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Preface

Linear algebra is an elegant subject and remarkable tool whose influence reaches
well beyond uses in pure and applied mathematics. This document provides
an environment in which to enhance one’s understanding of the ideas in linear
algebra by working examples often too tedious to do by hand. We will use
Cocalc1 (Sage) as the computational tool of choice.

This document is not intended as a textbook but a companion guide to a
textbook. It is also important to note that this document is in active
development with new topics frequently added and the emphasis on providing
functionality, not necessarily a robust discussion of topics. In the interim, an
excellent online source of linear algebra material is Robert Beezer’s text
A first course in linear algebra2, as well as standard references like [1], [2], or [3].

Finally, Sage can be installed on your laptop to make it easier to go out-
side the confines of this guide. There are binaries for Linux3, Mac OSX4, and
Windows5.

Thomas R. Shemanske
Hanover, NH
2020

1cocalc.com
2linear.ups.edu/fcla/index.html
3www.sagemath.org/download-linux.html
4/www.sagemath.org/download-mac.html
5github.com/sagemath/sage-windows/releases
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Chapter 1

Matrices and basic operations

In this first chapter we show how to enter a matrix and perform various opera-
tions viewing it either as a coefficient or augmented matrix of a linear system.
In particular, we show how to produce reduced row echelon forms, and use them
to discuss solutions to a linear system presented as a matrix equation Ax = b.

1.1 Entering a matrix and row reduction
Matrices can be entered explicitly or generated randomly, even with prescribed
properties. Here we enter the 4× 5 matrix A explicitly.

The generic format to create an m× n matrix A is A=matrix(R,[[row
1], ..., [row m]]) where each row has n comma-separated entries, and R is
the ring (field) in which the coefficients lie. Typical for this is R is replaced with
ZZ, QQ, RR,or CC, for (respectively) the integers, the rational, real or complex
numbers.

To print the matrix, either type A on the next line, or separate the two com-
mands on the same line as we have done below with a semicolon. The %display
latex line simply tells the process to display the output in a nicely mathemat-
ically typeset fashion, and the line concerning delimeters writes matrices with
square brackets instead of parentheses.

%display latex
latex.matrix_delimiters("[", "]")
A = matrix(ZZ ,[[-1,-2,-2,1,-2],[0,-3,2,7,-2],
[6,0,0,0,2],[2,1,0,0,0]]); A

Whether the matrix A above represents the coefficient matrix or the aug-
mented matrix of a linear system, one thing we often want to do is row reduce
the matrix. We can produce either an echelon or the reduced row-echelon form
(which we know to be unique.)

Make sure you have created the matrix above before executing the
commands below, otherwise Sage will be confused.

1



CHAPTER 1. MATRICES AND BASIC OPERATIONS 2

Here is a command to put a matrix in echelon form which is often adequate
to answer many questions about the associated linear system.

A.echelon_form ()

Here we produce the reduced row-echelon form of A.

A.rref()

Remark 1.1.1 Does the choice of ring (ZZ,QQ,RR,CC) matter? This
is a slightly subtle point you can ignore for now choosing your ring to be QQ or
RR. Note that in the former case your answers will have fractions; in the later,
it will have decimal approximations.

Also, in the first example I chose the ring to be ZZ (the integers), and Sage
tries to do arithmetic in the ring you choose. This is the reason the echelon form
has no fractions. If you go back and change ZZ to QQ in the definition of the
matrix A, the answers given by echelon_form and rref will be the same.

Playground space (Enter your own commands).

%display latex
latex.matrix_delimiters("[", "]")

1.2 Solving systems of linear equations — me-
chanics

We run through the mechanics of using Sage to solve a system of linear equations.
Insight 1.2.1 When we consider a linear system of the form Ax = b, we know
(via Gaussian elimination) that the system is solvable if and only if the rightmost
column of the augmented matrix [A|b] is not a pivot column, which is to say that
the reduced row-echelon form of the augmented matrix does not have a row of
the form [0 0 · · · 0 ∗] where ∗ is a nonzero scalar.

Let’s define a fixed coefficient matrix and augment it with different column
vectors, checking for consistency (solvability).

%display latex
latex.matrix_delimiters("[", "]")
A=matrix(QQ ,[[1, 1, 5,-6,-14,18,1],[0, 1, 4, -7, -15,16
,6], [-1 ,-1 ,-4, 3, 8,-13, 3],
[2, 1, 6, -4,-11, 19, -6], [-1, 0, -3, 0, 1, -7, 7]]);A

Now we define two column vectors b1 and b2, and consider the solvabilty of
the system Ax = b for each b = bi. Sage treats these as column vectors even
though they will be displayed as row vectors.
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b1=vector(QQ ,[5,3,-5,7,3])
b2=vector(QQ ,[5,3,-5,7,-2])
b1,b2

We produce the reduced row-echelon form of each augmented matrix.

(A.augment(b1)).rref()

Thus we see the first system has no solution.

(A.augment(b2)).rref()

We see the second system is solvable. How shall we characterize the solutions?
We note that the coefficient matrix is 5 × 7, and the rref form of A (or of

the augmented matrix) has four pivots, hence four constrained variables leaving
3 free variables.

Rewriting this reduced matrix once again as a linear system of equations, we
see:

x1 = x5 − x6 + x7 + 2

x2 = x5 − x6 + 3

x3 = −2x6 + 2x7

x4 = −2x5 + x6 + 2x7

When we untangle all that we see that the general solution has the form:

x1

x2

x3

x4

x5

x6

x7


= x5



1
1
0

−2
1
0
0


+ x6



−1
−1
−2
1
0
1
0


+ x7



1
0
2
2
0
0
1


+



2
3
0
0
0
0
0


If we ask Sage to solve the system, it hands us a single solution, the one with

x5 = x6 = x7 = 0.

A.solve_right(b2)

On the other hand we know all solutions to the system have the form of
the sum of a particular solution and an element of the nullspace. We ask for
generators of the nullspace (really a basis). The vectors returned as rows should
look very familiar from the work above.

A.right_kernel(basis= ' pivot ' )
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1.3 Solving systems of linear equations — theory
When you first met and considered a system of equations of the form Ax = b,
you were taught that Guassian elimination on the augmented matrix provided
a means to extract the solutions. In particular, your solutions to such a system
are unaffected by elementary row operations on the augmented matrix. More
precisely,
Theorem 1.3.1 Let Ax = b represent a system of linear equations. If one uses
Gaussian elimination to reduce the augmented matrix

[A|b] 7→ [R|b′],

then the solution spaces to Ax = b and Rx = b′ are identical.
However, while finding the reduced row-echelon form of an augmented matrix

provides the information one needs to find solutions to a particular system of
linear equations, here we review a bit more about how we know for which b a
system Ax = b will be consistent.

Spoiler alert: It is difficult to have a meaningful discussion concerning
solutions to systems of linear equations without mentioning some basic notions
about vector spaces (explored more fully in the next section), and in particular
the notions of linear combinations and how they are related to spans and the
notion of linear independence. [Clicking on the links will drop down the
definition; clicking again will roll it up.]
Observation 1.3.2 A terribly useful observation. If a matrix is given by
A = [a1 a2 · · · an] where aj is the jth column of A, and if x is the column
vector x = [x1, . . . , xn], then the matrix product Ax is a linear combination of
the columns of A. More precisely,

Ax = x1a1 + · · ·+ xnan.

An important and immediate consequence of the above observation is
Corollary 1.3.3 A linear system Ax = b is solvable if and only if b is in the
column space of A.

So let’s try to find the solutions to the matrix equation Ax = b, where A
is a 5 × 7 matrix of rank 5. For concreteness, let’s fix one matrix to enable a
conversation. We shall consider the matrix A to be the coefficient matrix of a
linear system Ax = b.

%display latex
latex.matrix_delimiters("[", "]")
A = matrix(QQ, [[0, -1, -1, 2, 9, 4, -4],
[-1, 1, 0, -2, -7, -1, 6],
[2, 0, 1, 0, 1, -5, -2],
[-1, -1, -1, 3, 10, 10, -9],
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[-1, 2, 0, -3, -7, 1, 6]])
A

A.rref()

From the RREF, we see there are 5 constrained variables (pivots) and 2 free
variables, so whenever Ax = b is solvable, it will have infinitely many solutions.

When one first studies linear systems, one checks whether the system is
solvable by row reducing the augmented matrix and looking for no pivot in the
last column. Later you learn (see the spoiler alert above) that a system Ax = b
is solvable if and only if b is in the column space of A.

So let’s choose b to be in the column space of A, say we choose b to be twice
the first column plus 3 times the second. Note that columns (and rows)
are indexed starting with 0.

b=3*A.column (0) + 5*A.column (1); b

Here is how to check that b is in the column space.

b in A.column_space ()

As we noted, one way to solve this system is to row reduce the augmented
matrix. This method leads to finding all the solutions.

(A.augment(b)).rref()

Another way is to use a command to find a single solution to the system
Ax = b. We then know that every solution to Ax = b has the form a sum of this
particular solution and a solution to the homogeneous system Ax = 0.

A.solve_right(b)

In this case, this is an expected solution (recall how we constructed b), though
not the only one since there are free variables, but let’s look at something curious.
Let us now choose for b the last column of A given explicitly as a (column) vector
(even though it is written as a row vector).

b=vector(QQ ,[-2,1,-3,-1,-1]); b

b in A.column_space ()

A.solve_right(b)

Not exactly the solution we were looking for, so maybe we should look for
all solutions. For that we need to find all the solutions to the homogeneous
solutions, that is solutions to Ax = 0. Our usual method is to look at the RREF
and extract a basis for the nullspace.
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A.rref()

You should note that the vectors you get for a basis of the nullspace bear a
striking resemblance to:

A.right_kernel(basis= ' pivot ' )

And now it is easy to check that the difference of the solution given by Sage
and the last column of A lies in the nullspace.

Playground space (Enter your own commands).

%display latex
latex.matrix_delimiters("[", "]")

1.4 Exercises (with solutions)

1.4.1 Linear equations — Mechanics
Exercises
1. Let

M =


0 0 0 1 2
1 −5 −1 0 −3

−2 10 3 5 17
−2 10 3 2 11


be the augmented matrix of a linear system given by the matrix equation
Ax = b, and let

R =


1 −5 0 0 −2
0 0 1 0 1
0 0 0 1 2
0 0 0 0 0


be its reduced row-echelon form.

(a) How many equations and how many variables does the linear system
have?

Solution. The matrix M = [A|b] is 4 × 5 which means there are
four equations and four unknowns.
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(b) Is the linear system consistent>

Solution. Yes, the last column is not a pivot column, see In-
sight 1.2.1.

(c) What are the pivot positions?

Solution. They are boxed:

R =


1 −5 0 0 −2

0 0 1 0 1

0 0 0 1 2
0 0 0 0 0


(d) What are the free and constrained variables (if any)?

Solution. x1, x3 and x4 are constrained (corresponding to pivots),
while x2 is unconstrained or free.

(e) Describe the solutions.

Solution. 
x1 = −2 + 5x2

x2 is free
x3 = 1

x4 = 2

is one way to describe the solutions. Perhaps a better way is in vector
form: 

x1

x2

x3

x4

 =


−2
0
1
2

+ x2


5
1
0
0

 .

(f) Describe the solutions to the homogeneous system Ax = 0.

Solution. We just throw away the last column of M and of its
reduced row-echelon form R. Then we read them from the answer
above: 

x1 = 5x2

x2 is free
x3 = 0

x4 = 0

is one way to describe the solutions. Perhaps a better way is in vector
form: 

x1

x2

x3

x4

 = x2


5
1
0
0

 .
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2. Let

M =


1 4 3 −5 −11 10
0 0 1 −1 −3 3

−1 −4 −5 7 17 −16
1 4 2 −4 −8 7


be the augmented matrix of a linear system given by the matrix equation
Ax = b, and let

R =


1 4 0 −2 −2 1
0 0 1 −1 −3 3
0 0 0 0 0 0
0 0 0 0 0 0


be its reduced row-echelon form.

(a) How many equations and how many variables does the linear system
have?

Solution. The augmented matrix M = [A|b] is 4 × 6 which means
there are four equations and five unknowns.

(b) Is the linear system consistent?

Solution. Yes, the last column is not a pivot column, see In-
sight 1.2.1.

(c) What are the pivot positions?

Solution. They are boxed:

R =


1 4 0 −2 −2 1

0 0 1 −1 −3 3
0 0 0 0 0 0
0 0 0 0 0 0


(d) What are the free and constrained variables (if any)?

Solution. x1 and x3 are constrained (corresponding to pivots), so
x2, x4 and x5 are unconstrained or free.

(e) Describe the solutions.

Solution. 

x1 = 1− 4x2 + 2x4 + 2x5

x2 is free
x3 = 3 + x4 + 3x5

x4 is free
x5 is free
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is one way to describe the solutions. Perhaps a better way is in vector
form: 

x1

x2

x3

x4

x5

 =


1
0
3
0
0

+ x2


−4
0
0
0
0

+ x4


2
0
1
0
0

+ x5


2
0
3
0
0

 .

(f) Describe the solutions to the homogeneous system Ax = 0.

Solution. We just throw away the last column of M and of its
reduced row-echelon form R. Then we read them from the answer
above: 

x1

x2

x3

x4

x5

 = x2


−4
0
0
0
0

+ x4


2
0
1
0
0

+ x5


2
0
3
0
0

 .

1.4.2 Linear equations — Theory
Exercises
1. Let

A =

 1 2 3
3 6 9
5 10 15

 and b =

 1
2
3

 .

Is the system Ax = b solvable?
Hint. Can you guess the answer first and a reason why?
Solution. No it is not solvable. We know by Corollary 1.3.3 that Ax = b
is solvable iff b is in the column space of A. By inspection, we see that
columns 2 and 3 of the matrix A are multiples of the first column, which
says the column space of A is spanned by its first column. So the only way
for the system to be solvable is if

b =

 1
2
3

 = λ

 1
3
5

 .

Comparing first coordinates says that λ = 1, but comparing second coordi-
nates requires that λ = 2/3, so there can be no solution.

Of course if the observation above escaped us, we could row reduced the
augmented matrix associated to the system yielding

[A|b] =

 1 2 3 3
3 6 9 2
5 10 15 3

 7→ R =

 1 2 3 0
0 0 0 1
0 0 0 0

 .
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We observe the last column is a pivot column (Insight 1.2.1) so the system
is not solvable.

2. Let

A =


1 4 3 −5 −11 10
0 0 1 −1 −3 3

−1 −4 −5 7 17 −16
1 4 2 −4 −8 7


and let

R =


1 4 0 −2 −2 1
0 0 1 −1 −3 3
0 0 0 0 0 0
0 0 0 0 0 0


be its reduced row-echelon form.

(a) What are the pivot columns of A?

Solution. From the RREF, we see the pivot columns are the first
and third.

(b) The column space is guaranteed to be spanned by which two columns
of A?

Solution. The first and third columns of A span its column space
since they are the pivot columns, but so do the first and fourth, fifth,
or sixth. Why?

(c) Since we know the column space is spanned by the columns from the
previous part, all the other columns of A are linear combinations of
those two. Is it possible to write down the particular combinations
from the information we have so far?

Solution. By Theorem 1.3.1, we know that the solutions to Ax = 0
and Rx = 0 are exactly the same, but that means that if A has
columns ai, and R has columns ri, then we have equal linear combi-
nation of columns:

Ax = 0 = x1a1 + x2a2 + · · ·+ x6a6 = x1r1 + x2r2 + · · ·+ x6r6 = Rx.

In looking at

R =


1 4 0 −2 −2 1
0 0 1 −1 −3 3
0 0 0 0 0 0
0 0 0 0 0 0


it is easy to see that (for example) the fifth column of R, is equal to

r5 = −2r1 − 3r3, giving − 2r1 − 3r3 − r5 = 0.
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But that means that

−2a1 − 3a3 − a5 = 0 giving a5 = −2a1 − 3a3.

So we can indeed read of how to write each column of A as a linear
combination of the pivot columns.

1.5 Generate your own matrices with prescribed
properties

While you have learned that every matrix has a unique reduced row-echelon
form, many times the RREF has complicated looking entries. This algorithm
generates a random matrix whose RREF has integer entries. We have specified
the number of non-zero rows in the RREF (=rank) and told it to try to find a
matrix whose entries are no larger than 20 in absolute value. Should Sage fail
to produce a matrix, increase the upper bound or remove it altogether.

%display latex
latex.matrix_delimiters("[", "]")
A=random_matrix(QQ ,5,7, algorithm= ' echelonizable ' , rank=4,
upper_bound =20); A

A.rref()

You can keep on generating new matrices by clicking the Evaluate (Sage)
button. Try to find one where the rref has leading ones which skip a column.



Chapter 2

Vector Spaces, Subspaces and Lin-
ear Maps

In this section we introduce vector spaces and subspaces and give the definition
and basic results about linear maps. All of these concepts will gradually be
refined in later chapters.

2.1 Vector spaces
It may be useful to recall the definition of a vector space. Clicking the link will
drop down the definition.

Some very common examples of vector spaces over a field F (e.g., F = Q,R,or
C).

• F n

• Mm×n(F ) m× n matrices with entries in F.

• Pn(F ) Polynomials of degree at most n

• P (F ) = F [x] All polynomials with coefficients in F.

We continue with somewhat more sophisticated examples of vector spaces.
These are vector spaces of functions which are especially important when linear
algebra is applied to analysis. You have aleady studied some of these spaces
when you took calculus.

• Let
V = F(R) = {f : R → R},

be the set of all functions from R to R. This is the underlying set which
we want to make V into a vector space. To do so, we need to define vector
addition and scalar multiplication. For f, g ∈ F(R) and λ ∈ R, define
f + g and λf by:

(f + g)(x) := f(x) + g(x) for all x ∈ R

12
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(λf)(x) := λf(x) for all x ∈ R.

We leave it as an exercise to show that F(R) is a vector space over R.

• Let
C(R) = {f ∈ F(R) | f is continuous }.

Is C(R) a subspace of F(R)? What do we need to check?
Certainly, the zero function 0(x) = 0 for all x ∈ R is a continuous function.
Is the sum of two continuous functions continuous and is a constant times a
continuous function continuous? Wait!? Aren’t those theorems one proves
in calculus?
The take away here is that sometimes even verifying the closure axioms
can be nontrivial.

• Generalizing the above, we define

Cn(R) = {f ∈ F(R) | f (n) is continuous.}

Implicit in this definition (again a theorem from calculus) is that if f ∈
Cn(R), then f, f ′, f ′′, · · · , f (n) are all continuous. We see that we have a
nested sequence of subspaces:

C(n)(R) ⊂ C(n−1)(R) ⊂ · · · ⊂ C(R) ⊂ F(R).

• Finally we define C∞(R) to be the elements of F(R) which are in Cn(R)
for all n ≥ 1. Said symbolically,

C∞(R) =
∞⋂
n=1

C(n)(R).

2.2 Constructing Subspaces
Given a vector space V over a field F , recall what it means for a subset W of
V to be a subspace. While it is not hard to check whether or not a subset of a
vector space is a subspace, it can be a bit subtle at first blush.

Example 2.2.1 Is every line or plane a subspace of R3? The answer is
no, and it is not hard to see, but it will take a while before we understand the
significance. It is true that every line or plane containing the origin is a subspace
of R3, and except for the addition of the zero subspace and all of R3, these are
all the subspaces of R3.

So we can immediately exclude lines or planes that do not pass through the
original simply because they fail to have the additive identity in the set. But
this sounds awfully picky, doesn’t it? Actually is it not; without the origin in
the set, everything goes wrong.
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For example consider the plane

W = {(x, y, z) ∈ R3 | x+ y + z = 1}.

Not only is (0, 0, 0) /∈ W , but it is also not closed under addition or scalar
multiplication:

(1, 0, 0), (0, 1, 0) ∈ W but (1, 1, 0) /∈ W,

(1, 0, 0) ∈ W but λ(1, 0, 0) /∈ W unless λ = 1.

□
The next example may bother you at first, but linear algebra may be the

first course in which being mathematically precise is essential. We shall discuss
the possible misconceptions, and this will lead us to a more sophisticated notion,
that of an isomorphism.

