of this approach is that ex defined by
(2) provides an explicit and elementary solution to the initial value problem in consideration,
from which the uniqueness follows naturally as we saw above.

3. The Addition Law for ex

The addition law for ex states that ex+y = exey for all x, y ∈ R. It is not immediately
clear how the addition law follows from (1), but it can be easily verified once we know ex is
differentiable with derivative ex. Indeed, we have by the chain rule that

d

dx
(ec−xex) =

d

dx
(ec−x)ex + ec−x

d

dx
(ex) = −ec−xex + ec−xex = 0

for all x ∈ R, where c ∈ R is a constant. Thus ec−xex is constant. Since its value at x = 0
is ec, we find that ec−xex = ec for all x, c ∈ R. Taking c = x + y yields the addition law.
Without doubt, this classical argument [1, §3.1] is neat and elegant.

On the other hand, the author found a way to derive the addition law without using the
differentiability of ex. Note first that

exe−x = lim
n→∞

(
1 +

x

n

)n (
1− x

n

)n
= lim

n→∞

(
1− x2

n2

)n
.

By Bernoulli’s inequality we have

1− x2

n
≤
(

1− x2

n2

)n
≤ 1
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for sufficiently large n. It follows that

lim
n→∞

(
1− x2

n2

)n
= 1.

Hence exe−x = 1. More generally, suppose that x, y ∈ R are arbitrary. Then

exey = lim
n→∞

(
1 +

x+ y

n
+
xy

n2

)n
.

For any ε > 0 we have ∣∣∣xy
n2

∣∣∣ < ε

n
for all sufficiently large n. It follows that(

1 +
x+ y − ε

n

)n
<

(
1 +

x+ y

n
+
xy

n2

)n
<

(
1 +

x+ y + ε

n

)n
.

Thus we have

ex+y−ε ≤ exey ≤ ex+y+ε.

Since ex is continuous and ε > 0 is arbitrary, we have exey = ex+y.

4. The Natural Logarithm

The natural logarithm, denoted by log x or lnx, is defined to be the inverse function of ex,
namely, elog x = x. It is strictly increasing on its domain (0,+∞). We now show that log x
is continuous everywhere. Fix x0 > 0 and 0 < ε < x0. As in Section 2, we have

x− x0 = (log x− log x0) lim
n→∞

1

n

n−1∑
k=0

(
1 +

log x

n

)n−1−k (
1 +

log x0

n

)k
.

for all x > 0. If |x− x0| < ε, then(
1 +

log(x0 − ε)
n

)n
≤ 1

n

n−1∑
k=0

(
1 +

log x

n

)n−1−k (
1 +

log x0

n

)k
≤
(

1 +
log(x0 + ε)

n

)n
for sufficiently large n. Hence

| log x− log x0|(x0 − ε) ≤ |x− x0| ≤ | log x− log x0|(x0 + ε).

This shows that log x is continuous at x0. Hence log x is continuous on (0,+∞). Moreover,
we have

1

x0 + ε
≤ log x− log x0

x− x0

≤ 1

x0 − ε
for all x > 0 with x 6= x0 and |x−x0| < ε. This implies that log x is differentiable at x0 with

d

dx
(log x)

∣∣∣∣
x=x0

=
1

x0

.

Hence log x is differentiable on (0,+∞) with

d

dx
(log x) =

1

x
.
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Now one can define ax := ex log a, where x ∈ R and a > 0. Then it is easy to see that
ax+y = axay and

(ax)y = ey log ax = exy log a = axy

for all x, y ∈ R and a > 0.

5. Extension to the Complex Exponential Function ez

Both the power series expansion (1) and the differential equation approach [1, §3.1] can
be extended to define the complex exponential function ez. It is thus tempting to generalize
(2) as well by defining

ez := lim
n→∞

(
1 +

z

n

)n
(4)

for z = x+ iy ∈ C. Once the existence of the limit on the right-hand side is established for
every z ∈ C, one can show as in Section 2 that ez defined in this way is continuous on C, but
some extra effort is needed to show that ez is holomorphic everywhere. The author found a
way to prove that the sequence {an(z)}∞n=1 defined by

an(z) :=
(

1 +
z

n

)n
converges uniformly on every bounded subset of C. Let r > 0 be a constant and let E ⊆
{z ∈ C : |z| ≤ r}. For any positive integers n > m ≥ 2 we have

|an(z)− am(z)| ≤
m∑
k=2

[(
n

k

)
1

nk
−
(
m

k

)
1

mk

]
|z|k +

n∑
k=m+1

(
n

k

)
|z|k

nk
.