Example 2.2.2 Is R2 a subspace of R3? The answer is no, and the reason is
simple, but let’s start with some false reasoning, and then see how resolving
our mistake leads to interesting ideas.

The reasoning starts with the correct statement that both R2 and R3 are
vector spaces over R. Where false reasoning intrudes is the claim that R2 ⊆ R3.

You may protest! The xy-plane is a subspace of R3! And I would agree, but
R2 is not. Why? Simply because R2 consists of ordered pairs while R3 consists
of ordered triples; pairs are not triples.

But how does that help with the xy-plane? The xy-plane (in R3) is the set

W = {(x, y, z) ∈ R3 | z = 0}.

At least W ⊂ R3, and we check the closure axioms easily.
Similarly, we see that the yz and xz-planes are subspaces of R3. Indeed each

of these subspaces is an exact replica of R2. One might go so far as to define a
map to justify this, for example: T : R2 → W ⊂ R3 by T ((x, y)) = (x, y, 0).

Do you think you could define a map from R2 to any plane in R3 (containing
the origin)? □

Having suggested we do need to be careful, let’s now recall some important,
but familiar examples of a subspace of F n for an integer n ≥ 1. Let F be a field,
say F = Q,R, or C, and let A ∈ Mm×n(F ). The rows of A are elements of F n,
while the columns are a subset of Fm. These sets are not themselves subspaces
since they are not closed under vector addition and scalar multiplication.
Remark 2.2.3 Actually the last statement has one exception; that is there is
exactly one m× n matrix whose rows or columns form subspaces. What is it?

We can make subspaces out of the rows and columns by creating the row
space (resp. column space), the set of all linear combinations of the rows (resp.
columns). Taking the span of a set of vectors is one of the most common ways in
which to construct a subspace of a vector space. The notion of span as well as of
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linear independence are two fundamental notions in linear algebra that involve
the construction of linear combinations.

The following is an absolutely critical observation concerning spans.
Theorem 2.2.4 Let V be a vector space and S, T two subsets of V.

If S ⊆ Span(T ), then Span(S) ⊆ Span(T ), and so,
Span(S) = Span(T ) ⇐⇒ S ⊆ Span(T ) and T ⊆ Span(S).

Let’s consider some examples.

• In V = R3, let S =


 1

0
0

 ,

 0
1
0

 ,

 0
0
1

, and T =


 5

0
0

 ,

 5
6
0

 ,

 5
6
7

.

It is clear that V = Span(S), and so of course T ⊂ Span(S). It is also easy
to see that S ⊂ Span(T ) by thinking algorithmicly.
Let’s observe that since Span(T ) is a subspace of V , it is closed under linear

combinations, so that

 0
6
0

 =

 5
6
0

−
 5

0
0

 and

 0
0
7

 =

 5
6
7

−
 5

6
0


are both in Span(T ). Now it is easy to check that S ⊂ Span(T ), so that
V = Span(S) = Span(T ).

What if T =


 5

0
0

 ,

 5
6
0

 ,

 5
6
7

 ,

 2
3
4

. Is is still true that S, T

have the same spans?

• Is T = {2, 3 + x, 4 + 5x + 6x2, 7 + 8x + 9x2 + 10x3} a spanning set for
P3(Q)?

2.3 Sums and Direct Sums
Let’s return to the example above in which T : V → W is a linear map, and
suppose {v1, . . . , vk} is a basis for U = ker(T ), and we extend that basis to a
basis B = {v1, . . . , vn} for V . If we put U ′ = Span({vk+1, . . . , vn}), then every
element v ∈ V can be written as v = u+u′ for unique vectors u ∈ U and u′ ∈ U ′.

Taking this one step further, if v = u+ u′ as above we know that

T (v) = T (u+ u′) = T (u) + T (u′) = 0 + T (u′) = T (u′),

so that understanding the action of T on V has been reduced to understanding
the action on the subspace U ′. So effectively we have reduced the size of our
problem.

The situation we described above is actually rather special, so let’s begin
with a slightly more general notion.
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Let U,W be subspaces of a vector space V . Denote by

U +W := {u+ w | u ∈ U, w ∈ W}.

That is, U +W is the set of vectors v ∈ V which can be written as v = u + w
for some u ∈ U and some w ∈ W. That seems very similar to what happened
in the example above, except in that example, the vectors u,w were uniquely
determined.

It is easy to check that U + W is a subspace of V, (indeed the smallest
subspace of V containing U and W ), but before going too far, we should make
a few simple observations. First, it is immediate to check that U +W = W +U
since addition in a vector space is commutative. What if we have more than two
subspaces?

If we had three subspaces Ui, i = 1, 2, 3, we could easily check (since we know
how to add pairs of subspaces) that

(U1 + U2) + U3 = U1 + (U2 + U3),

so we can unambiguously define

U1 + U2 + U3 := (U1 + U2) + U3,

and inductively we define

U1 + · · ·+ Un := (U1 + · · ·+ Un−1) + Un.

But as with any new concept, some examples help us better understand it.

Example 2.3.1 A standard decomposition of F n. Let {e1, . . . , en} be the
standard basis for F n, and put Ui = Span{ei}, the line through the origin in
the direction of ei. So when n = 3, these subspaces are just the x, y, and z axes.
Then we see that F n = U1+U2+ · · ·+Un. We also see that every element of F n

is the sum of uniquely determined elements from the Ui. As row vectors,

(a1, . . . , an) = (a1, 0, . . . , 0) + (0, a2, 0, . . . , 0) + · · ·+ (0, . . . , 0, an).

□
Example 2.3.2 Decomposing V = F 3. Let {e1, e2, e3} be the standard basis
for V , and let U = Span{e1, e2} and let W = Span{e3, e1 + e2 + e3}. It is
straightforward to show that

U +W = Span{e1, e2, e3, e1 + e2 + e3} = Span{e1, e2, e3} = V,

so every element of V can be written as the sum of vectors from U and W , but
in this case not necessarily uniquely.

As a trivial example, let v = e3. Then v can be written as v = u + w with
u = 0 and w = e3, or with u = −e1 − e2 and w = e1 + e2 + e3. □
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The source of this non-uniqueness is actually easy to discover. Suppose that
V = U +W, and for some v ∈ V,

v = u1 + w1 = u2 + w2.

Then of course r = u1 − u2 = w2 − w1. For uniqueness, we would need u1 = u2

and w1 = w2. Said another way, we would need r = u1 − u2 = w2 − w1 = 0.
But u1 − u2 ∈ U and w2 − w1 ∈ W, so the only way to force uniqueness is if
U ∩W = {0}.

We summarize this as
Proposition 2.3.3 Let U,W be subspaces of a vector space V , and suppose that
V = U + W. Then every element of V is representable as a sum of uniquely
determined elements of U and W if and only if U ∩W = {0}.

In the case that V = U +W , and U ∩W = {0}, we write

V = U ⊕W

and call V the direct sum of the subspaces U and W.

Checkpoint 2.3.4 Suppose that Ui, i = 1, 2, 3 are subspaces of a vector space
V, and that V = U1 + U2 + U3. We want necessary and sufficient conditions so
that every element of V can be represented as a unique sum of elements from
the Ui. What about when V = U1 + · · ·+ Un for n ≥ 3?

Hint. To gain some insight, first find an example in R3 where Ui ∩ Uj = {0}
whenever i 6= j, but not every element of R3 has a unique representation as a
sum.

2.4 Viewing subspaces through different lenses
While it is true that we can create a subspace by taking the span of an arbi-
trary collection of vectors, sometimes it is nice to have a spanning set that is
particularly efficient or has other special properties. So we review how we can
manipulate vectors in the row or column space of a matrix to produce nice(r)
spanning sets.

You should remind yourself why the following proposition is true.
Proposition 2.4.1 Let A be an m × n matrix with coefficients in field F, and
let R be its reduced row-echelon form. Then row space of A is the same as the
row space of R. More precisely, elementary row operations on a matrix do not
change its rowspace.

It follows that the span of the nonzero rows in the reduced row-echelon form
R is a minimal spanning set for the row space, better known as a basis.

Keeping with A an m×n matrix with coefficients in field F, another subspace
is called the nullspace of A (which is the same as the kernel of the linear
transformation which takes x 7→ Ax), that is

{x ∈ F n | Ax = 0}.
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In your course, you also proved:
Proposition 2.4.2 The nullspace of A is the same as the nullspace of R =
RREF (A), since the set of solutions to Ax = 0 is exactly the same as the set of
solutions to Rx = 0.
Remark 2.4.3 It is not true that the column space of a matrix and of its
RREF are the same. For example,

A =

[
1 1
1 1

]
and its RREF R =

[
1 1
0 0

]
do not have the same column space. Both column spaces are lines, just not the
same line.

On the other hand, it is true that elementary column operations do not
change the column space of a matrix.

2.5 Linear maps and associated subspaces
Linear algebra is the study of vector spaces and linear maps. Indeed we use
linear maps to understand and classify vector spaces. Here we review some basic
ideas to be expanded upon later.

Given two vector spaces V,W defined over the same field F, a linear map
T : V → W is function which preserves structure. Its definition says it takes
“sums to the corresponding sums” (T (v+v′) = T (v)+T (v′)), and it takes “scalar
multiples to the corresponding scalar multiples” (T (λv) = λT (v)).

Starting from the definition of a linear map, one proves by induction that a
linear map takes linear combinations of vectors in the domain to the same linear
combination of the corresponding vectors in the codomain. More precisely we
have
Proposition 2.5.1 Linear maps preserve structure. Let V,W be vector
spaces over a field F , and T : V → W a linear map. Then for every finite
collection of vectors v1, . . . , vr ∈ V , and scalars a1, . . . ar ∈ F we have

T (a1v1 + · · ·+ arvr) = a1T (v1) + · · ·+ arT (vr). (2.5.1)
Remark 2.5.2 What makes linear maps special is that even though they are
functions from V → W , to understand them we need not define them for every
vector v ∈ V . It is enough to define them on a linearly independent spanning
set for V , for once we have defined T (v1), . . . , T (vr), we know the definition of
T (v) for every v ∈ Span{v1, . . . , vr}. Linear independence plays a crucial role
here, but we take that up in the next section.

For now, we content ourselves with defining two subspaces associated to a
linear map T : V → W, the kernel or nullspace and the image.

These sets are familiar for the linear map T : F n → Fm given by T (x) = Ax,



CHAPTER 2. VECTOR SPACES, SUBSPACES AND LINEAR MAPS 19

where A is any element of Mm×n(F ). The kernel of T is

kerT = {x ∈ F n | T (x) = Ax = 0},

the set of solutions to the homogeneous linear system of equations Ax = 0. And
the image,

ImT = {b ∈ Fm | Ax = b is solvable}.
Of course for this linear transformation, T (x) = Ax, we know that ImT = C(A),
the column space of A.
Note 2.5.3 One theorem you prove is that for a linear map T : V → W, it is
always the case that kerT is a subspace of V, and ImT is a subspace of W .

2.6 Bases: the critical ingredient
Given a vector space, you have seen the definition of a basis, and are aware
there can be many bases for a vector space. Isn’t it enough that there is often
a standard basis for a vector space? Do we really have need of different bases?
These are good questions which we need to investigate.

We begin by first understanding the value in having a basis. Since a vector
space is a very general object whose only structure is vector addition and scalar
multiplication, a basis gives us a way in which to reduce the description of an
arbitrary vector to a finite amount of data.

For example, when we describe a vector in R3, we may just write down
something like v = (1, 2, 3), which makes it seemingly trivial to describe any
point in 3-space, no basis needed. But of course we have used the standard basis
{e1, e2, e3} to describe as the linear combination v = 1e1 + 2e2 + 3e3, so that
we can specify any of the infinitely many points in R3 by knowing only three
“coordinates”, the coefficients of the basis in the linear combination.

Similarly, when we specify a polynomial we are simply encoding the coeffi-
cients of {1, x, x2 · · · }. You may recall from calculus that when we want a Taylor
polynomial which approximates a function f near a point x = a, one writes

f(x) ≈ c0 + c1(x− a) + · · ·+ cn(x− a)n

where cj = f (j)(a)/j! In other words the cj are the coefficients (coordinates) of
the linear combination with respect to the basis {1, (x − a), . . . , (x − a)n} of
Pn(R). So forgiving the pun, different bases are tailored to different purposes.

Now let’s pick apart the requirements for a basis: linear independence and
span. The fact that a set of vectors is a spanning set for a vector space tells us
we can reduce the description of any vector to a finite linear combination. Well
that is certainly good, so what does linear independence add? Uniqueness! That
there is only one way to describe the linear combination. First, let’s make that
statement explicitly.
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Proposition 2.6.1 Let S = {v1, v2, . . . } be a set of vectors in a vector space V ,
and let W = Span(S). Then S is a linearly independent set if and only if every
vector w ∈ W can be expressed as a unique linear combination of the elements
of S.

To belabor the point, while S = {v1 = (1, 0), v2 = (0, 1), v3 = (1, 1)} is
certainly a spanning set for R2, it is not a linearly independent set since any
vector can be expressed in multiple ways as a linear combination. For example,

(a, b) = av1 + bv2 + 0v3 = (a− b)v1 + 0v2 + bv3 = 0v1 + (b− a)v2 + av3.

If we return to Proposition 2.5.1, a linear map T : V → W is structure-
preserving, namely for any vectors vi and scalars ai,

T (a1v1 + · · ·+ arvr) = a1T (v1) + · · ·+ arT (vr).

Using the example above with S = {v1 = (1, 0), v2 = (0, 1), v3 = (1, 1)} as
spanning set for R2, we might be inclined to try to define a linear map T : R2 →
R2 by setting

T (v1) = (1, 2), T (v2) = (3, 4), and T (v3) = (5, 6).

But we would find that this map is not linear since v3 = v1 + v2, but T (v3) =
(5, 6) 6= (4, 6) = T (v1) + T (v2). We could remedy this of course by defining
T (v3) = (4, 6), but then the definition of T (v3) is redundant; it is already implied
by saying T is linear and defined on v1 and v2, which span R2. This is where
linear independence of the set is important; there is only one way to describe a
vector as a linear combination of the elements of the set.

We have the fundamental theorem:
Theorem 2.6.2 Bases exist and their cardinality is well-defined. Every
vector space has a basis, and any two bases for the same vector space have the
same cardinality.
Remark 2.6.3 We recall that the cardinality of any basis for a vector space is
called its dimension, and spaces can be finite-dimensional like F n or Pn(F ) or
Mm×n(F ), or they can be infinite dimensional like P (F ) = F [x], the vector
space of all polynomials.

This leads to the crucial result:
Theorem 2.6.4 Uniquely defined linear maps. Let V be a finite-
dimensional vector space over a field F with basis B = {v1, . . . , vn}. Let W
be any vector space over F , and let w1, . . . , wn be arbitrarily chosen vectors in
W . Then there is a unique linear map T : V → W which satisfies T (vi) = wi,
for i = 1, . . . n.

This is truly an amazing result. It says given a basis one can define any linear
map by simply specifying where to send each of the basis vectors.
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Exercises
1. Let T : V → W be a linear map between vector spaces, and {v1, . . . , vr} ⊆

V. Show that

T (Span({v1, . . . , vr})) = Span{T (v1), . . . , T (vr)}.

Hint 1. When you want to show that two sets, say X and Y are equal,
you must show X ⊆ Y and Y ⊆ X. And to show that (for example) X ⊆ Y ,
you need only show that for each choice of x ∈ X, that x ∈ Y .
Hint 2. So if w ∈ T (Span({v1, . . . , vr})), then w = T (a1v1 + · · · + arvr)
for some choice of scalars a1, . . . , ar.

2. Let V = P2(R) be the vector space of all polynomials of degree at most two
with real coefficients. We know that both sets {1, x, x2} and {2, 3x, 2+3x+
4x2} are bases for V.

By Theorem 2.6.4, there are uniquely determined linear maps S, T :
V → V defined by

T (1) = 0, T (x) = 1, T (x2) = 2x.

S(2) = 0, S(3x) = 3, S(2 + 3x+ 4x2) = 3 + 8x.

Show that the maps S and T are the same.
Hint 1. Why is it enough to show that S(1) = 0, S(x) = 1, and S(x2) =
2x?
Hint 2. How does the linearity of S play a role?

2.7 Exercises (with solutions)

Exercises
1. Let H be the subset of R4 defined by

H =




x1

x2

x3

x4

 : x1 + x2 + x3 + x4 = 0

 .

Either show that H is a subspace of R4, or demonstrate how it fails to
have a necessary property.
Solution. The easiest way to show that H is a subspace is to note that
it is the kernel of a linear map. Let A be the 1 × 4 matrix A = [1 1 1 1].
Then

H = {x ∈ R4 | Ax = 0},
is the nullspace of A, which is always a subspace.
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Alternatively of course you could check that 0 is in the set and that it
is closed under addition and scalar multiplication.

2. Suppose that T : R3 → R3 is a linear map satisfying

T

 3
0
0

 =

 6
−3
6

 , T

 1
1
0

 =

 2
0
1

 , and T

 0
0
2

 =

 4
6
2

 .

(a) If the standard basis for R3 is E = {e1, e2, e3}, determine

T (e1), T (e2), and T (e3).

Solution. Using linearity, we are given T (3e1) = 3T (e1) =

 6
−3
6

 ,

so T (e1) =

 2
−1
2

 .

We are given T (e1 + e2) = T (e1) + T (e2) =

 2
0
1

 , so

T (e2) = T (e1 + e2)− T (e1) =

 2
0
1

−

 2
−1
2

 =

 0
1

−1

 .

Finally, T (2e3) =

 4
6
2

 , so T (e3) =

 2
3
1

 .

(b) Find T

 1
1
1

 .

Solution. We compute

T

 1
1
1

 = T (e1) + T (e2) + T (e3) =

 4
3
2

 .

3. Consider the upper triangular matrix

A =

 1 x z
0 1 y
0 0 1

 ,

with x, y, z ∈ R.
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(a) Give as many reasons as you can that shows the matrix A is invertible.

Solution. We see that A is already in echelon (not RREF) form,
which tells us there is a pivot in each column. Since there are only
three variables the system Ax = 0 has only the trivial solution, to the
linear map x 7→ Ax is injective. Three pivots also means the column
space is spanned by three independent vectors, so is all of R3. So the
linear map is bijective, hence invertible.
One could also say that since the RREF of A is the identity matrix,
it is invertible.
If you know about determinants, you could say the determinant equals
1, hence is nonzero, which means A is invertible.

(b) Find the inverse of the matrix A.

Solution. We row-reduce 1 x z 1 0 0
0 1 y 0 1 0
0 0 1 0 0 1

 7→

 1 x 0 1 0 −z
0 1 0 0 1 −y
0 0 1 0 0 1


7→

 1 0 0 1 −x −z + xy
0 1 0 0 1 −y
0 0 1 0 0 1

 .

So

A−1 =

 1 −x −z + xy
0 1 −y
0 0 1

 .

4. Consider the linear transformation T : R5 → R4 given by T (x) = Ax where
A and its reduced row-echelon form R are given by:

A =


1 −1 2 6 −3
2 −1 0 7 10

−2 3 −7 −15 17
2 −2 2 8 5

 and R =


1 0 0 5 0
0 1 0 3 0
0 0 1 2 0
0 0 0 0 1

 .

(a) Determine kerT , the kernel of T.

Solution. The kernel of T is the nullspace of A, which we know is
the same as the nullspace of R which we can read off:

x1

x2

x3

x4

x5

 =


−5x4

−3x4

−2x4

x4

0

 = x4


−5
−3
−2
1
0


(b) Determine ImT , the image of T.
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Solution. Depending upon what you already know, you could ob-
serve that the RREF R has a pivot in each row which means the
columns of A span all of R4.

Or you may know that looking at R tells us there are four pivot
columns in A, meaning the column space is spanned by 4 linearly
independent vectors, hence the image is all of R4.
Or, if you have already learned the rank-nullity theorem, then from
the previous part we would know the nullity is one, and so rank-nullity
says the rank is 5− 1 = 4, so the image is a dimension 4 subspace of
R4, which is all of R4.

5. Let K be the set of solutions in R5 to the homogeneous linear system

x1 + x2 + x3 + x4 = 0

x5 = 0.

(a) Find a basis B0 for K.

Solution. The coefficient matrix for the system is

A =

[
1 1 1 1 0
0 0 0 0 1

]
which is already in reduced row-echelon form. We see there are two
pivots, hence 3 free variables, meaning dimK = 3. By inspection (or
working out the details of finding all solutions), one finds a basis can
be taken to

B0 =

v1 =


−1
1
0
0
0

 , v2 =


−1
0
1
0
0

 , v3 =


−1
0
0
1
0


 .

(b) Extend the basis B0 from the previous part to a basis B for all of R5.

Solution. To extend a linearly independent set, one must add some-
thing not in the original span (see Theorem 3.1.3). There are many
correct answers possible, but the vectors

v4 =


1
1
1
1
0

 and v5 =


0
0
0
0
1


are clearly not in K since v4 does not satisfy the first defining equation,
and v5 does not satisfy the second. So thinking algorithmically, B0 ∪
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{v4} is linearly independent, and v5 is certainly not in the span of
those four vectors since their last coordinates are all zero. Thus we
may take (as one possible solution)

B = B0 ∪ {v4, v5}.

(c) Define a linear transformation T : R5 → R5 with kernel K and image
equal to the set of all vectors with x3 = x4 = x5 = 0.

Solution. By Theorem 2.6.4, a linear map is uniquely defined by
its action on a basis. It should be clear that the desired image is
defined by the standard basis vectors e1 and e2. So with the given
basis B = {v1, . . . , v5}, we must have

T (vi) = 0, for i = 1, 2, 3,

and T (v4), T (v5) linearly independent vectors in the image, say

T (v4) = e1 and T (v5) = e2.

6. Let M2×2 be the vector space of 2 × 2 matrices with real entries, and

fix a matrix A =

[
a b
c d

]
∈ M2×2. Consider the linear transforma-

tion T : M2×2 → M2×2 defined by T (X) = AX, which (left) multi-
plies an arbitrary 2 × 2 matrix X by the fixed matrix A. Let E ={

e1 =
[
1 0
0 0

]
, e2 =

[
0 1
0 0

]
, e3 =

[
0 0
1 0

]
, e4 =

[
0 0
0 1

]}
be a basis

for M2×2.

(a) Find the matrix of T with respect to the basis E , that is [T ]E .

Solution.

T (e1) =
[
a b
c d

] [
1 0
0 0

]
=

[
a 0
c 0

]
= ae1 + ce3

T (e2) =
[
a b
c d

] [
0 1
0 0

]
=

[
0 a
0 c

]
= ae2 + ce4

T (e3) =
[
a b
c d

] [
0 0
1 0

]
=

[
b 0
d 0

]
= be1 + de3

T (e4) =
[
a b
c d

] [
0 0
0 1

]
=

[
0 b
0 d

]
= be2 + de4

We now simply record the data as coordinate vectors:

[T ]E =


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d


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(b) Now let B be the basis, B = {e1, e3, e2, e4}, that is, the same elements
as E , but with the second and third elements interchanged. Write
down the appropriate change of basis matrix, [I]EB, and use it to com-
pute the matrix of T with respect to the basis B, that is [T ]B.

Solution. The change of basis matrices [I]EB =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =

[I]BE , so

[T ]B = [I]BE [T ]E [T ]
E
B

=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


a b 0 0
c d 0 0
0 0 a b
0 0 c d

 .

Of course it was possible to write down [T ]B simply from the informa-
tion in part (a).

7. Write down an explicit linear transformation T : R2 → R3 that has as its
image the plane x− 4y + 5z = 0. What is the kernel of T?
Hint. Any linear transformation T : Rn → Rm has the form T (x) = Ax
where A is the matrix for T with respect to the standard bases. How is the
image of T related to the matrix A?
Solution. We know that T can be given by T (x) = Ax where A is the
3×2 matrix whose columns are T (e1) and T (e2). They must span the given

plane, so for example, A =

 4 −5
1 0
0 1

 will do.

By rank-nullity, the kernel must be trivial.



Chapter 3

Constructing bases

Having made the case that bases are incredibly useful, we review a bit about
how to construct a basis for a vector space. It sounds simple enough; we must
find a set which is linearly independent and spans the space.

3.1 Linear dependence and independence
Let V be a vector space over a field F, and S a subset of V , and suppose that S
is linear dependent. Prove an alternate characterization of linear dependence in
the following exercise.
Checkpoint 3.1.1 Alternate characterization of linear dependence.
Show that S is a linearly dependent subset of a vector space V if and only
if there is a proper subset S0 ⊊ S with Span(S0) = Span(S).
Hint. Given a nontrivial linear combination of vectors in S equaling zero, you
can solve for the vector with the nonzero coefficient in terms of the remaining
vectors.

Put more colloquially, if a subspace W = Span(S), and S is linearly depen-
dent, then you can throw away one vector from S to produce a proper subset S0

with W = Span(S0). As a consequence we have the following theorem.

Theorem 3.1.2 Given a vector space V , any spanning set for V can be reduced
to a linearly independent spanning set, i.e., a basis for V.

As a counterpoint, we have a statement about constructing linearly indepen-
dent sets.
Theorem 3.1.3 Let S be a linearly independent subset of a vector space V , and
let W = Span(S). If W 6= V (that is, W is a proper subspace of V ), then there
exists a vector v0 ∈ V \ W (in V but not in W ), so that S ′ = S ∪ {v0} is a
linearly independent subset of V.

Proof. As a hint, note that S is assumed linearly independent, so if S ∪ {v0}
was linearly dependent, it would force v0 ∈ Span(S) (why?), contrary to the

27
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assumption. ■
Remark 3.1.4 Presuming there is a condition to force the algorithm to ter-
minate, we can conclude that any linearly independent subset of V can be
extended to a basis for V. A sufficient condition is that the vector space be
finite-dimensional.

For the moment, we suppose that we know the dimension of a vector space
V, say dimV = n. We give another synopsis of the results above.
Theorem 3.1.5 Constructing bases. Let V have finite dimension n, and let
S ⊂ V.

• If S is linearly independent, then #S ≤ n, and if #S < n, then S can be
extended to a basis for V , that is there is a finite subset T of V , so that
S ∪ T is a basis for V.

• If #S > n, then S is linearly dependent, and there is a subset S0 ⊊ S
which is linearly independent and for which Span(S0) = Span(S).

• In more colloquial terms, any linearly independent subset of V can be
extended to a basis for V, and any spanning set can be reduced to produce
a basis.

As a consequence of the above, we have another important theorem.
Theorem 3.1.6 Let V be a vector space with finite dimension n. Then

• Any set of n linearly independent vectors in V is a basis for V .

• Any set of n vectors in V which span V is a basis for V .

Proof. The proofs are straightforward from the above since if a set of n linearly
independent vectors in V did not span, you could add a vector to the set of n and
obtain an independent set with n+1 elements. Similarly, if n elements spanned
V but were not independent, you could eliminate one giving a basis with too few
elements. ■

Before going farther, we should make sure our intuition is on point.

Exercises
1. Let A be an m×n matrix. Its row space is the span of the rows of A and

so is a subspace of F n. Its column space is the span of its columns and
so is a subspace of Fm.

Can any given column of a matrix always be used as part of a basis for
the column space?
Hint. Under what conditions is a set with one vector a linearly indepen-
dent subset of the vector space?
Answer. Any column of a matrix which is not the column of all zeros can
be used as part of the basis of the column space since the single nonzero
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column is a linearly independent set.
2. Suppose the first two columns of a matrix are nonzero. What is an easy way

to check that both columns can be part of a basis for the column space?
Hint. What does the notion of linear dependence reduce to in the case of
two vectors?
Answer. Two columns which are not multiples of one another may be
used as part of the basis for the column space.

3. Do you think there is an easy way to determine if the first three nonzero
columns of a matrix can be part of a basis for the column space?
Hint. Easy may be in the eye of the beholder.
Answer. Not typically by inspection. Given the first two columns are lin-
early independent, one needs to know the third is not a linear combination
of the first two. In Section 4.2 we provide answers using either elementary
column operations, or perhaps surprisingly elementary row operations.

3.2 Constructing bases in Fm

Often a given vector space has a standard basis, but the particular problem we
wish to solve requires a basis satisfying different properties, a basis of eigenvectors
(if they exist) is a prime example. Other examples include extending a known
basis for a proper subspace to the entire space. Here we focus both on building up
from an independent set of vectors and paring down from a dependent spanning
set of vectors.

For now we will restrict our attention to V = Fm; we can deal with arbitrary
vector spaces once we know about coordinates. You might ask why use Fm

and not F n. The choice of notation is very important in mathematics. Well-
chosen notation gives intuition to (or at least does not distract) the reader. Our
construction of vectors in Fm will be used to construct an m × n matrix. If
we built them in F n, the matrix we would construct would be n ×m or n × p,
notation which would force much more concentration on the part of the reader.
Hmmm. Might not be a bad idea …, but we shall stick with Fm.

3.2.1 An algorithmic approach
As we begin, suppose we start with one nonzero vector v1 ∈ Fm, and since it
is nonzero, the set S = {v1} is linearly independent. Since we know that the
dimension of Fm is m, we shall need m linearly independent vectors in S to form
a basis. So as not to be trivial, we assume that m > 1. To add a second vector
to S, independent from the first, all we must do is choose a vector v2 6= λv1 for
any scalar λ. Great, now S = {v1, v2} has two linearly independent vectors, so
if m = 2, we are done and have a basis for V.
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Now supposing that m ≥ 3, we begin to have to be more careful since adding
a third vector independent from the other two means adding a vector which is
not in their span, and here what we know about matrices helps a great deal.

Recall our Observation 1.3.2 that if a matrix is given by A = [a1 a2 · · · an]
where aj is the jth column of A, and if x is the column vector x = [x1, . . . , xn],
then the matrix product Ax is a linear combination of the columns of A. More
precisely,

Ax = x1a1 + · · ·+ xnan.

We describe how to use this observation in two ways: inductively and “just
feeling lucky.” Starting from the lucky perspective, suppose that we have n vec-
tors in Fm, v1, . . . , vn and we want to know whether they are linearly independent.
Create an m× n matrix A whose columns are the vi. Then the observation says
that the columns are linearly dependent if and only if the system Ax = 0 has a
nontrivial solution, but we know how to determine this by looking at the reduced
row-echelon form of A : namely are there any free variables? So if the RREF
form R of A has r nonzero rows (pivots, constrained variables) and r < n, there
is a nontrivial solution, and the columns are linearly dependent.
Remark 3.2.1 Actually, we know a great deal more. What we want is a basis
for Fm, but what we have for sure is a spanning set for the column space of A, a
subspace of Fm. And you know that the pivot columns of A form one basis for
the column space, so keep those vectors and throw the rest away. Notice that
is exactly what we should also do when we know the given set of vectors is a
spanning which we wish to reduce to a basis.

Having dismissed the dependent vectors, those that remain are linearly in-
dependent, so this puts us in the inductive case where say we have acquired a
linearly independent subset S = {v1, . . . , vr} of vectors in Fm, and we wish to
extend this independent set by one member (presuming of course r < m).

Suppose we wish to examine a new vector b. We can ask either ”Is b in the
span of S = {v1, . . . , vr}, or reverse the perspective and ask if S ∪ {b} is linearly
independent. Either way, we form the m × (r + 1) matrix, augmenting A with
the column vector b.

To answer the question of is b ∈ Span(S), we consider the augmented matrix
[A|b] and row reduce to echelon form. If there is a pivot in the last column, the
system Ax = b is not solvable, meaning that b is not in the column space of A,
and hence S∪{b} is linearly independent. If there is no pivot in the last column,
the system is solvable meaning b ∈ Span(S), so we toss it out.

3.2.2 Recovering familiar results
With the concepts of determining whether a set of vectors is linearly independent,
we recover a familiar result: Any collection of more than m vectors in
Fm is linearly dependent.

To remind us why this is true, let A be an m × n matrix with entries in a
field F, and assume that m < n, so there are fewer rows than columns. Think
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of A as the coefficient matrix of a linear system.
Presumably we know that A has a nontrivial nullspace (since the number

of constrained variables equals the number of pivots and there can be only one
pivot per row, so there are free variables). By the observation, this means the
columns of A are linearly dependent.

3.3 Exercises (with solutions)

Exercises
1. Let A ∈ Mn(R) which is invertible. Show that the columns of A form a

basis for Rn.

Solution. Since A is invertible, we know that we can find its inverse by
row reducing the augmented matrix

[A|In] 7→ [In|A−1].

In particular, this says that the RREF form of A is In.
One way to finish is that the information above says that Ax = 0 has

only the trivial solution, which means by Observation 1.3.2 that the n
columns of A are linearly independent. Since there are n = dimRn of them,
by Theorem 3.1.6, they must be a basis.

Another approach is that the linear map T : Rn → Rn given by T (x) =
Ax is an isomorphism with the inverse map being given x 7→ A−1x. In
particular, T is surjective and its image is the column space of A. That
means that the n columns of A span all of Rn, and hence must be a basis
again by Theorem 3.1.6.

2. Consider the vector space M2(R) of all 2 × 2 matrices with real en-
tries. Let’s consider a number of subspaces and their bases. Let E =
{E11, E12, E21, E22} = {[ 1 0

0 0 ], [
0 1
0 0 ], [

0 0
1 0 ], [

0 0
0 1 ]} be the standard basis for

M2(R).

(a) Define a map T : M2(R) → R by

T

([
a b
c d

])
= a+ d.

The quantity a + d (the sum of the diagonal entries) is called the
trace of the matrix. You may assume that T is a linear map. Find a
basis for its kernel, K.

Solution. It is easy to see that T is a surjective map, so by the
rank-nullity theorem, dimK = 3. Extracting from the standard basis,
we see that E12, E21 ∈ K so are part of a basis for K. We just need
to add one more matrix which is not in the span of the two chosen
basis vectors.
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Certainly, the matrix must have the form
[
a b
c −a

]
, and we need

a 6= 0, otherwise our matrix is in the span of the other two vectors.
But once we realize that, we may as well assume that b = c = 0, so
that

[
1 0
0 −1

]
is a nice choice, and since it is not in the span of the

other two, adding it still gives us an independent set.

(b) Now let’s consider the subspace S consisting of all symmetric matrices,
those for which AT = A. It should be clear this is a proper subspace,
but what is its dimension. Actually finding a basis helps answer that
question.
Hint. If you don’t like the “brute force” force of the tack of the
solution, you could take the high road and consider the space of skew-
symmetric matrices, those for which AT = −A. It is pretty easy
to determine its dimension and then you can use the fact that every
matrix can be written as the sum of symmetric and skew-symmetric
matrix to tell you the dimension of S.

A =
1

2
(A+ AT ) +

1

2
(A− AT ).

Solution. Once again, it is clear that some elements of the stan-
dard basis are in S, like E11, E22. Since it is a proper subspace, its
dimension is either 2 or 3, and a few moments thought convinces you
that [

0 1
1 0

]
= E12 + E21

is symmetric, not in the span of the other two, so forms an indepen-
dent set in S. So dimS = 3, this must be a basis for S.

(c) Now K ∩ S is also a subspace of M2(R). Can we find its dimension.
Solution. Once again, it is useful to know the dimension of the
space. Certainly it is at most 3, but then not every symmetric matrix
has zero trace, so it is at most two. Staring at the bases for each of
S and K separately, we see that both[

0 1
1 0

]
and

[
1 0
0 −1

]
are in the intersection and are clearly linearly independent, so they
must be a basis.

(d) Extend the basis you found for K ∩ S to bases for S and for K.

Solution. Since dim(K ∩ S) = 2, we need only find one matrix not
in their span to give a basis for either K or S. For K, we could choose
E12, and for S we could choose E11. Knowing the dimension is clearly
a powerful tool since it tells you when you are done.
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3.4 Using Sage to answer questions of indepen-
dence and dependence

In the previous section, we have outlined ways in which to build independent
sets in Fm, and how to determine dependencies among a set of vectors. Here
we use Sage for these tasks. Necessarily there is some redundancy since solving
most of the problems we pose can be viewed from multiple perspectives.

3.4.1 Using Sage to check if a set of vectors in linearly
independent

We know that if we have n > m vectors in Fm, they are automatically linearly
dependent, but what if we have n ≤ m vectors in Fm? They can be linearly
independent or dependent. How can we test them? Here one must exercise some
care. If the vectors are dependent, there is not necessarily a unique choice of a
linearly independent subset.

Exercise. Suppose that v, w are nonzero vectors in a vector space V, and
v is not a scalar multiple of w. It follows that {v, w} is a linearly independent
subset of V. Show that S = {v, w, v+w} is a linearly dependent subset with the
property that any subset of two elements of S is linearly independent.

Let’s consider a 4 × 4 matrix with the linear dependencies among columns
hopefully evident.

%display latex
latex.matrix_delimiters("[", "]")
A=matrix(QQ ,[[1,3,5,6],[1,3,5,6],[2,4,10,8],[2,4,10,8]]);A

Now since the columns are linearly dependent (by the observation above),
there are nontrivial solutions to the matrix equation Ax = 0. Not surprisingly
they have the form −5column(1) + column(3) = 0 and −2column(2)+ column(4)
= 0. In Sage we see this by:

A.right_kernel(basis= ' pivot ' )

We could have also derived this information from the RREF:

A.rref()

But pivots also tell us (at least one set of) linearly independent columns.
Sage says

A.pivots ()

Remember that Sage (Python) counts all arrays starting with zero, so this
means the first and second column of A are linearly independent.
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Sage can list them for us (as row vectors):

[A.column(i) for i in A.pivots ()]

Finally, Sage has a pivot_rows function which returns the pivot row positions
for this matrix, which are a topmost subset of the rows that span the row space
and are linearly independent. So here will will see the topmost rows which are
linearly independent are the first and third.

A.pivot_rows ()

3.4.2 Using Sage to check if a vector is in the span of a set
Suppose we are given vectors S = {v1, v2, . . . , vn} ⊂ Fm, a vector b ∈ Fm, and
we want to know whether b ∈ Span(S).

There are certainly different approaches, some depending on a knowledge of
whether S is a linearly independent set, but let’s give a simple one based on
Observation 1.3.2.

That observation suggests we enter our vectors as the column vectors of a
matrix A, but Sage seems to like things presented as rows (for compact notation).
No problem. We’ll build a matrix B whose rows are the vi, and let A = Bt, the
transpose of B. Then b ∈ Span(S) if and only if Ax = b is solvable.

So let S = {v1 = (1, 2, 3, 4), v2 = (5, 6, 7, 8), v3 = (9, 10, 11, 12)}. We enter
the vectors as rows of B.

%display latex
latex.matrix_delimiters("[", "]")
B=matrix(QQ ,[[1,2,3,4],[5 ,6 ,7,8],[9,10,11,12]]);B

We turn the rows into columns via the tranpose.

A=B.transpose (); A

Pick a vector b.

b=vector(QQ ,[1,3,5,7]);b

Is b in the column space?

b in A.column_space ()

Apparently so; give us a linear combination of the columns which equals b.

A.solve_right(b)

This says the b is 9/4 times the first column minus 1/4 times the second. In
particular, b is in the span of the first two columns.
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Note that we also could have determined that b is in the column space by
row reducing the augmented matrix [A|b] :

(A.augment(b)).rref()

We might ask if the columns of A are linearly independent? Remember,
the columns of a matrix A are linearly independent if and only if Ax = 0 has
only the trivial solution.

A.right_kernel(basis="pivot")

No they are not; the dependence relation coefficients are above. So to double
check, let’s make a matrix from the first two columns of A.

C=A.matrix_from_columns ([0 ,1]);C

b will be in the column space as we saw above, but we check anyway.

b in C.column_space ()

Let’s pick another vector

c=vector(QQ ,[6 ,14 ,24 ,36]);c

Is c in the column space of C?

c in C.column_space ()

It is not, so that should mean if we add it to {v1, v2}, we should get a linearly
independent set. So let’s augment the matrix C with this new vector.

D= C.augment(c);D

And we note that all three columns are pivot columns, hence linearly inde-
pendent.

D.pivots ()

Playground space (Enter your own commands).

%display latex
latex.matrix_delimiters("[", "]")
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3.4.3 Using Sage to understand the row and column space
Let’s look at how to use Sage to reveal (minimal) spanning sets for the row and
column space of a matrix. Let’s start with a 4× 5 matrix A with coefficients in
Q, actually in Z, but for most things in linear algebra, we want to work over a
field.