It is clear that uniformly for all z ∈ E, we have∑
4√m<k≤m

[(
n

k

)
1

nk
−
(
m

k

)
1

mk

]
|z|k +

n∑
k=m+1

(
n

k

)
|z|k

nk
<

∑
4√m<k≤n

(
n

k

)
rk

nk
<
∑
k> 4√m

rk

k!
→ 0

as m→∞. For 2 ≤ k ≤ 4
√
m, it follows by Bernoulli’s inequality that

k!

[(
n

k

)
1

nk
−
(
m

k

)
1

mk

]
< 1−

k−1∏
l=0

(
1− l

m

)
< 1−

(
1− k

m

)k
<
k2

m
≤ 1√

m

for sufficiently large m. Hence uniformly for all z ∈ E, we have∑
2≤k≤ 4√m

[(
n

k

)
1

nk
−
(
m

k

)
1

mk

]
|z|k < 1√

m

∞∑
k=2

rk

k!
→ 0

as m→∞. We have thus shown that an(z)−am(z)→ 0 uniformly for all z ∈ E as m→∞.
By Cauchy’s uniform convergence test, we conclude that {an(z)}∞n=1 is uniformly convergent
on E. This proves that {an(z)}∞n=1 is uniformly convergent on every bounded subset of C.
By a theorem of Weierstrass [1, Theorem 1, §5], we know that an(z) converges to an entire
function, which we denote by ez, with derivative

d

dz
(ez) = lim

n→∞

d

dz

(
1 +

z

n

)n
= lim

n→∞

(
1 +

z

n

)n−1

= ez.
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Having proved this, we obtain immediately the addition law ea+b = eaeb for all a, b ∈ C. It
is also clear that this approach allows one to define the exponential function in an arbitrary
unital Banach algebra.

In the argument above, we used the fact that the series

∞∑
n=0

rn

n!

is convergent for every r ≥ 0. This is almost trivial when 0 ≤ r ≤ 1. For r > 1, the
convergence of this series follows from the fact that n! > r2n for all sufficiently large n. It
is worth noting that in comparison to the power series definition of ez, the definition (4)
does not give clear clues to Euler’s formula eix = cosx + i sinx, though it does yield at
once ez = ez̄ and |ez| =

√
ezez̄ =

√
ez+z̄ = ex for any z = x + iy ∈ C. Thus eiy : R → S1

defines a homomorphism from R to the unit circle S1, where both R and S1 are considered
as topological groups.

Now we give a proof of Euler’s formula eix = cosx+ i sinx . Let us write

eix = f(x) + ig(x),

where

f(x) = lim
n→∞

∑
0≤k≤n/2

(−1)k
(
n

2k

)
x2k

n2k
,

g(x) = lim
n→∞

∑
0≤k≤(n−1)/2

(−1)k
(

n

2k + 1

)
x2k+1

n2k+1
.

Since

d

dx
(eix) = ieix = −g(x) + if(x),

we have f ′(x) = −g(x) and g′(x) = f(x). Therefore, f(x) and g(x) are solutions to the
following initial value problem

f ′(x) = −g(x), g′(x) = f(x),

f(0) = 1, g(0) = 0.

It follows that f(x) = cos x and g(x) = sinx. Euler’s formula makes it reasonable to define,
for all z ∈ C, the complex trigonometric functions

cos z :=
eiz + e−iz

2
= lim

n→∞

∑
0≤k≤n/2

(−1)k
(
n

2k

)
z2k

n2k
,

sin z :=
eiz − e−iz

2i
= lim

n→∞

∑
0≤k≤(n−1)/2

(−1)k
(

n

2k + 1

)
z2k+1

n2k+1
.
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6. Final Comments

There are other alternative ways of defining ex. For instance, it is well known that the set
of all positive continuous solutions to the Cauchy functional equation f(x + y) = f(x)f(y)
is {ax : a > 0}. Thus we may define ex to be the unique positive continuous solution to this
Cauchy equation with its value at 1 given by e. On the other hand, we may first define
log x to be the the unique nonzero real-valued continuous solution to the Cauchy equation
f(xy) = f(x) + f(y) on (0,+∞) with its value at e given by 1, and then define ex to be its
inverse function. Of course, if one is willing to resort to the theory of integration, then log x
can be defined by the definite integral

∫ x
1

1/t dt, though this is not as elementary as the ones
suggested above.
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