%display latex
latex.matrix_delimiters("[", "]")
A = matrix(QQ ,4,5,[[0 ,0 , 0 , 1 , 1],
[0 , 0 , 1 , 2 , 5],
[-1 , 5 , 0 , 6 , 8 ],
[0 , 0 , 1 , -1 , 2]]); A

It is always informative to know its reduced row-echelon form

A.rref()

Let’s focus on the RREF and recall that there are a number of related con-
cepts surrounding the notion of a pivot position/entryin a matrix.

One connection is focused on Gaussian elimination to make the leading entry
of a nonzero row equal to one. The pivot positions in the matrix A are the
positions ( (row,column) ) where a leading one occurs in the RREF of A.

While we know that we can take the nonzero rows of the RREF (A) of a
matrix to span the row space of A, the column space is more subtle. Of course
one can take all the columns of A to be a spanning set for the column space,
but it is not necessarily minimal. Below we ask Sage for the column space of A,
but Sage gives it to you as the span of a nice set of vectors in the column space.
How do you think those vectors were obtained?

A.column_space ()

It might be more insightful to see columns of A which span the column space.
Note this set is not unique, but the columns which occur here are the so-called
pivot columns.

[A.column(i) for i in A.pivots ()]

Check that the columns listed (as row vectors) are columns of A which cor-
respond the the pivots.



Chapter 4

Review of Core Topics

In this chapter we give a quick summary of core topics in a standard linear
algebra course up to the introduction of inner product spaces. Details should
have given in your course, but perhaps this review will offer a slightly different
perspective or an interesting example. Some of the topics mentioned are more
advanced such as minimal polynomials or rational and Jordan canonical forms,
so if you haven’t seen them, don’t worry.

It is useful to keep in mind a couple of overarching goals of linear algebra
(the study of vector spaces and linear maps). The first is solving the problem of
classification: when are two vector spaces “the same”, meaning indistinguishable
as vector spaces? Even the question is probably confusing, so let’s foreshadow
some of the topics and ideas in this chapter and how they bear on this question.

Mathematicians use the technical term isomorphism to describe when two
objects (in our case vector spaces) are (essentially) “the same.” It is important
to understand that this perspective of sameness is viewed through the lens of
saying that once an identification (or bijective mapping) is made between the
two spaces, every vector space property that one has is present in the other.
For finite-dimensional vector spaces, we have Theorem 4.1.5 which says that
two finite-dimensional vector spaces V and W defined over the same field F are
isomorphic if and only if dimV = dimW.

Let’s take a first pass at that remarkable statement. It says, in particular,
that

M2×2(R), P3(R), and R4

are all isomorphic as vector spaces over R simply because each space has dimen-
sion 4. This can be quite confusing when you first see it. A typical reaction
might be, they are not the same. After all one can’t multiply two vectors in
R4 and get another vector in R4, but I can multiply two matrices in M2×2(R)
and get another element in the set. I can multiply two elements of P3(R), but
most likely their product will not be in P3(R). Those three sets are definitely
not the same. Right, but nobody said they were. They are isomorphic, that is
“the same” when viewed through the lens of linear algebra.

Everyone can probably write down a one-to-one correspondence (bijection)

37
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between the elements of each set. Four entries in a matrix map naturally to a
4-tuple and the four coefficients of a polynomial of degree at most 3 also map
naturally to a 4-tuple. Once those identifications are made the vector space
operations of one translate exactly to those of another. This is the notion of
isomorphism which is at the heart of classification.

Another major goal of this part is to understand a fixed linear transformation
T : V → V between the same vector spaces. As you know and we shall review,
by fixing a basis of the vector space, one can associate a matrix to T. For some
choices of basis, the matrix may be very complicated; for others very simple
such as a diagonal matrix, or still for others something in between, like a block-
diagonal matrix.

All of the topics needed to address these questions/goals are reviewed in this
chapter.

4.1 Measuring injectivity and surjectivity

4.1.1 Injective and surjective linear maps: assessment and
implications.

Given a linear map T : V → W (between vector spaces V,W ), we know the
function-theoretic definitions of injective and surjective. Let’s first give an alter-
nate characterization of these primitives, and then explore how linearity informs
and refines our knowledge.

Given a function f : X → Y between sets X and Y , and an element y ∈ Y ,
the inverse image of y is the set of elements of X which map onto y via f ,
that is

f−1(y) = {x ∈ X | f(x) = y}.

Thus an equivalent way in which to say that a function f is surjective is if
for every y ∈ Y , the inverse image, f−1(y) is non-empty, and an equivalent way
to say that a function is injective is to say for every y ∈ Y , the inverse image,
f−1(y) is either empty or consists of a single element.

For a linear map T : V → W , the inverse image of the 0W in W plays a
special role and is given name recognition:
Definition 4.1.1 The kernel or nullspace of T is defined as

ker(T ) = Null(T ) = T−1(0W ) = {v ∈ V | T (v) = 0W}.

♢
One recalls that since for any linear map, T (0V ) = 0W , we always have

0V ∈ ker(T ), and indeed the kernel (null space) is a subspace of V .
Now using that for a linear map T , T (v) = T (v′) if and only if T (v−v′) = 0W ,

one easily deduces the familiar proposition below. Since it should be clear from
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context, we shall henceforth simply write 0, leaving to the reader to understand
the space to which we are referring.

Proposition 4.1.2 A linear map T : V → W is injective if and only if ker(T ) =
{0}.

The significance of this proposition is that rather than checking that T−1(w)
consists of at most one element for every w ∈ W (as for a generic function), for
linear maps it is enough to check for the single element w = 0. The kernel also
says something about the image of a linear map. Suppose T (v0) = w. Then
T (v) = w if and only if v = v0 + k, where k ∈ ker(T ). Said another way

T−1(w) = {v0 + k | k ∈ ker(T )} = v0 + ker(T ). (4.1.1)

Now that we have reminded ourselves of the definitions and basic properties,
we explore how bases dovetail with the notion of injective and surjective linear
maps.
Proposition 4.1.3 Linear maps and bases. Let T : V → W be a linear
map between vector spaces and suppose that V is finite-dimensional with basis
B = {v1, . . . , vn}. Then

1. T is injective if and only if {T (v1), . . . , T (vn)} is a linearly independent
subset of W .

2. T is surjective if and only if {T (v1), . . . , T (vn)} is a spanning set for W .

Proof of (1). First suppose that T is injective and to proceed by contradiction
that {T (v1), . . . , T (vn)} is linearly dependent. Then there exist scalars a1, . . . , an
not all zero, so that

a1T (v1) + · · ·+ anT (vn) = 0.
By (2.5.1)

T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ arT (vr) = 0,

which means that (a1v1+· · ·+anvn) ∈ ker(T ). Since B = {v1, . . . , vn} is a linearly
independent set and the ai’s are not all zero, we conclude ker(T ) 6= {0} which
contradicts that T is injective.
Conversely suppose that {T (v1), . . . , T (vn)} is a linearly independent subset of
W , but that T is not injective. Then ker(T ) 6= {0}, and since {v1, . . . , vn} is a
basis for V , there exist scalars a1, . . . , an not all zero so that a1v1 + · · ·+ anvn ∈
ker(T ). But this in turn says that

0 = T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ anT (vn),

(again by Proposition 2.5.1) showing that {T (v1), . . . , T (vn)} is linearly depen-
dent, a contradiction. ■
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Proof of (2). First suppose that {T (v1), . . . , T (vn)} is a spanning set for W .
Since T (V ), the image of T , is a subspace of W , and {T (v1), . . . , T (vn)} ⊂ T (V )

W = Span{T (v1), . . . , T (vn)} ⊆ T (V ),

so T is surjective.
Conversely if T is surjective, then T (V ) = W. But with a very slight generaliza-
tion of Proposition 2.5.1, we see that

W = T (V ) = T (Span{v1, . . . , vn}) = Span{T (v1), . . . , T (vn)},

showing that (v1), . . . , T (vn)} is a spanning set for W. ■
Example 4.1.4 Some easy-to-check isomorphisms.

• For an integer n ≥ 1, the vector spaces V = F n+1 and W = Pn(F ) are
isomorphic. One bijective linear map which demonstrates this is T : V →
W given by T (a0, . . . , an) = a0+a1x+· · ·+anx

n where we have written the
element (a0, . . . , an) ∈ F n+1 as a row vector for typographical simplicity.

• A more explicit example is that F 6 is isomorphic to M2×3(F ) via

T (a1, . . . , a6) =

[
a1 a2 a3
a4 a5 a6

]
.

□

4.1.2 Notions connected to isomorphism
There are many important concepts related to isomorphism. Taking a top-down
approach, one of the most important theorems in the classification of vector
spaces applies to finite-dimensional vector spaces. The classification theorem is
Theorem 4.1.5 Classification theorem for finite-dimensional vector
spaces. Two finite-dimensional vector spaces V and W defined over the same
field F are isomorphic if and only if dimV = dimW.

The proof of this theorem (often stated succinctly as “map a basis to a
basis”) captures a great deal about the dynamics of linear algebra including how
to define a map known to be linear and how to determine whether it is injective
or surjective. Try to write the proof on your own.
Proof. First let’s suppose that dimV = dimW . That means that any bases for
the two spaces have the same cardinality. Let {v1, . . . , vn} be a basis for V , and
{w1, . . . , wn} be a basis for W . By Theorem 2.6.4, there is a unique linear map
which takes T (vi) = wi, for i = 1, . . . , n. By Proposition 4.1.3, it follows that T
is both injective and surjective, hence an isomorphism.
Conversely, suppose that T : V → W is an isomorphism and the {v1, . . . , vn} is
a basis for V. Once again by Proposition 4.1.3, it follows that {T (v1), . . . , T (vn)}
is a basis for W , and since the cardinality of any basis determines the dimension
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of the space, we have dimV = dimW. ■

4.2 Rank and Nullity

4.2.1 Some fundamental subspaces
Let T : V → W be a linear map between vector spaces over a field F. We have
defined the kernel of T , ker(T ) = Null(T ), (also called the nullspace) and noted
that it is a subspace of the domain V. The image of T , Im(T ), is a subspace of
the codomain W.

4.2.2 The rank-nullity theorem
Given a linear map T : V → W , with V finite dimensional, there is a fundamental
theorem relating the dimension of V to the dimensions of ker(T ) and Im(T ).

Theorem 4.2.1 The Rank-Nullity Theorem (aka the dimension theo-
rem). Let T : V → W be a linear map, with V a finite-dimensional vector space.
Then

dimV = rank(T ) + nullity(T ) = dim Im(T ) + dim ker(T ).

Proof. Let n = dimV, and recall that if {v1, . . . , vn} is any basis for V , then
Im(T ) = Span({T (v1), . . . , T (vn)}).
First consider the case that T is injective. This means that ker(T ) = {0},
so that nullity(T ) = 0. By Proposition 4.1.3, the set {T (v1), . . . , T (vn)} is
linearly independent, and since this set spans Im(T ), it is a basis for Im(T ), so its
cardinality equals the dimension of the image, i.e., rank(T ). Thus rank(T ) = n,
and we see that

n = dimV = n+ 0 = rank(T ) + nullity(T ).

Now consider the case where ker(T ) 6= {0}. Let {u1, . . . , uk} be a basis for
ker(T ), hence nullity(T ) = k. Since {u1, . . . , uk} is a linearly independent set, by
[provisional cross-reference: prop-extend-independent-set-to-basis],
it can be extended to a basis for V :

{u1, . . . , uk, uk+1, . . . , un}

To establish the theorem, we need only show that rank(T ) =
n − k. Since {u1, . . . , uk, uk+1, . . . , un} is a basis for V , Im(T ) =
Span({T (u1), . . . , T (un)}), but we recall that u1, . . . , uk ∈ ker(T ), so that
Im(T ) = Span({T (uk+1), . . . , T (un)}). Thus we know rankT ≤ n− k. To obtain
an equality, we need only show that the set {T (uk+1), . . . , T (un)} is linearly
independent.
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Suppose to the contrary, that the set is linearly independent. Then there exists
scalars ai ∈ F , not all zero, so that

n∑
i=k+1

aiT (ui) = 0.

By linearity, this says T (
∑r

i=k+1 aiui) = 0, which means
∑r

i=k+1 aiui ∈ ker(T ).
But this in turn says that

∑r
i=k+1 aiui ∈ Span({u1, . . . , uk}) implying the full

set {u1, . . . , un} is linearly dependent, contradicting that it is a basis for V. This
completes the proof. ■

Let’s do a simple example.

Example 4.2.2 Consider the linear map T : P3(R) → P3(R) given by T (f) =
f ′′ + f ′, where f ′ and f ′′ are the first and second derivatives of f.

The domain has dimension 4 with standard basis {1, x, x2, x3}, so

Im(T ) = Span{T (1), T (x), T (x2), T (x3)}

One easily checks that Im(T ) = Span{0, 1, 2 + 2x, 6x + 3x2} = Span{1, x, x2}.
At the very least we know that rank(T ) ≤ 3, and since T (1) = 0, we must have
nullity(T ) ≥ 1. Now since {1, x, x2} is a linearly independent set, we know that
rank(T ) = 3 which means that nullity(T ) = 1 by Theorem 4.2.1. It follows that
{1} is a basis for the nullspace. □

4.2.3 Computing rank and nullity
Let A ∈ Mm×n(F ) be a matrix. Then T (x) = Ax defines a linear map T : F n →
Fm. Indeed in Subsection 4.3.2, we shall see how to translate the action of an
arbitrary linear map between finite-dimensional vectors spaces into an action of
a matrix on column vectors.

Let’s recall how to extract the image and kernel of the linear map x 7→ Ax.
We know that the image of any linear map is obtained by taking the span of
T (e1), . . . , T (en) where {e1, . . . , en} is any basis for F n, the domain. Indeed if we
choose the ei to be the standard basis vectors (with a 1 in the ith coordinate and
zeroes elsewhere), then T (ej) is simply the jth column of the matrix A. Thus
Im(T ) is the column space of A. However to determine the rank of A, we
would need to know which columns form a basis. We’ll get to that in a moment.

The nullspace of T , is the set of solutions to the homogeneous linear system
Ax = 0. You may recall that a standard method to deduce the solutions is to
put the matrix A in reduced row-echelon form. That means that all rows
of zeros are at the bottom, the leading nonzero entry of each row is a one, and
in every column containing a leading 1, all other entries are zero. These leading
ones play several roles.
Proposition 4.2.3

• Given the variables x1, . . . , xn in the system Ax = 0, a 1 in the jth column
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of the reduced row-echelon form of A, called a pivot, means that the variable
xj is a constrained variable while the remaining variables are free
variables. Thus if there are r pivots, there are n − r free variables, and
n− r = nullity(T ); it follows that r = rank(T ).

• The pivot columns of A (the columns of A in which there is a pivot in the
reduced row-echelon form of A) can be taken as a basis of the column space
of A.

• The row rank of A (number of linearly independent rows) equals the
column rank of A (number of linearly independent columns).

4.2.4 Elementary Row and Column operations
The following are a series of facts about elementary row and column operations
on an m× n matrix A.

• The matrix A is put in reduced row echelon form by a sequence of elemen-
tary row operations.

• Each elementary row operation can be achieved by left multiplication of
A (A 7→ EA) by an m×m elementary matrix.

• Each elementary column operation can be achieved by right multiplication
of A (A 7→ AE) by an n× n elementary matrix.

• Every elementary matrix is invertible and its inverse in again an elementary
matrix of the same type.

• The rank of an m× n matrix is unchanged by elementary row or column
operations, that is rank(EA) = rank(A) and rank(AE) = rank(A) for
appropriately sized elementary matrices E.

Every invertible matrix is a product of elementary matrices, and this leads
to the
Algorithm 4.2.4 To determine whether an n× n matrix A is invertible and if
so find its inverse, reduce to row-echelon form the ”augmented” n× 2n matrix

[A|In] 7→ [R|A′].

The matrix A is invertible if and only if R = In, and in that case A′ is the
inverse A−1.
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Exercises

1. Let A be an m× n matrix and E an elementary matrix of the appropriate
size.

• Are the row spaces of A and EA the same?

• Are the column spaces of A and AE the same?

• If R is the reduced row-echelon form of A, are the nonzero rows of R
a basis for the row space of A?

• If R is the reduced row-echelon form of A, is the column space of R
the same as the column space of A?

Answer. yes; yes; yes (why?); no; If A =

[
1 1
1 1

]
, then R =

[
1 1
0 0

]
, and

Span(
[
1
1

]
) 6= Span(

[
1
0

]
)

2. Given an m × n matrix A, show that there exist (appropriately sized) ele-
mentary matrices U, V so that UAV has the form

UAV =

[
Ir 0
0 0

]
.

where Ir is an r× r identity matrix with r = rank(A), and the other entries
are all zeros.
Note that when we work with modules over a PID instead of vector spaces

over a field, this construct leads to a diagonal matrix called the Smith
normal form of the matrix A.

4.3 Coordinates and Matrices
While many linear transformations come to us as maps between abstract spaces,
using a basis allows us to convert from the abstract setting to matrices.

4.3.1 Coordinate Vectors
Let V be a finite-dimensional vector space over a field F with basis B = {v1, . . . , vn}.
Since B is a spanning set for V , every vector v ∈ V can be expressed as a linear
combination of the vectors in B: v = a1v1 + · · ·+ anvn with ai ∈ F.

And, since B is a linearly independent set, the coefficients ai are uniquely
determined. We record those uniquely determined coefficients as
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Definition 4.3.1 The coordinate vector of v = a1v1+ · · ·+anvn with respect
to the ordered basis B = {v1, . . . , vn} is denoted as the column vector:

[v]B =


a1
a2
...
an

 (4.3.1)

♢
Remark 4.3.2 It is important to note that when we talk about coordinates, we
are actually fixing an order to the basis. Up to now having an ordered basis
was unnecessary, but it is easy to see that it is.

For example, consider the standard basis B = {e1, e2, e3} for R3. If we write
the vector

[v]B =

 1
2
3

 ,

this means v = 1e1 + 2e2 + 3e3, but if B′ = {e2, e3, e1}, then

[v]B′ =

 2
3
1

 ,

and v = 2e2 + 3e3 + 1e1, the same as before. So it is critical to know the order
of the basis elements.

You might object and insist there is a natural order to that basis, but there
are a number of arguments that suggest this is far from universally true. We give
one here and one in the next section. Suppose that our vector space is Pn(R).
A standard basis consists of the elements 1, x, x2, . . . , xn. Which is the natural
order: {1, x, x2, . . . , xn} or {xn, xn−1, . . . , x, 1}? Both choices have merit, but
clearly affect how to interpret v ∈ Pn(R) if

[v]B =


1
2
...
n

 .

4.3.2 Matrix of a linear map
Let V and W be two finite-dimensional vector spaces defined over a field F.
Suppose that dimV = n and dimW = m, and we choose ordered bases B =
{v1, . . . , vn} for V, and C = {w1, . . . , wm} for W. By Theorem 2.6.4, any linear
map T : V → W is completely determined by the set of vectors {T (v1), . . . , T (vn)},
and since C is a basis for W, for each index j, there are uniquely determined
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scalars aij ∈ F with

T (vj) =
m∑
i=1

aijwi.

We record that data as a matrix A with Aij = aij. We define the matrix of
T with respect to the bases B and C, as

[T ]CB = A = [aij] (4.3.2)
Observation 4.3.3 When constructing the matrix of a linear map, it is very
useful to recognize the connection with coordinate vectors. For example in con-
structing the matrix [T ]CB in (4.3.2), the jth column of the matrix is the coordi-
nate vector [T (vj)]C. Thus a mnemonic device for remembering how to construct
the matrix of a linear map is that

[T ]CB = A = [aij] =

 | | · · · |
[T (v1)]C [T (v2)]C · · · [T (vn)]C

| | · · · |

 . (4.3.3)

Example 4.3.4 A standard projection. Let’s define a map from T : R3 →
R3 which geometrically takes a point in three space with coordinates (x, y, z)
and projects orthogonally onto the xy − plane by

T (x, y, z) = (x, y, 0).

The matrix of T with respect to the standard ordered basis for R3 is

[T ]E =

 1 0 0
0 1 0
0 0 0

 .

□
Example 4.3.5 A different projection. Let’s define a map from T : R3 → R3

which geometrically takes a point in three space with coordinates (x, y, z) and
projects orthogonally onto the plane x + y + z = 0. What would the matrix of
T look like with respect to the standard basis?

Let us build a new basis B = {v1, v2, v3} with v1, v2 in the plane and orthogo-
nal to each other (analogous to the x, y axes), and the third vector v3 orthogonal
to the plane. We can read the normal vector from the equation of the plane

x+ y+ z = 0, so we set v3 =

 1
1
1

. Note that there are infinitely many choices

for v1 and v2 just as in the previous example, we could have taken the standard
basis vectors e1 and e2 and rotated that frame about the z-axis. We choose

B =

v1 =

 1
−1
0

 , v2 =

 1
1

−2

 , v3 =

 1
1
1

 .
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The matrix of T with respect to the basis B which is the natural basis for this
problem is

[T ]B =

 1 0 0
0 1 0
0 0 0

 ,

just as before. Had we insisted on using the standard basis instead we would see
(an confirm in the next section) that the matrix is

[T ]E =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

 .

Now if we had been given this matrix with no other information it would have
been very difficult to figure out that it was the desired projection.

This gives us a very real reason why it is desirable to use many available
bases when talking about solving a problem. □
Example 4.3.6 The companion matrix of a polynomial. Let f = xn +
an−1x

n−1 + · · · + a0 be a polynomial with coefficients in a field F . Let V be
a finite-dimensional vector space over the field F with basis B = {v1, . . . , vn}.
Define a linear map T : V → V (called an endomorphism or linear operator
since the domain and codomain are the same vector space) by:

T (v1) = v2

T (v2) = v3
...

T (vn−1) = vn

T (vn) = −a0v1 − a1v2 − · · · − an−1vn−1.

The matrix of T with respect to the basis B is called the companion matrix
of f , and is given by

[T ]B := [T ]BB =


0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2

0 0
. . . 0

...
0 0 · · · 0 1 −an−1


Advanced comment: One can show that both the minimal polynomial

and characteristic polynomial of this companion matrix is the polynomial f. The
companion matrix is an essential component in the rational canonical form
of an arbitrary square matrix A where the polynomials f that occur are the
invariant factors associated to A. □
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4.3.3 Matrix associated to a composition
Suppose that U, V, and W are vector spaces over a field F , and S : U → V and
T : V → W are linear maps. The the composition T ◦ S (usually denoted TS)
is a linear map, T ◦ S : U → W.

Now suppose that all three vector spaces are finite-dimensional, say dimU =
n, dimV = p, and dimW = m, with bases BU ,BV ,BW . If we consider the
matrices of the corresponding linear maps, we see that the matrix sizes are

[S]BV
BU

is p× n

[T ]BW
BV

is m× p

[TS]BW
BU

is m× n

The fundamental result connecting these is
Theorem 4.3.7 Matrix of a composition.

[TS]BW
BU

= [T ]BW
BV

[S]BV
BU

(4.3.4)
This result will be of critical importance when we discuss change of basis.
As more or less a special case of the above theorem, we have the corresponding

result with coordinate vectors: that the coordinate vector of T (v) is the product
of the matrix of T with the coordinate vector of v. More precisely,
Corollary 4.3.8 With the notation as above, for v ∈ V

[T (v)]BW
= [T ]BW

BV
[v]BV

.

Example 4.3.9 Let V = P4(R) and W = P3(R) be the vector spaces of polyno-
mials with coefficients in R having degree less than or equal to 4 and 3 respec-
tively. Let D : V → W be the (linear) derivative map, D(f) = f ′, where f ′

is the usual derivative for polynomials. Let’s take standard bases for V and W,
namely BV = {1, x, x2, x3, x4} and BW = {1, x, x2, x3}. One computes:

[D]BW
BV

=


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4


Let f = 2+ 3x+ 5x3. We know of course that D(f) = 3 + 15x2, but we want to
see this with coordinate vectors. We know that

[f ]BV
=


2
3
0
5
0

 and [D(f)]BW
=


3
0
15
0


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and verify that

[D(f)]BW
=


3
0
15
0

 = [D]BW
BV

[f ]BV
=


0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4



2
3
0
5
0

 .

□

4.3.4 Change of basis
A change of basis or change of coordinates is an enormously useful concept.
It plays a pivotal role in diagonalization, triangularization, and more generally in
putting a matrix into a canonical form. Its practical uses are easy to envision.
We may think of the usual orthonormal basis of R3 along the coordinate axes
as the standard basis for R3, but when one want to create computer graphics
which projects the image of an object onto a plane, the natural frame includes
a direction parallel to the line of sight of the observer, so it defines a natural
basis for this application.

First, let’s understand what we are doing intuitively. Suppose our vector
space V = R3, and we have two bases for it with elements written as row vectors,
B1 = {e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)} and B2 = {v1 = (1, 1, 1), v2 =
(0, 1, 1), v3 = (0, 0, 1)}.

Checkpoint 4.3.10 Is B2 really a basis? Let’s recall a useful fact that
allows us to quickly verify that B2 is actually a basis for R3. While in principle
we must check the set is both linearly independent and spans R3, since we know
the dimension of R3, and the set has 3 elements, it follows that either condition
implies the other.
Hint. To show B2 spans, it is enough to show that Span(B2) contains a span-
ning set for R3

Normally when we think of a vector in R3, we think of it as a coordinate vector
with respect to the standard basis, so that a vector we write as v = (a, b, c) is
really the coordinate vector with respect to the standard basis:

v = [v]B1 =

ab
c


The problem is when we want to find [v]B2 . For some vectors this is easy. For
example,

[v]B1 =

12
3

 is equivalent to [v]B2 =

11
1

 ,
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or

[v]B1 =

13
6

 is equivalent to [v]B2 =

12
3

 ,

but what is going on in general?
Recall from Corollary 4.3.8, that for a linear transformation T : V → W ,

and v ∈ V that
[T (v)]BW

= [T ]BW
BV

[v]BV
.

In our current situation V = W and T is the identity transformation, T (v) = v,
which we shall denote by I, so that

[v]B2 = [I]B2
B1
[v]B1 .

The matrix [I]B2
B1

is called the change of basis or change of coordinates
matrix (converting B1 coordinates to B2 coordinates), and these change of basis
matrices come in pairs

[I]B2
B1

and [I]B1
B2
.

Now in our case, both matrices are easy to compute:

[I]B2
B1

=

 1 0 0
−1 1 0
0 −1 1

 and [I]B1
B2

=

1 0 0
1 1 0
1 1 1

 ,

and it should come as no surprise that the columns of the second are just the
elements of the B2-basis in standard coordinates. But the nice part is that
the first matrix is related to the second affording a means to compute it when
computations by hand are not so simple.

Using Equation (4.3.4) on the matrix of a composition

[TS]BW
BU

= [T ]BW
BV

[S]BV
BU

,

with V = U = W , and T = S = I, we arrive at1 0 0
0 1 0
0 0 1

 = [I]B1
B1

= [I]B2
B1
[I]B1

B2
,

that is [I]B2
B1

and [I]B1
B2

are inverse matrices, and this is always the case.

Theorem 4.3.11 Given two bases B1 and B2 for a finite-dimensional vector
space V , the change of basis matrices [I]B2

B1
and [I]B1

B2
are inverse matrices.

Finally we apply this to the matrix of a linear map T : V → V on a finite-
dimensional vector space V with bases B1 and B2:
Theorem 4.3.12

[T ]B2 = [I]B2
B1
[T ]B1 [I]

B1
B2
.
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Example 4.3.13 A simple example. We often express the matrix of a linear
map in terms of the standard basis, but many times such a matrix is complicated
and does not easily reveal what the linear map is actually doing. For example,
using our bases B1 and B2 for R3 given above, suppose we have a linear map
T : R3 → R3 whose matrix with respect to the standard basis B1 is

[T ]B1 =

 4 0 0
−1 5 0
−1 −1 6

 .

It is easy enough to compute the value of T on a given vector (recall from
equation (4.3.3), the columns of the above matrix are simply T (v1), T (v2), T (v3)
written with respect to the standard basis (B1) for R3).

However, using Theorem 4.3.12, we compute

[T ]B2 =

4 0 0
0 5 0
0 0 6

 ,

which makes much clearer how the map T is acting on R3 (strecthing by a factor
of 4, 5, 6 in the directions of w1, w2, w3. □

We return to the example of the orthogonal projection from above and show
how we computed the matrix of the transformation with respect to the standard
basis.
Example 4.3.14 The details from our other orthogonal projection.
Recall that we wanted to define a map from T : R3 → R3 which geometrically
takes a point in three space with coordinates (x, y, z) and projects orthogonally
onto the plane x+ y + z = 0.

We constructed a basis B = {v1, v2, v3} with v1, v2 in the plane and orthogonal
to each other, and the third vector v3 orthogonal to the plane. We chose

B =

v1 =

 1
−1
0

 , v2 =

 1
1

−2

 , v3 =

 1
1
1

 .

The matrix of T with respect to the basis B which is the natural basis for this
problem is

[T ]B =

 1 0 0
0 1 0
0 0 0

 ,

just as with the standard orthogonal projection onto the xy-plane.
So to deduce [T ]E from [T ]B, we need to compute the change of basis matrices

[I]EB and [I]BE . The matrix [I]EB is the easy one since we are just listing the new
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basis {v1, v2, v3} as its columns, so

[I]EB =

 1 1 1
−1 1 1
0 −2 1

 .

To compute the other we have find the inverse of [I]EB which we can do by
row reducing the augmented matrix

[
[I]EB | I3

]
. We obtain: 1 1 1 1 0 0

−1 1 1 0 1 0
0 −2 1 0 0 1

 7→

 1 0 0 1
2

−1
2

0
0 1 0 1

6
1
6

−1
3

0 0 1 1
3

1
3

1
3


Thus

[I]BE =

 1
2

−1
2

0
1
6

1
6

−1
3

1
3

1
3

1
3


We can now compute that

[T ]E = [I]EB[T ]B[I]
B
E =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

 .

□

4.4 Eigenvalues, eigenvectors, diagonalization

4.4.1 An overview
Given a linear operator T : V → V on a finite-dimensional vector space V , T is
said to be diagonalizable if there exists a basis B = {v1, . . . , vn} of V so that
the matrix of T with respect to B is diagonal:

[T ]B =


λ1 0 · · · 0
0 λ2 · · · 0

0 0
. . . 0

0 0 0 λn


where the λi are scalars in F , not necessarily distinct. A trivial example is the
identity linear operator which is diagonalizable with respect to any basis and its
matrix is the n× n identity matrix.

Note that the diagonal form of the matrix above encodes the information,
T (vi) = λivi for i = 1, . . . , n.

In general, given a linear map T : V → V on a vector space V over a field F ,
one can ask whether for a given scalar λ ∈ F , there exist nonzero vectors v ∈ V ,
so that T (v) = λv. If they exist, λ is called an eigenvalue of T, and v 6= 0 an
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eigenvector for T corresponding to the eigenvalue λ. Thus T is diagonalizable
if and only if there is a basis for V consisting of eigenvectors for T.

Remark 4.4.1 While at first glance this may appear an odd notion, consider
the case of λ = 0. Asking for a nonzero vector v so that T (v) = 0v = 0 is simply
asking whether T has a nontrivial kernel. Indeed, looking for eigenvalues and
eigenvectors is a simple generalization of that idea.

Let’s look at several examples. Let U = R[x] be the vector space of all
polynomials with coefficients in R, and let V = C∞(R) be the vector space of
all functions which are infinitely differentiable. Note that U is a subspace of V .

Example 4.4.2 T : R[x] → R[x] given by T (f) = f ′. Let T : R[x] → R[x] be
the linear map which takes a polynomial to its first derivative, T (f) = f ′. Does
T have any eigenvectors or eigenvalues?

We must ask how is it possible that

T (f) = f ′ = λf

for a nonzero polynomial f?
If λ 6= 0, there can be no nonzero f since the degrees of f ′ and λf differ by

one. So the only possibility left is λ = 0. Do we know any nonzero polynomials
f so that T (f) = f ′ = 0 · f = 0? Calculus tells us that the only solution to the
problem are the constant polynomials. Well maybe not so interesting, but still
instructive. □
Example 4.4.3 T : C∞(R) → C∞(R) given by T (f) = f ′. Next consider
T : C∞(R) → C∞(R) to be the same derivative map, but now on the vector
space V = C∞(R). We consider the same problem of finding scalars λ and
nonzero functions f so that

f ′ = λf.

Once again, calculus solves this problem completely as the functions f are
simply the solutions to the first order homogeneous linear differential equation
y′ − λy = 0, the solutions to which are all of the form f(x) = Ceλx. Note this
includes λ = 0 from the previous case. □
Example 4.4.4 S : C∞(R) → C∞(R) given by S(f) = f ′′. Finally consider
the map S : C∞(R) → C∞(R) given by S(f) = f ′′, the second derivative map, so
now we seek functions for which S(f) = f ′′ = λf, or in calculus terms solutions
to the second order homogeneous differential equation

y′′ − λy = 0.

This is an interesting example since the answer depends on the sign of λ. For
λ = 0, the fundamental theorem of calculus tells us that solutions are all linear
polynomials f(x) = ax+ b.

For λ < 0, we can write λ = −ω2. We see that sin(ωx) and cos(ωx) are eigen-
vectors for S with eigenvalue λ = −ω2. Indeed every eigenvector with eigenvalue
λ = −ω2 < 0 is a linear combination of these two.
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For λ > 0, we write λ = ω2, we see that e±ωx are solutions and as above
every eigenvector with eigenvalue λ = ω2 > 0 is a linear combination of these
two. □

With a few examples under our belt, we return to the problem of finding a
systematic way to determine eigenvalues and eigenvectors. The condition T (v) =
λv is the same as the condition that (T −λI)v = 0, where I is the identity linear
operator (I(v) = v) on V. So let’s put

Eλ = {v ∈ V | T (v) = λv}.

Then as we just said, Eλ = ker(T − λI), so we know that Eλ (being the kernel
of a linear map) is a subspace of V, called the λ−eigenspace of T.

Since Eλ is a subspace of V, 0 is always an element, but T (0) = λ0 = 0 for
any λ which is not terribly discriminating, and our goal is to find a basis of the
space consisting of eigenvectors, so the zero vector must be excluded.

On a finite-dimensional vector space, finding the eigenvalues and a basis for
the corresponding eigenspace is rather algorithmic, at least in principle. Let A
be the matrix of T with respect to any basis B (it does not matter which). By
Corollary 4.3.8, since T (v) = λv if and only if

A[v]B = [T ]B[v]B = [T (v)]B = [λv]B = λ[v]B,

we can simply describe how to find eigenvalues of the matrix A.
So now we are looking for scalars λ for which there are nonzero vectors

v ∈ F n with Av = λv. As before, it is more useful to phrase this as seeking
values of λ for which (A − λIn) has a nontrivial kernel. But now remember
that (A − λIn) : F n → F n is a linear operator on F n, so it has a nontrivial
kernel if and only if it is not invertible, and invertibility can be detected with
the determinant. Thus Eλ 6= 0 if and only if det(A− λI) = 0.

Remark 4.4.5 Since for any n× n matrix B, det(−B) = (−1)n detB, we have
det(A − λIn) = 0 if and only if det(λIn − A) = 0. One of these expressions
is more convenient for the theory, while the other one is more convenient for
computation.

Since we want to find all values of λ with det(λIn − A) = 0, we set the
problem up with a variable and define the function

χA(x) := det(xI − A).

One proves that χA is a monic polynomial of degree n, called the characteristic
polynomial of A. The roots of this polynomial are the eigenvalues of A, so the
first part of the algorithm is to find the roots of the characteristic polynomial.
In particular, an n×n matrix can have at most n eigenvalues in F, counted with
multiplicity.

Now for each eigenvalue λ, there is a corresponding eigenspace, Eλ which is
the kernel of λIn−A, or equivalently of A−λIn. Finding the kernel is simply find-
ing the solutions for the system of homogeneous linear equations (A−λIn)X = 0,
which one can easily do via row reduction.
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4.4.2 Taking stock of where we are
• Given a matrix A ∈ Mn(F ), we consider the characteristic polynomial

χA(x) = det(xI − A) which is a monic polynomial of degree n in F [x].
When F = C (or any algebraically closed field), χA is guaranteed to have
all of its roots in F, but not so otherwise. For example, if F = R and

A =

[
0 1

−1 0

]
, B =

 4 0 0
0 0 1
0 −1 0

 , and C =

4 0 0
0 0 1
0 1 0

 ,

then χA(x) = x2+1 and χB(x) = (x−4)(x2+1), so neither A nor B has all
its eigenvalues in F = R. On the other hand, χC(x) = (x−4)(x−1)(x+1)
does have all its eigenvalues in F = R.

• So in the general case, a matrix A ∈ Mn(F ) will have a characteristic
polynomial χA exhibiting a factorization of the form:

χA(x) = (x− λ1)
m1 · · · (x− λr)

mrq(x),

where either q(x) is the constant 1 or is a polynomial of degree ≥ 2 with no
roots in F. It will follow that if q(x) 6= 1, then A cannot be diagonalized,
though something can still be said.

• Let’s assume that

χA(x) = (x− λ1)
m1 · · · (x− λr)

mr ,

with λ1, . . . , λr the distinct eigenvalues of A in F. The exponents mi are
called the algebraic multiplicities of the corresponding eigenvalues.
By comparing degrees, we see that

n = m1 + · · ·+mr.

Moreover since the λk are roots of the characteristic polynomial, we know
that det(A− λkI) = 0, which guarantees that Eλk

6= {0}. Indeed, it is not
hard to show that

1 ≤ dimEλk
≤ mk, for k = 1, . . . , r. (4.4.1)

Another important result is the
Proposition 4.4.6 Suppose that the matrix A has distinct eigenvalues λ1, . . . , λr,
and that the eigenspace Eλk

has basis Bk, k = 1, . . . , r. Then B = B1∪B2∪· · ·∪Br

is a linearly independent set.
Now recall that a linear operator T : V → V (resp. square matrix A ∈

Mn(F )) is diagonalizable if and only if there is a basis of V (resp. F n) consisting
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of eigenvectors for T (resp. A). From the proposition above, the largest linearly
independent set of eigenvectors which can be constructed has size

|B| = dimEλ1 + · · ·+ dim(Eλr)

≤ m1 + · · ·+mr = n = dimV.

We summarize our results as
Theorem 4.4.7 Diagonalizability criterion. A matrix A ∈ Mn(F ) is diag-
onalizable if and only if

• The characteristic polynomial χA factors into linear factors over F :

χA(x) = (x− λ1)
m1 · · · (x− λr)

mr

with the λi distinct, and

• dimEλi
= mi, for i = 1, . . . , r.

Corollary 4.4.8 A sufficient condition for diagonalizability. Suppose
the matrix A ∈ Mn(F ) has characteristic polynomial which factors into distinct
linear factors over F :

χA(x) = (x− λ1) · · · (x− λn)

with the λi distinct. Then A is diagonalizable.

Proof. We know that there are n eigenspaces each with dimension at least one
which gives at least n linearly independent eigenvectors. As F n is n-dimensional,
these form a basis for the space, so A is diagonalizable. ■

4.4.3 An alternate characterization of diagonalizable
We want to make sense of an alternate definition that an n × n matrix A ∈
Mn(F )is diagonalizable if there is an invertible matrix P ∈ Mn(F ), so that
D = P−1AP is a diagonal matrix. Recall that in this setting we say that the
matrix A is similar to a diagonal matrix.

Suppose that the matrix A is given to us as the matrix of a linear trans-
formation T : V → V with respect to a basis B for V , A = [T ]B. Now T is
diagonalizable if and only if there is a basis E of V consisting of eigenvectors for
T. We know that [T ]E is diagonal. But we recall from Theorem 4.3.12 that

[T ]E = [I]EB[T ]B[I]
B
E = P−1AP,

where P = [I]BE is the invertible matrix. Also note that when B is a standard ba-
sis, the columns of P = [I]BE are simply the coordinate vectors of the eigenvector
basis E . This is quite a mouthful, so we should look at some examples.
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Example 4.4.9 A simple example to start. Let A =

5 6 0
0 5 8
0 0 9

. Then

χA(x) = (x−5)2(x−9), so we have two eigenvalues 5 and 9. We need to compute
the corresponding eigenspaces.

For each eigenvalue λ, we compute ker(A− λI3), that is find all solutions to
(A− λI3)x = 0.

A− 9I =

 −4 6 0
0 −4 8
0 0 0

 RREF7→

 1 0 −3
0 1 −2
0 0 0

 ,

so E9(A) = ker(A− 9I) = Span


 3

2
1

. Similarly,

A− 5I =

 0 6 0
0 0 8
0 0 4

 RREF7→

 0 1 0
0 0 1
0 0 0

 ,

so E5(A) = ker(A− 5I) = Span


 1

0
0

.

But


 3

2
1

 ,

 1
0
0

 is not a basis for R3, so A is not diagonalizable. □

Remark 4.4.10 It is important to note in the example above that if we simply
wanted to know whether A is diagonalizable or not, we did not have to do all of
this work. Diagonalizability is possible if and only if the algebraic multiplicity
of each eigenvalue equals the dimension of the corresponding eigenspace. An
eigenvalue with algebraic multiplicity one (a simple root of χA) will always have a
one-dimensional eigenspace, so the issue for us was discovering that dimE5(A) =
1 while the algebraic multiplicity of λ = 5 is 2.

Example 4.4.11 A more involved example. Let A =


3 0 2 0
1 3 1 0
0 1 1 0
0 0 0 4

 .

Think of A as A = [T ]B, the matrix of the linear transformation T : R4 → R4

with respect to the standard basis B of R4. Then A has characteristic polynomial
χA(x) = x4 − 11x3 + 42x2 − 64x+ 32 = (x− 1)(x− 2)(x− 4)2.

We know that the eigenspaces E1 and E2 will each have dimension one, so
are no obstruction to diagonalizability, but since we want to do a bit more with
this example, we compute bases for the eigenspaces. If we let Eλ denote a basis
for the eigenspace Eλ = ker(A − λI), then as in the previous example via row
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reduction, we find E1 =

v1 =


1
0

−1
0


 and E2 =

v2 =


2

−1
−1
0


.

By Equation (4.4.1), we know that 1 ≤ dimE4 ≤ 2. If the dimension is
1, then A is not diagonalizable. As it turns out the dimension is 2, and E4 =

{v3, v4} =




2
3
1
0

 ,


0
0
0
1


 is a basis for E4.

Let E = E1 ∪ E2 ∪ E4 = {v1, v2, v3, v4} be the basis of eigenvectors. Then

D = [T ]E =


1 0 0 0
0 2 0 0
0 0 4 0
0 0 0 4

 = P−1AP,

where

P = [I]BE =


1 2 2 0
0 −1 3 0

−1 −1 1 0
0 0 0 1

 .

Note how the columns of P are the (coordinate vectors of) the eigenvector basis.
□

4.5 Minimal and characteristic polynomials
This section contains somewhat more advanced material; we review a few im-
portant facts about minimal and characteristic polynomials.

4.5.1 Annihilating polynomials
Let A ∈ Mn(F ) be a square matrix. One can ask if there is a nonzero polynomial
f(x) = amx

m + · · ·+ a0 ∈ F [x] for which f(A) = amA
m + · · ·+ a1A+ a0In = 0,

the zero matrix. If we think of trying to find a polynomial, this may seem a
challenging task.

However, if we consider that Mn(F ) is a vector space of dimension n2, then
Theorem 3.1.5 tells us that the set

{In, A,A2, . . . , An2}

must be a linearly dependent set, and that means there are scalars a0, a1, . . . , an2 ∈
F , not all zero, for which an2An2

+ · · · + a1A + a0In = 0, so that f(x) =
an2xn2

+ · · ·+ a0 is one nonzero polynomial which annihilates A.
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4.5.2 The minimal polynomial
Given a matrix A ∈ Mn(F ), we have seen there is a nonzero polynomial which
annihilates it, so we consider the set

J = {f ∈ F [x] | f(A) = 0}.

In the language of abstract algebra, J is an ideal in the polynomial ring
F [x], and since F is a field, F [x] is a PID (principal ideal domain), the ideal
J is principally generated: J = 〈µA〉, where µA is the monic generator of this
ideal. In less technical terms, µA is the monic polynomial of least degree which
annihilates A, and every element of J is a (polynomial) multiple of µA. The
polynomial µA is called the minimal polynomial of the matrix A.

A more constructive version of finding the minimal polynomial comes from
the observation that if f, g ∈ J , that if f(A) = g(A) = 0, then h(A) = 0, where
h is the greatest common divisor gcd, of f and g. In particular, if f(A) = 0, then
µA must divide f , so if we can factor f, there are only finitely many possibilities
for µA.

Example 4.5.1 A8 = In. Let’s suppose that A ∈ Mn(Q) and A8 = In. This
means that f(x) = x8−1 is a polynomial which annihilates A, so µA must divide
it. Over Q, we have the following factorization into irreducibles:

x8 − 1 = Φ8Φ4Φ2Φ1 = (x4 + 1)(x2 + 1)(x+ 1)(x− 1),

where (for those with abstract algebra background) the Φd are the dth cyclotomic
polynomials defined recursively as an (irreducible) factorization over Q by

xn − 1 =
∏
d|n

Φd.

Thus Φ1 = (x−1), x2−1 = Φ1Φ2, so Φ2 = x+1, and x8−1 has the factorization
given above. □

4.5.3 The characteristic polynomial
Given a matrix A ∈ Mn(F ), we have seen that there is a polynomial of degree at
most n2 which annihilates A, and given one such nonzero polynomial there is one
of minimal degree. But the key to finding a minimal polynomial is obtaining
at least one. The idea of trying to find a linear dependence relation among
In, A,A

2, . . . , An2 is far from appealing, but fortunately there is a polynomial we
have used before which annhilates A.

Theorem 4.5.2 Cayley-Hamilton. Let A ∈ Mn(F ), and χA(x) = det(xIn −
A) be its characteristic polynomial. Then χA(A) = 0, that is χA is a monic
polynomial of degree n which annihilates A.

In particular, the minimal polynomial, µA, divides the characteristic polyno-
mial, χA.
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Example 4.5.3 Are there any elements of order 8 in GL3(Q)? The
question asks whether there is an invertible 3 × 3 matrix A so that 8 is the
smallest positive integer k with Ak = I3.

Since A8 = I3, we know detA 6= 0, so such a matrix will necessarily be
invertible, hence an element of GL3(Q). In the example above, we saw that any
matrix which satisfies A8 = I3 must have minimal polynomial µA which divides
x8 − 1 = (x4 + 1)(x2 + 1)(x+ 1)(x− 1). But the Cayley-Hamilton theorem tells
us that µA must also divide the characteristic polynomial χA which must have
degree 3, and the only way to create a polynomial of degree 3 with the factors
listed above is to have χA | x4−1, which forces A4 = I3, so there are no elements
of order 8 in GL3(Q). □

On the other hand,

A =


0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0


has µA = χA = x4+1, so A is an element of order 8 in GL4(Q). The matrix A is
the companion matrix to the polynomial x4 + 1. See Example 4.3.6 for more
detail.

4.6 Exercises (with solutions)

Exercises

1. The matrix B =

 1 4 −7
−3 −11 19
−1 −9 18

 is invertible with inverse B−1 = −27 −9 −1
35 11 2
16 5 1

. Since the columns of B are linearly independent, they

form a basis for R3 :

B =


 1

−3
−1

 ,

 4
−11
−9

 ,

 −7
19
18

 .

Let E be the standard basis for R3.

(a) Suppose that a vector v ∈ R3 has coordinate vector [v]B =

 1
2
3

 .

Find[v]E .
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Solution. The matrix B is the change of basis matrix [I]EB so

[v]E = [I]EB[v]B =

 1 4 −7
−3 −11 19
−1 −9 18

 1
2
3

 =

 −12
32
35


(b) Suppose that T : R3 → R3 is the linear map given by T (x) = Ax

where

A = [T ]E =

 1 2 3
4 5 6
7 8 9

 .

Write down an appropriate product of matrices which equal [T ]B.

Solution. By Theorem 4.3.12

[T ]B = [I]BE [T ]E [I]
E
B = B−1AB.

2. Let W be the subspace of M2(R) spanned by the set S, where

S =

{[
0 −1

−1 1

]
,

[
1 2
2 3

]
,

[
2 1
1 9

]
,

[
1 −2

−2 4

]}
.

(a) Use the standard basis B = {E11, E12, E21, E22} for M2(R) to express
each element of S as a coordinate vector with respect to the basis B.

Solution. We write the coordinate vectors as columns of the matrix:
0 1 2 1

−1 2 1 −2
−1 2 1 −2
1 3 9 4

 .

(b) Determine a basis for W.

Hint. By staring at the matrix, it is immediate that that rank is at
most 3. What are the pivots?

Solution. We start a row reduction:

A 7→


0 1 2 1

−1 2 1 −2
1 3 9 4
0 0 0 0

 7→


1 3 9 4
0 1 2 1

−1 2 1 −2
0 0 0 0



7→


1 3 9 4
0 1 2 1
0 5 10 2
0 0 0 0

 7→


1 3 9 4
0 1 2 1
0 0 0 −3
0 0 0 0

 .

Thus the pivot columns are the first, second, and fourth, so we may
take the first, second and fourth elements of S as a basis for W.
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3. Let A =

 1 2 3
1 2 3
1 2 3

.

(a) Compute the rank and nullity of A.

Solution. Too easy! It is obvious that the rank is 1 since all columns
are multiples of the first. Rank-nullity tells us that the nullity is
3− 1 = 2.

(b) Compute A

 1
1
1

, and use your answer to help conclude (without

computing the characteristic polynomial) that A is diagonalizable.

Solution. A

 1
1
1

 =

 6
6
6

 = 6

 1
1
1

 , which means that 6 is a

eigenvalue for A, and

 1
1
1

 is an eigenvector.

The nullity is 2, which means that 0 is an eigenvalue and that the
eigenspace corresponding to 0 (the nullspace of A) has dimension 2,
so that there exists a basis of R3 consisting of eigenvectors. Recall
that by Proposition 4.4.6 the eigenvectors from different eigenspaces
are linearly independent.

(c) Determine the characteristic polynomial of A from what you have
observed.

Solution. χA(x) = x2(x − 6). There are two eigenvalues, 0 and 6,
and since the matrix is diagonalizable the algebraic multiplicities to
which they occur equal their geometric multiplicities (i.e., the dimen-
sion of the corresponding eigenspaces), see Theorem 4.4.7.

(d) Determine a matrix P so that 6 0 0
0 0 0
0 0 0

 = P−1AP.

Solution. We already know that

 1
1
1

 is an eigenvector for the

eigenvalue 6, and since 6 occurs as the first entry in the diagonal
matrix, that should be the first column of P.
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To find a basis of eigenvectors for the eigenvalue 0, we need to find the
nullspace of A. It is immediate to see that the reduced row-echelon
form of A is

R =

 1 2 3
0 0 0
0 0 0

 ,

which tells us the solutions are x1

x2

x3

 =

 −2x2 − 3x3

x2

x3

 = x2

 −2
1
0

+ x3

 −3
0
1

 .

We may choose either of those vectors (or some linear combinations
of them) to fill out the last columns of P. So one choice for P is

P =

 1 −2 −3
1 1 0
1 0 1

 .

4. Let E1 = {E11, E12, E21, E22} = {[ 1 0
0 0 ], [

0 1
0 0 ], [

0 0
1 0 ], [

0 0
0 1 ]} be the standard

basis for M2(R), and E2 = {1, x, x2, x3} the standard basis for P3(R). Let
T : M2(R) → P3(R) be defined by

T ([ a b
c d ]) = 2a+ (b− d)x− (a+ c)x2 + (a+ b− c− d)x3.

(a) Find the matrix of T with respect to the two bases: [T ]E2E1 .

Solution. The columns of the matrix [T ]E2E1 are the coordinate vec-
tors [T (Eij)]E2 , so

[T ]E2E1 =


2 0 0 0
0 1 0 −1

−1 0 −1 0
1 1 −1 −1

 .

(b) Determine the rank and nullity of T.

Solution. It is almost immediate that the first three columns of the
matrix are pivot columns (think RREF), so the rank is at least three.
Then we notice that the last column is a multiple of the second, which
means the rank is at most three. Thus rank is 3 and nullity is 1.

(c) Find a basis of the image of T.

Solution. The first three columns of [T ]E2E1 are a basis for the column
space of the matrix, but we recall that they are coordinate vectors
and the codomain is P3(R), so a basis for the image is:

{2− x2 + x3, x+ x3,−x2 − x3}.
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(d) Find a basis of the kernel of T.

Solution. Since

T ([ a b
c d ]) = 2a+ (b− d)x− (a+ c)x2 + (a+ b− c− d)x3,

we must characterize all matrices which yield the zero polynomial.
We quickly deduce we must have

a = c = 0, and b = d,

so one can choose [ 0 1
0 1 ] as a basis for the kernel.

5. Let V be a vector space with basis B = {v1, . . . , v4}. Define a linear trans-
formation by

T (v1) = v2, T (v2) = v3, T (v3) = v4, T (v4) = av1 + bv2 + cv3 + dv4.

(a) What is the matrix of T with respect to the basis B?

Solution. [T ]B =


0 0 0 a
1 0 0 b
0 1 0 c
0 0 1 d

 .

(b) Determine necessary and sufficient conditions on a, b, c, d so that T is
invertible.

Hint. What is the determinant of T , or what happens when you
row reduce the matrix?

Solution. The determinant of the matrix is −a, so T is invertible
if and only if a 6= 0. The values of b, c, d do not matter.

(c) What is the rank of T and how does the answer depend upon the
values of a, b, c, d?

Solution. With one elementary row operation, we reduce the origi-

nal matrix to


1 0 0 b
0 1 0 c
0 0 1 d
0 0 0 a

 which is in echelon form. If a = 0, the

rank is 3, otherwise it is 4.
6. Define a map T : Mm×n(R) → Rm as follows: For A = [aij] ∈ Mm×n(R),

define T (A) =


b1
b2
...
bm

 where bk =
∑n

j=1 akj, that is, bk is the sum of all the

elements in the k-th row of A. Assume that T is linear.
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(a) Find the rank and nullity of T.

Hint. If you find this too abstract, try an example first, say with
m = 2 and n = 3. And finding the rank is the easier first step.

Solution. Using the standard basis {Eij} for Mm×n(R), we see that
T (Ek1) = ek where {e1, . . . , em} is the standard basis for Rm. Since a
spanning set for Rm is in the image of T, the map must be surjective,
which means the rank is m. By rank-nullity, the nullity is nm−m.

(b) For m = 2, and n = 3 find a basis for the nullspace of T.

Hint. For an element to be in the nullspace, the sum of the entries
in each of its rows needs to be zero. Can you make a basis with one
row in each matrix all zero?

Solution. Consider the set{[
1 0 −1
0 0 0

]
,

[
0 1 −1
0 0 0

]
,

[
0 0 0
1 0 −1

]
,

[
0 0 0
0 1 −1

]}
Notice that the 1 which occurs in each matrix occurs in a different
location in each matrix. It is now easy to show that any linear com-
bination of these matrices which equals the zero matrix must have all
coefficients equal to zero, so the set is linearly independent. Since it
has the correct size, it must be a basis for the nullspace.

7. This exercise is about how to deal with determining independent and span-
ning sets in vector spaces other than F n. Let V = P3(R), the vector space
of polynomials of degree at most 3 with real coefficients. Suppose that some
process has handed you the set of polynomials

S = {p1 = 1+2x+3x2+3x3, p2 = 5+6x+7x2+8x3, p3 = 9+10x+11x2+12x3, p4 = 13+14x+15x2+16x3}

We want to know whether S is a basis for V, or barring that extract a
maximal linearly independent subset.

(a) How can we translate this problem about polynomials into one about
vectors in Rn?

Solution. We know that Theorem 4.1.5 tells us that P3(R) is iso-
morphic to R4, and all we need to do is map a basis to a basis, but
we would like a little more information at our disposal.
Let B = {1, x, x2, x3} be the standard basis for V = P3(R). Then the
map

T (v) = [v]B

which takes a vector v to its coordinate vector is such an isomorphism.
What is important is that linear dependence relations among the vec-
tors in S are automatically reflected in linear dependence relations
among the coordinate vectors.
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(b) Determine a maximal linearly independent subset of S.

Solution. If we record the coordinate vectors for the polynomials
in S as columns of a matrix, we produce a matrix A and its RREF
R:

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

 7→ R =


1 0 −1 −2
0 1 2 3
0 0 0 0
0 0 0 0


So we see that the first two columns are pivot columns which means
S0 = {p1, p2} is a maximal linearly independent set.
We also recall that from the RREF, we can read off the linear depen-
dencies with the other two vecotrs:

p3 = −p1 + 2p2 and p4 = −2p1 + 3p2.

(c) Extend the linearly independent set from the previous part to a basis
for P3(R).

Solution. Since we are free to add whatever vectors we want to the
given set, we can add column vectors to the ones for p1 and p2 to
see if we can extend the basis. We know that {p1, p2, 1, x, x2, x3} is a
linearly dependent spanning set. We convert to coordinates and row
reduce to find the pivots. So we build a matrix B and its RREF:

1 5 1 0 0 0
2 6 0 1 0 0
3 7 0 0 1 0
4 8 0 0 0 1

 7→


1 0 0 0 −2 7

4

0 1 0 0 1 −3
4

0 0 1 0 −3 2
0 0 0 1 −2 1


We see the first 4 columns are pivots, so we may take {p1, p2, 1, x} as
one such basis.

8. Let A ∈ M5(R) be the block matrix (with off diagonal blocks all zero) given
by:

A =


−1 0
α 2

3 0 0
β 3 0
0 γ 3

 .

Determine all values of α, β, γ for which A is diagonalizable.
Solution. Since the matrix is lower triangular, it is easy to compute the
characteristic polynomial:

χA = (x+ 1)(x− 2)(x− 3)3.

The eigenspaces for λ = −1, 2 each have dimension 1 (the required min-
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imum) and equal to the algebraic multiplicity, so the only question is
what happens with the eigenvalue λ = 3. Consider the matrix A − 3I =

−4 0
α −1

0 0 0
β 0 0
0 γ 0

 . For the nullspace of A − 3I to have dimension 3,

the rank must be 2. Clearly the first two rows are linearly independent
(independent of α), while if either β or γ is nonzero, this will increase the
rank beyond two. So the answer is α can be anything, but β and γ must
both be zero.

9. Let A =

 3 0 0
6 −1 6
1 0 2

 ∈ M3(R).

(a) Find the characteristic polynomial of A.

Solution. χA = det(xI − A) = det

 x− 3 0 0
−6 x+ 1 −6
−1 0 x− 2

.

Expanding along the first row shows that χA = (x− 3)(x− 2)(x+1).

(b) Show that A is invertible.

Solution. Many answers are possible: detA = −6 6= 0, or 0 is not
an eigenvalue, or one could row reduce the matrix to the identity. All
show A is invertible.

(c) Justify that the columns of A form a basis for R3.

Solution. Since A is invertible, the rank of A is 3, which is the
dimension of the column space. So the column space spans all of
R3, which means the columns must be linearly independent either
by Theorem 3.1.6 or directly since the nullspace is trivial. Thus the
columns form a basis.

(d) Let B = {v1, v2, v3} be the columns of A, and let E be the standard
basis for R3. Suppose that T : R3 → R3 is a linear map for which
A = [T ]E . Determine [T ]B.

Solution. We know that [T ]B = Q−1[T ]EQ, where Q = [I]EB is a
change of basis matrix. But we see that Q = [I]EB = A by defini-
tion and since [T ]E = A as well, we check that [T ]B = Q−1[T ]EQ =
A−1AA = A.
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4.7 Some Sage examples
Here are some common uses of Sage with linear algebra applications.

4.7.1 Eigenvalues, eigenvectors, and diagonalization
Generate a diagonalizable 8× 8 integer matrix.

%display latex
latex.matrix_delimiters("[", "]")
B=random_matrix(ZZ ,8,8, algorithm= ' diagonalizable ' )
B

Compute the characteristic polynomial and factor it. Since we asked for
a matrix which is known to be diagaonalizable, the characteristic polynomial
will necessarily factor into linear factors. To make things more interesting, run
the Sage script until you get a characteristic polynomial with some algebraic
multiplicities greater than one.

B.characteristic_polynomial ().factor ()

Compute the eigenvalues and bases for the corresponding eigenspaces. The
output is a list giving each eigenvalue and a basis for the corresponding eigen-
space. Watch for these to show up as the columns of the change of basis matrix.

B.eigenspaces_right ()

Another way of getting the same data is below. The output is a list of triples
of the form [eigenvalue, list of independent eigenvectors,algebraic multiplicity].

B.eigenvectors_right ()

The diagonalized matrix D = P−1BP where P is the change of basis matrix
whose columns are the eigenvectors spanning the eigenspaces.

B.eigenmatrix_right ()

4.7.2 Rational and Jordan canonical forms
This section contains more advanced material. Example slightly modified from
the Sage Reference Manual1.

%display latex
latex.matrix_delimiters("[", "]")

1doc.sagemath.org/pdf/en/reference/matrices/matrices.pdf

https://doc.sagemath.org/pdf/en/reference/matrices/matrices.pdf
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C=matrix(QQ ,8,[[0,-8,4,-6,-2,5,-3,11], \
[-2,-4,2,-4,-2,4,-2,6], [5, 14, -7, 12, 3,-8,6,-27], \
[-3,8,7,-5,0,2,6,17], [0,5,0,2,4, -4, 1, 2], \
[-3, -7, 5, -6, -1, 5, -4, 14], \
[6, 18, -10, 14, 4, -10, 10, -28], \
[-2, -6, 4, -5, -1, 3, -3, 13]]);C

We see the factored characteristic polynomial is divisible by a quadratic which
is irreducible over Q, so the matrix will not be diagonalizable. It will have a
rational canonical form, but not a Jordan form over Q.

C.characteristic_polynomial ().factor ()

Here is the minimal polynomial, the largest of the invariant factors.

m=C.minimal_polynomial ()
m,m.factor ()

Here is a list of the invariant factors, given as a lists of coefficients of the
polynomials they represent.

C.rational_form(format= ' invariants ' )

Here we turn those lists into polynomials. The rational canonical form is a
block diagonal matrix with each block being the companion matrix.

invariants=C.rational_form(format= ' invariants ' )
R=PolynomialRing(QQ, ' x ' )
[R(p).factor () for p in invariants]

The matrix C is not diagaonalizable over any field since the minimal polyno-
mial has a multiple root.

C.rational_form(format= ' right ' )

Since the minimal(characteristic) polynomial has an irreducible quadratic
factor, we need to extend the field Q to a quadratic extension which contains a
root in order to produce a Jordan form.

K.<a>= NumberField(x^2+6*x-20);K

Now C has a Jordan canonical form over the field K.

C.jordan_form(K)

%display latex
latex.matrix_delimiters("[", "]")
D=matrix(QQ ,8,[[0,-8,4,-6,-2,5,-3,11], \
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[-2,-4,2,-4,-2,4,-2,6], [5, 14, -7, 12, 3,-8,6,-27], \
[-3,-8,7,-5,0,2,-6,17], [0,5,0,2,4, -4, 1, 2], \
[-3, -7, 5, -6, -1, 5, -4, 14], \
[6, 18, -10, 14, 4, -10, 10, -28], \
[-2, -6, 4, -5, -1, 3, -3, 13]]);D

Example taken from the Sage Reference Manual2, has all invariant factors a
power of (x− 2).

D.characteristic_polynomial ().factor ()

m=D.minimal_polynomial ()
m,m.factor ()

invariants=D.rational_form(format= ' invariants ' )
R=PolynomialRing(QQ, ' x ' )
[R(p).factor () for p in invariants]

D.rational_form(format= ' right ' )

D.jordan_form ()

2doc.sagemath.org/pdf/en/reference/matrices/matrices.pdf

https://doc.sagemath.org/pdf/en/reference/matrices/matrices.pdf


Chapter 5

Inner Product Spaces

This chapter contains the material that every linear algebra course wants to
cover, but which often gets short shrift as time runs short and students strain
to keep all the new concepts straight. So a point is made to take time with this
material.

It is in this chapter that we find some of the most important applications of
linear algebra as well as some of the deepest results, many of which have vast
generalizations in the realm of functional analysis.

Starting from basic definitions and properties, we move to the fundamental
notion of orthogonality and orthogonal projection. While grounded with geomet-
ric intuition, this notion has profound applications to high-dimensional spaces
where our geometric intuition fails. Applications include least squares solutions
to inconsistent linear systems as well as spectral decompositions for real symmet-
ric and unitary/normal complex matrices. We discuss results over the complex
numbers, and note where differences arise with the results over the reals. We
state without proof the spectral theorems and leverage them to develop the sin-
gular value decomposition of a matrix. We give an application an application to
image compression and explore some of the underlying duality.

5.1 Inner Product Spaces
While a great deal of linear algebra applies to all vector spaces, by restricting
attention to those with some notion of distance and orthogonality, we can go
much further.

5.1.1 Definitions and examples
Our discussion of inner product spaces will generally restrict to the setting
of a vector space over a field F being either the real or complex
numbers.

71
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Recall the axioms of an inner product. They are often paraphrased with
higher level concepts. For example, the first two axioms combined says that
the inner product is linear in the first variable (with the second variable
held constant). What that means is that if we fix a vector w ∈ V and define
T : V → V by T (v) = 〈v, w〉, then T is a linear operator on V.

Remark 5.1.1 We note that the third axiom tells us that the inner prod-
uct is conjugate linear in the second variable (or that the function of two
variables,〈·, ·〉, is sesquilinear). Using the first three axioms, if we fix v ∈ V ,
and define S : V → V by S(w) := 〈v, w〉, we observe

S(u+ w) = 〈v, u+ w〉 = 〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉
= 〈u, v〉+ 〈w, v〉 = 〈v, u〉+ 〈v, w〉 = S(u) + S(v),

and

S(λu) = 〈v, λu〉 = 〈λu, v〉 = λ〈u, v〉 = λ〈v, u〉 = λS(u),

hence the term conjugate linear.
Remark 5.1.2 We also note that if we are dealing with a real inner product
space (i.e., F = R), then the inner product is linear in both variables leading
mathematicians to call it bilinear, that is linear in each variable while holding
the other fixed.
Remark 5.1.3 An inner product on a vector space V will give us a notion of
when two vectors are orthogonal. The positivity condition on an inner product
(〈v, v〉 > 0 unless v = 0) gives us a notion of length. We define the norm of a
vector v ∈ V by

‖v‖ :=
√
〈v, v〉.

First we assemble a collection of inner products, and their norms.

Example 5.1.4 V = F n. Let v = (a, . . . , an), w = (b1, . . . , bn) ∈ F n (written
as row vectors). Define

〈v, w〉 :=
n∑

i=1

aibi.

This inner product is called the standard inner product on F n. When
F = R, this is the usual dot product.

If v = (a, . . . , an), we see that

‖v‖ = 〈v, v〉 =

√√√√ n∑
i=1

aiai =

√√√√ n∑
i=1

|ai|2

□
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Example 5.1.5 V = Mm×n(C). Let A,B ∈ V = Mm×n(C). Define the
Frobenius inner product of A and B by

〈A,B〉 := tr(AB∗) = tr(B∗A),

where B∗ is the conjugate transpose of B, and tr is the trace of the matrix.
Here the norm is ‖A‖ =

√
tr(A∗A). □

Example 5.1.6 V = C([0, 1]). Let V = C([0, 1]) be the set of real-valued
continuous functions defined on the interval [0, 1]. For f, g ∈ C([0, 1]), define
their inner product on V by:

〈f, g〉 :=
∫ 1

0

f(t)g(t) dt.

If instead f and g are complex-valued, then the inner product becomes:

〈f, g〉 :=
∫ 1

0

f(t)g(t) dt.

Here the norm is ‖f‖ :=
√∫ 1

0
f(t)f(t) =

√∫ 1

0
|f(t)|2, where | · | is the usual

absolute value on the complex numbers. □
If (V, 〈·, ·〉) is an inner product space, we say that
• u, v ∈ V are orthogonal if 〈u, v〉 = 0.

• Two subsets S, T ⊆ V are orthogonal if 〈u, v〉 = 0 for every u ∈ S and
v ∈ T.

• v ∈ V is a unit vector if ‖v‖ = 1.

5.1.2 Basic Properties
We list some basic properties of inner products and their norms which can be
found in any of the standard references.

Let V be an inner product space with inner product 〈·, ·〉 and norm ‖ · ‖.

Theorem 5.1.7 For all u, v, w ∈ V and λ ∈ F

• If 〈v, u〉 = 〈v, w〉 for all v ∈ V, then u = w.

• ‖λv‖ = |λ| ‖v‖.

• ‖v‖ ≥ 0 for all v, and ‖v‖ = 0 if and only if v = 0.

• (Cauchy-Schwarz Inequality): | 〈u, v〉 | ≤ ‖u‖ ‖v‖.

• (Triangle inequality): ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

• (Pythagorean theorem) If 〈u, v〉 = 0, then ‖u+ v‖2 = ‖u‖2 + ‖v‖2.
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Remark 5.1.8 The angle between vectors. For nonzero vectors u, v ∈ Rn,
the Cauchy-Schwarz inequality says that

| 〈u, v〉 |
‖u‖ ‖v‖

≤ 1, equivalently − 1 ≤ 〈u, v〉
‖u‖ ‖v‖

≤ 1.

Thus it makes sense to define a unique angle θ ∈ [0, π] with

cos θ :=
〈u, v〉
‖u‖ ‖v‖

which we can call the angle between the vectors u, v. In some statistical inter-
pretations of the vectors, the value of cos θ is called a correlation coefficient.

5.2 Orthogonality and applications
Throughout all vector spaces are inner product spaces over the field F = R or C
with inner product 〈·, ·〉. Generally the vector spaces are finite-dimensional unless
noted.

5.2.1 Orthogonal and Orthonormal Bases
Recall that a set S of vectors is orthogonal if every pair of distinct vectors in
S is orthogonal, and the set is orthonormal if S is an orthogonal set of unit
vectors.
Example 5.2.1 The standard basis in F n. Let E = {e1, e2, . . . , en} be the
standard basis in F n (ei has a one in the ith coordinate and zeros elsewhere). It
is immediate to check that this is an orthonormal basis for F n. □

We first make a very simple observation about an orthogonal set of nonzero
vectors; they are linearly independent.

Proposition 5.2.2 Let S = {vi}i∈I be an orthogonal set of nonzero vectors.
Then S is a linearly independent set.

Here S can be an infinite set which is why we index its elements by a set
I, but since the notion of linear (in)dependence only involves a finite number of
vectors at a time, our proposition holds true in this broader setting.

Proof. Suppose that S is a linearly dependent set. Then there exist vectors
vi1 , . . . , vik ∈ S and scalars aij not all zero so that

v = ai1vi1 + · · ·+ aikvik = 0.

Indeed, there is no loss to assume all the coefficients are nonzero, so let’s say
ai1 6= 0. We know that since v = 0, 〈v, vi1〉 = 0, but we now compute it differently



CHAPTER 5. INNER PRODUCT SPACES 75

and see

0 = 〈v, vi1〉 =
k∑

j=1

aij〈vij , vi1〉 = ai1〈vi1 , vi1〉 = ai1‖vi1‖2.

But vi1 6= 0, so its length is nonzero, forcing ai1 = 0, a contradiction. ■
Orthonormal bases offer distinct advantages in terms of representing coordi-

nate vectors or the matrix of a linear map. For example if B = {v1, . . . , vn} is a
basis for a vector space V, we know that every v ∈ V has a unique representation
as v = a1v1 + · · · + anvn the coefficients of which provide the coordinate vector
[v]B. But determining the coordinates is often a task which requires some work.
With an orthonormal basis, this process is completely mechanical.
Theorem 5.2.3 Let V,W be finite-dimensional inner product spaces with ortho-
normal bases BV = {e1, . . . , en} and BW = {f1, . . . , fm}.

1. Every vector v ∈ V has a unique representation as v = a1e1 + · · · + anen
where aj = 〈v, ej〉.

2. If T : V → W is a linear map and A = [T ]BW
BV

, then Aij = 〈T (ej), fi〉.

Proof of (1). Write v = a1e1 + · · ·+ anen. Then using the linearity of the inner
product in the first variable and 〈ei, ej〉 = δij, the Kronecker delta, we have

〈v, ej〉 =
n∑

i=1

ai〈ei, ej〉 = aj.

■
Proof of (2). In Subsection 4.3.2, we saw that the matrix of T is given by
A = [T ]BW

BV
where

T (ej) =
m∑
k=1

Akjfk.

We now compute

〈T (ej), fi〉 = 〈
m∑
k=1

Akjfk, fi〉 =
m∑
k=1

Akj〈fk, fi〉 = Aij.

■
It is clear that orthonormal bases have distinct advantages and there is a

standard algorithm to produce one from an arbitrary basis, but to understand
why the algorithm should work, we need to review projections.

From applications of vector calculus, one recalls the orthogonal projection
of a vector v onto the line spanned by a vector u. The projection is a vector
parallel to u, so is of the form λu for some scalar λ. Referring to the figure
below, if θ is the angle between the vectors u and v, then the length of proju v is
‖v‖ cos θ (technically its absolute value). But cos θ = 〈u, v〉/(‖u‖‖v‖), and the
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direction of u is given by the unit vector, u

‖u‖
, parallel to u, so putting things

together we see that

proju v = (‖v‖ cos θ) u

‖u‖
= ‖v‖ 〈u, v〉

‖u‖‖v‖
u

‖u‖
=

〈u, v〉
‖u‖2

u,

so the scalar λ referred to above is 〈u, v〉
‖u‖2

. We also note that the vector w :=

v − proju v is orthogonal to u.
Now the key to an algorithm which takes an arbitrary basis to an orthog-

onal one is the above construction. Note that in the figure below, the vectors
u and v are not parallel, so form a linearly independent set. The vectors u
and w are orthogonal (hence linearly independent) and have the same span as
the original vectors. Thus we have turned an arbitrary basis of two elements
into an orthogonal one. The Gram-Schmidt process below extends this idea
inductively.

v

u

proju v

w

Figure 5.2.4 Orthogonal projection of vector v onto u

Algorithm 5.2.5 Gram-Schmidt process. Let V be an inner product space,
and W a subspace with basis B = {v1, . . . , vm}. To produce an orthogonal basis
E = {e1, . . . , em} for W, proceed inductively.

• Let e1 = v1.

• Let ek = vk −
k−1∑
j=1

〈vk, ej〉
‖ej‖2

ej, for 2 ≤ k ≤ m.

To produce an orthonormal basis, normalize each vector replacing ej with
ej/‖ej‖.

We note that the first two steps of the Gram-Schmidt process are exactly
what we did above with the orthogonal projection.

5.2.2 Orthogonal complements and projections
Let V be an inner product space and W a subspace. Define

W⊥ = {v ∈ V | 〈v,W 〉 = 0}.
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The set W⊥ is called the orthogonal complement of W in V. The notation
〈v,W 〉 = 0 means that 〈v, w〉 = 0 for all w ∈ W , so every vector in W⊥ is
orthogonal to every vector of W .
Example 5.2.6 The orthogonal complement of a plane. For example, if
V = R3, and W is a line through the origin, then W⊥, the orthogonal complement
of W , is a plane through the origin for which the line defines the normal vector.

□
Checkpoint 5.2.7 Is the orthogonal complement a subspace? If W is a
subspace of a vector space V , is W⊥ necessarily a subspace of V ?

Hint. How do we check? Is 0 ∈ W⊥ (why?). If u1, u2 ∈ W⊥ what about u1+u2

and λu1? (why?)}
If may occur to you that the task of finding a vector in W⊥ could be daunting

since you have to check it is orthogonal to every vector in W . Or do you?
Checkpoint 5.2.8 How do we check if a vector is in the orthogonal
complement? Let S be a set of vectors in a vector space V, and W = Span(S).
Show that a vector v ∈ W⊥ if and only if 〈v, s〉 = 0 for every s ∈ S. This means
there is only a finite amount of work for any subspace with a finite basis.

Moreover, we know that W⊥ is a subspace of V, but what you have shown is
that S⊥ = W⊥ is also.
Hint. Everything in Span(S) is a linear combination of the elements of S, and
we know how to expand 〈v,

∑m
k=1 λisi〉.

We shall see below that if V is an inner product space and W a finite-
dimensional subspace, then every vector in V can be written uniquely as v =
w + w⊥, i.e., for unique w ∈ W and w⊥ ∈ W⊥. In different notation, that will
say that V = W ⊕W⊥, that V is the direct sum of W and W⊥.

For now let us verify only the simple part of showing it is a direct sum,
showing that W ∩W⊥ = {0}.

Proposition 5.2.9 If V is an inner product space and W any subspace, then
W ∩W⊥ = {0}.

Proof. Let w ∈ W ∩W⊥. If w 6= 0, then by the properties of an inner product
〈w,w〉 6= 0. But since w ∈ W⊥, the vector w is orthogonal to every vector in W,
in particular to w, a contradiction. ■

5.2.3 What good is an orthogonal complement anyway?
Let’s say that after a great deal of work we have obtained an m × n matrix A
and column vector b, and desperately want to solve the linear system Ax = b.

We know that the system is solvable if and only if b is in C(A), the column
space of A. But what if b is not is the column space? We want to solve this
problem, right? Should we just throw up our hands?
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This dilemma is not dissimilar from trying to find a rational number equal
to

√
2. It cannot be done. But there are rational numbers arbitrarily close to√

2. Perhaps an approximation to a solution would be good enough.
So now let’s make the problem geometric. Suppose we have a plane P in R3

and a point x not on the plane. How would we find the point on P closest to
the point x? Intuitively, we might “drop a perpendicular” from the point to the
plane and the point x0 where it intersects would be the desired closest point.

This is correct and gives us the intuition to develop the notion of an orthog-
onal projection. To apply it to our inconsistent linear system, we want to find
a column vector b̂ (in the column space of A) closest to b. We then check (see
Corollary 5.2.15) that the solution x̂ to Ax = b̂ satisfies the property that

‖Ax̂− b‖ ≤ ‖Ax− b‖ for any x ∈ Rn.

Since the original system Ax = b is not solvable, we know that ‖Ax − b‖ > 0
for every x, and that difference is an error term given by the distance between
Ax and b. The value x̂ minimizes the error, and is called the least squares
solution to Ax = b (since there is no exact solution). We shall explore this in
more detail a bit later.

5.2.4 Orthogonal Projections
Now we want to take our intuitive example of “dropping a perpendicular” and
develop it into a formal tool for inner product spaces.

Let V be an inner product space and W be a finite-dimensional subspace.
Since W has a basis, we can use the Gram-Schmidt process to produce and
orthogonal basis {w1, . . . , wr} for W .

Theorem 5.2.10 Let {w1, . . . , wr} be an orthogonal basis for a subspace W of
an inner product space V. Each vector v ∈ V can be represented uniquely as
v = w⊥ + w where w ∈ W, and w⊥ ∈ W⊥, that is w⊥ is orthogonal to W.
Moreover,

w =
〈v, w1〉
〈w1, w1〉

w1 + · · ·+ 〈v, wr〉
〈wr, wr〉

wr. (5.2.1)

Proof. Certainly w as defined is an element of W , and to see that w⊥ = v−w is
orthogonal to W , it is sufficient by Checkpoint 5.2.8 to verify that 〈w⊥, wi〉 = 0
for each i = 1, . . . , r.
Using the definition of w⊥ and bilinearity of the inner product we have

〈w⊥, wi〉 = 〈v − w,wi〉 = 〈v, wi〉 − 〈w,wi〉,

and since the{wj} form an orthogonal basis, the expression for w in (5.2.1) gives

〈w,wi〉 = 〈 〈v, wi〉
〈wi, wi〉

wi, wi〉 = 〈 〈v, wi〉
〈wi, wi〉

〈wi, wi〉 = 〈v, wi〉.

It is now immediate from the first displayed equation that
〈w⊥, wi〉 = 〈v − w,wi〉 = 〈v, wi〉 − 〈w,wi〉 = 〈v, wi〉 − 〈v, wi〉 = 0,
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as desired.
Finally to see that w⊥ and w are uniquely determined by these conditions, sup-
pose that as above v = w⊥ + w, and also v = w⊥

1 + w1 with w1 ∈ W and
w⊥

1 ∈ W⊥.
Setting the two expressions equal to each other and solving gives that

w − w1 = w⊥
1 − w⊥.

But the left hand side is an element of W while the right hand side is an element
of W⊥, so by Proposition 5.2.9, both expressions equal zero, which gives the
uniqueness. ■
Corollary 5.2.11 Let V be an inner product space and W be a finite-dimensional
subspace. Then

V = W ⊕W⊥.

In this case the direct sum is an orthogonal sum, so the expression is often
written as

V = W ⊞W⊥.
Another useful property of the orthogonal complement is

Corollary 5.2.12 Let V be an inner product space and W a finite-dimensional
subspace. Then

(W⊥)⊥ = W.

Proof. Recall that
W⊥ = {v ∈ V | 〈v,W 〉 = 0},

so
(W⊥)⊥ = {v ∈ V | 〈v,W⊥〉 = 0.

In particular, every w ∈ W is orthogonal to all of W⊥, so that W ⊆ (W⊥)⊥.
The other containment takes a bit more care.
Let v ∈ (W⊥)⊥. Since W is finite-dimensional, Theorem 5.2.10 says that v can
be written uniquely as

v = w⊥ + w

where w ∈ W and w⊥ ∈ W⊥. The goal is to show that w⊥ = 0.
Consider w⊥ = v − w. Since v ∈ (W⊥)⊥, and w ∈ W ⊆ (W⊥)⊥, we conclude
w⊥ ∈ (W⊥)⊥, so 〈w⊥,W⊥〉 = 0. But w⊥ ∈ W⊥ by the theorem, so 〈w⊥, w⊥〉 = 0
implying that w⊥ = 0 by the axioms for an inner product. Thus v = w ∈ W,
meaning (W⊥)⊥ ⊆ W, giving us the desired equality. ■
Definition 5.2.13 If V is an inner product space and W a finite-dimensional sub-
space with orthogonal basis {w1, . . . , wr}, then the orthogonal projection of
a vector v onto the subspace W is given by the expression in Theorem 5.2.10:

projW v :=
〈v, w1〉
〈w1, w1〉

w1 + · · ·+ 〈v, wr〉
〈wr, wr〉

wr.

♢
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Corollary 5.2.14 Let V be an inner product space and W be a finite-dimensional
subspace. If w ∈ W, then

projW w = w.

Proof. Combining Theorem 5.2.10 with the definition of projection, we know
that w can be written uniquely as w = w⊥ + projW w, where w⊥ ∈ W⊥. But
w = 0 + w, so w⊥ = 0 and w = projW w. ■

To complete our formalization of the idea of dropping a perpendicular, we
now show that the projection projW v of a vector v is the unique vector in W
closest to v.

Corollary 5.2.15 Let V be an inner product space and W be a finite-dimensional
subspace. If v ∈ V , then

‖v − projW v‖ < ‖v − w‖

for all w ∈ W , with w 6= projW v.

Proof. By Corollary 5.2.14, we may assume that v /∈ W, so consider any w ∈ W
with w 6= projW v. We certainly know that

v − w = v − projW v + projW v − w,

and we know that projW v − w ∈ W while by Theorem 5.2.10 we know that
v− projW v ∈ W⊥. Thus the vectors v−w, v− projW v and projW v−w form a
right triangle whose lengths satisfy the Pythagorean identity:

‖v − w‖2 = ‖v − projW v‖2 + ‖ projW v − w‖2.

It follows that if w 6= projW v, that ‖ projW v − w‖ > 0, so that ‖v − w‖ >
‖v − projW v‖. ■

5.2.5 A first look at the four fundamental subspaces
While in the previous section, we have seen how orthogonal projections and
complements are related, there is another prominent place in which orthogonal
complements arise naturally.

Let A ∈ Mm×n(C). Associated to A we have a linear transformation LA :
Cn → Cm given by left multiplication by A. To obviate the need to introduce
LA, we often write kerA for kerLA, and rangeA for rangeLA which we know is
the column space, C(A), of A.

Additionally, we also have a linear transformation LA∗ : Cm → Cn given by
left multiplication by A∗. We have the following very useful property relating A
and A∗:
Proposition 5.2.16 Let A ∈ Mm×n(C). For x ∈ Cn and y ∈ Cm, we have

〈Ax, y〉m = 〈x,A∗y〉n,
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where we have subscripted the inner product symbols to remind the reader of the
ambient inner product space, Cm or Cn.

Proof. Recall the inner product 〈v, w〉 in Cℓ is w∗v the matrix product of a 1× ℓ
row vector with an ℓ× 1 column vector. Thus

〈Ax, y〉m = y∗Ax = (A∗y)∗x = 〈x,A∗y〉n.

■
Many authors, e.g., [2] and [3], define the four fundamental subspaces.

For complex matrices, these are most easily described by the kernel and range of
A and A∗. For real matrices, the same identities can be rewritten in terms of the
row and column spaces of A and AT . The significance of these four subspaces will
be evident when we discuss the singular value decomposition of a matrix
in Section 5.5, but for now we reveal their basic relations.

Theorem 5.2.17 Let A ∈ Mm×n(C). Then

ker(A∗) = range(A)⊥ and range(A∗) = C(A∗) = ker(A)⊥.

Proof. Let w ∈ kerA∗. Then A∗w = 0, hence 〈A∗w, v〉 = 0 for all v ∈ Cn. By
taking complex conjugates in Proposition 5.2.16,

0 = 〈A∗w, v〉 = 〈w,Av〉,

so w is orthogonal to everything in range(A) = C(A). This gives the inclusion
ker(A∗) ⊆ range(A)⊥.
Conversely, if w ∈ range(A)⊥, then for all v ∈ Cn,

0 = 〈w,Av〉 = 〈A∗w, v〉.

In particular, taking v = A∗w, we have 〈A∗w,A∗w〉 = 0 which means that
A∗w = 0, showing that range(A)⊥ ⊆ ker(A∗), giving us the first equality.
Since the first equality is valid for any matrix A, we replace A by A∗, and use
that A∗∗ = A to conclude that

ker(A) = range(A∗)⊥.

Using Corollary 5.2.12 yields

ker(A)⊥ = range(A∗).

■
For real matrices, these become

Corollary 5.2.18 Let A ∈ Mm×n(R). Then

C(A)⊥ = ker(AT ) and R(A)⊥ = kerA.
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Proof. The first statement is immediate from the previous theorem since
range(A) = C(A). For the second, we had deduced above that ker(A) =
range(A∗)⊥. Now if A is a real matrix,

range(A∗) = range(AT ) = C(AT ) = R(A)

which finishes the proof.
■

5.3 Orthogonal Projections and Least Squares
Approximations

We begin with the notion of orthogonal projection introduced in the previous
section. We find different ways to compute it other than from the definiton, and
give an application to least squares approximations.

5.3.1 Orthonormal bases and orthogonal/unitary matrices.
Consider the inner product space V = F n where F = R or C, and denote by z
the complex conjugate of z.

If v =

a1...
an

 and w =

b1...
bn

 are two vectors in F n, we defined their inner

product by:

〈v, w〉 :=
n∑

i=1

aibi.

It is very convenient to recognize values of the inner product via matrix multi-
plication. In particular, regarding the column vectors v, w as n× 1 matrices

〈v, w〉 :=
n∑

i=1

aibi = w∗v

is the 1×1 matrix product w∗v where w∗ is the 1×n conjugate-transpose matrix
to w.

For vectors v, w as above, we have seen the meaning of w∗v. It is more than
idle curiosity to inquire about the meaning of vw∗. We can certainly compute
it, but first we note that while w∗v = 〈v, w〉 is a scalar (a 1× 1 matrix), in the
reverse order, vw∗ is an n× n matrix, specifically:

vw∗ =

a1...
an

 [b1 · · · bn
]
=


a1b1 · · · a1bn
a2b1 · · · a2bn

... ... ...
anb1 · · · anbn

 .
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It is probably a bit more useful to see how this product arises naturally in what
we have done so far.

Let apply the definition of an orthogonal projection to the inner product
space V = Cn; what happens for V = Rn will be clear.

Let W be an r−dimensional subspace of V with orthonormal basis {w1, . . . , wr}.
Then Definition 5.2.13 tells us that the orthogonal projection of a vector v into
the subspace W is given by:

projW v := 〈v, w1〉w1 + · · ·+ 〈v, wr〉wr.

Now while for a vector space V over a field F , we have defined multiplication
of a scalar λ times a vector v as λv, you might ask if we would get into trouble
if we defined vλ := λv. Since multiplication in a field is commutative, this turns
out to be just fine, but in more general structures (modules over rings) there
can be significant issues. So with that as preamble, let’s consider a summand
〈v, wj〉wj in the expression for an orthogonal projection. First we use that scalar
multiplication can be thought of on the right or the left and then we use the
specific nature of the inner product on Cn, so that

〈v, wj〉wj = wj〈v, wj〉 = wjw
∗
jv

Thus as a corollary we obtain a matrix-specific characterization of an orthogonal
projection to a subspace of Cn.

Corollary 5.3.1 Let W be a subspace of Cn with orthonormal basis {w1, . . . , wr}.
Then for any vector v ∈ Cn,

projW v := 〈v, w1〉w1 + · · ·+ 〈v, wr〉wr =
r∑

k=1

wkw
∗
kv =

(
r∑

k=1

wkw
∗
k

)
v,

where we note that the last expression is the matrix multiplication of an n × n
matrix times the n× 1 vector v.

Our next goal is to give a more intrinsic characterization of the matrix∑r
k=1 wkw

∗
k. Let A be the n × r matrix whose columns are the orthonormal

basis {w1, . . . , wr} of the subspace W. What should the matrix A∗A look like?
Using our familiar (row-column) method of multiplying two matrices to-

gether, the ij entry of the product is

w∗
iwj = 〈wj, wi〉 = δij (Kronecker delta),

so that A∗A = Ir, the r × r identity matrix.
In the other order we claim that

AA∗ =
r∑

k=1

wkw
∗
k

from Corollary 5.3.1, that is, AA∗ is the matrix of the orthogonal projection
(with respect to the standard basis) of a vector to the subspace W.
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This claim is most easily justified using the ”column-row” expansion of a
matrix product as given in [2]. If A is an n× r matrix (as it is for us), and B is
an r ×m matrix, then

AB = col1(A)row1(B) + · · ·+ colr(A)rowr(B).

Proof. The proof is simply a computation, but it is easy to make an error, so we
do it out explicitly. Note that each summand is the product of an n× 1 matrix
times an 1×m matrix.

col1(A)row1(B) + · · ·+ colr(A)rowr(B) =
a11b11 · · · a11b1m
a21b11 · · · a21b1m

... ... ...
an1b11 · · · an1b1m

+ · · ·+


a1rbr1 · · · a1r1brm
a2rbr1 · · · a2rbrm

... ... ...
anrbr1 · · · anrbrm

 .

Now from the row-column rule we know that the ij entry of AB is (AB)ij =∑r
k=1 aikbkj, which is exactly the sum of the ij entries from each of the r matrices

above. ■
Now we apply this to the product of the matrices AA∗. The column-row rule

immediately gives that

AA∗ = w1w
∗
1 + · · ·+ wrw

∗
r

as claimed. We summarize this as
Corollary 5.3.2 Let W be a subspace of Cn with orthonormal basis {w1, . . . , wr},
and let A be the n× r matrix whose columns are those orthonormal basis vectors.
Then for any vector v ∈ Cn,

projW v := AA∗v and A∗A = Ir.
While this is a very pretty expression for the orthogonal projection onto a

subspace W , it is predicated on having an orthonormal basis for the subspace.
Of course Gram-Schmidt can be employed, but it is an interesting exercise to
produce a matrix representation of the projection starting from an arbitrary
basis for the subspace. We reproduce Proposition 4.18 of [3] including a proof
which includes several interesting ideas.

Proposition 5.3.3 Let W be a subspace of Cn (or Rn) with arbitrary basis
{v1, . . . , vr}. Let A be the n× r matrix with columns v1, . . . , vr. Then the matrix
of the orthogonal projection, projW , with respect to the standard basis is

A(A∗A)−1A∗.
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Before giving the proof, let’s make a few observations. First is that we must
prove that the matrix A∗A is invertible. Second, what does this more complicated
expression look like when the given basis is actually orthonormal? But that one
is easy. We observed above that under those assumptions, A∗A was just the r× r
identity matrix, so our complicated expression in the proposition reduces to AA∗

as we proved in the earlier case. So there is some measure of confidence.

Proof. Given a vector v, we know its orthogonal projection, projW v is an element
of W so a linear combination of the basis for W, say

projW v = λ1v1 + · · ·+ λrvr.

On the other hand this linear combination can be represented as the matrix
product

λ1v1 + · · ·+ λrvr = Aλ

where

λ =

λ1
...
λr

 .

Thus we begin with the identity

projW v = Aλ.

By Theorem 5.2.10, we know that v − projW v = v − Aλ ∈ W⊥ so that for all
j = 1, . . . , r

〈v − Aλ, vj〉 = v∗j (v − Aλ) = 0.

Writing the system of r equations as a single matrix equation, we have

A∗(v − Aλ) = 0 or equivalently A∗v = A∗Aλ.

Assuming for the moment that A∗A is invertible, we multiply both sides of
A∗v = A∗Aλ by A(A∗A)−1 to obtain

A(A∗A)−1A∗v = A(A∗A)−1(A∗A)λ = Aλ = projW v,

as desired.
Finally, we must check that the r × r matrix A∗A is invertible. By the rank-
nullity theorem it suffices to know that A∗A has trivial nullspace. So suppose
that A∗Av = 0. Since 〈0, v〉 = 0, we can write

0 = 〈A∗Av, v〉 = v∗(A∗Av) = (Av)∗(Av) = ‖Av‖2.

Thus A∗Av = 0 implies Av = 0, but A is an n× r matrix which defines a linear
map from Cr → Cn. Since A has r linearly independent columns, it has rank r.
By the rank-nullity theorem, it follows that the nullity of A is zero, so Av = 0
implies v = 0. Thus A∗A has trivial nullspace and so is invertible. ■
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Let’s work through an example showing an orthogonal projection using the
three different characterizations given above. We fix the vector space V = R3,

and let w1 =

 1
1

−2

 and w2 =

 5
−1
2

, W = Span{w1, w2}, and y =

00
1

. We

note that w1 and w2 are orthogonal, but not orthonormal and claim y /∈ W .
Example 5.3.4 From the definition. Using Definition 5.2.13, we see that

projW v =
〈y, w1〉
〈w1, w1〉

w1 +
〈y, w2〉
〈wr, wr〉

w2 =
−2

6

 1
1

−2

+
2

30

 5
−1
2

 =

 0
−2/5
4/5

 .

We also check that

y⊥ = y − projW y =

 0
2/5
1/5

 ∈ W⊥.

□
Example 5.3.5 Using a matrix with orthonormal columns. Normalizing
the vectors w1 and w2, we obtain a matrix with orthonormal columns spanning
W :

A =

 1/
√
6 5/

√
30

1/
√
6 −1/

√
30

−2/
√
6 2/

√
30


That A has orthonormal columns implies that A∗A(= ATA) = I2 (the two-by-
two identity matrix), but that the matrix of projW with respect to the standard
basis for R3 is

[projW ] = AA∗ =

 1 0 0
0 1/5 −2/5
0 −2/5 4/5


and we check that

projW y =

 1 0 0
0 1/5 −2/5
0 −2/5 4/5

 0
0
1

 =

 0
−2/5
4/5

 .

□
Example 5.3.6 Using the given vectors in matrix form. Now we use
Proposition 5.3.3 with the original vectors as the columns of the matrix

A =

 1 5
1 −1

−2 2

 .
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So the matrix of the projection is

[projW ] = A(A∗A)−1A∗.

We note that

A∗A =

[
6 0
0 30

]
so (A∗A)−1 =

[
1/6 0
0 1/30

]
and

[projW ] = A(A∗A)−1A∗ = 1 5
1 −1

−2 2

[ 1/6 0
0 1/30

] [
1 1 −2
5 −1 2

]
=

 1 0 0
0 1/5 −2/5
0 −2/5 4/5


as in the previous computation. □
Remark 5.3.7 Which is the better method? At first blush (maybe second
too), it sure looks like the first example gives a method with the least amount
of work. So why should we even consider the second or third methods?

The answer depends upon the intended application. If there is a single com-
putation to make, the first method is mostly likely the most efficient, but if you
must compute the orthogonal projection of many vectors into the same subspace,
then the matrix method is far superior since you only compute the matrix once.

Examples of multiple projections include writing a computer graphics pro-
gram which renders a three dimensional image on a flat screen (aka a plane).

Remark 5.3.8 One final comment of note. Since

V = W ⊞W⊥,

we know that the identity operator IV can be written as

IV = projW + projW⊥ .

This means that
projW v = v − projW⊥ v,

so if the dimension of W⊥ is smaller than that of W, it may make more sense to
compute projW⊥ and subtract it from the identity to obtain the desired projec-
tion.
Example 5.3.9 Point closest to a plane. Let’s do another example illustrat-
ing some of the concepts above. Let V = R3 and W be the subpace described by
3x−y−5z = 0. Let’s find the point on the plane closest to the point v = (1, 1, 1).

We know that the plane W is spanned by any two linearly independent
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vectors in W, say

v1 =

 1
3
0

 and v2 =

 0
−5
1

 .

We form the matrix whose columns are v1 and v2, and use Proposition 5.3.3 to
compute the matrix of the projection (with respect to the standard basis) as

[projW ] =

 26
35

3
35

3
7

3
35

34
35

−1
7

3
7

−1
7

2
7


Thus

projW v =

 26
35

3
35

3
7

3
35

34
35

−1
7

3
7

−1
7

2
7

 1
1
1

 =
1

35

 44
32
20

 .

On the other hand, we could arrive at the answer via projW⊥ . Since W⊥ is

spanned by v3 =

 3
−1
−5



projW⊥ v =
〈v, v3〉
〈v3, v3〉

v3 =
1

35

 −9
3
15

 ,

so

projW v = v − projW⊥ v =
1

35

 44
32
20

 .

□

5.3.2 Sage Compuations
In this section, we use Sage to make some of the computations in the above
examples. In those examples, we started with an orthogonal basis spanning the

subspace W in V = R3, given by w1 =

 1
1

−2

 and w2 =

 5
−1
2

.

Of course, more typically we have an arbitrary basis and need to use Gram-
Schmidt to produce an orthogonal one. Also recall that Gram-Schmidt simply
accepts the first of the given vectors as the first in the orthogonal basis. So let’s

start with the basis w1 =

 1
1

−2

 and w′
2 =

 6
0
0

 = w1 +w2 (so that the basis

is not already orthogonal).
So we build a matrix A whose row vectors are w1 and w′

2. The Gram-Schmidt
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algorithm in Sage returns two matrices: G is a the matrix whose rows are an
orthogonal basis, and M is the matrix which tells the linear combinations of the
given rows used to produce the orthogonal rows. As you will see, we return to
our original orthogonal basis.

%display latex
latex.matrix_delimiters("[", "]")
A=matrix(QQbar , [[1,1,-2], [6,0 ,0]])
G,M=A.gram_schmidt ()
(A,G)

([ 1 1 -2] [ 1 1 -2]
[ 6 0 0], [ 5 -1 2])

\left(\left[\begin{array}{rrr}
1 \amp 1 \amp -2 \\
6 \amp 0 \amp 0
\end{array}\right], \left[\begin{array}{rrr}
1 \amp 1 \amp -2 \\
5 \amp -1 \amp 2
\end{array}\right ]\ right)

Next we compute the orthogonal projection of the vector v = [0, 0, 1] onto
the plane W using the definition of the orthogonal projection. Notice that the
rows of the matrix A are now the orthogonal basis for W.

v=vector(QQbar ,[0,0,1])
A=matrix(QQbar , [G[0],G[1]])
OP = vector(QQbar ,[0,0,0])
for i in range(G.nrows()):
scalar = v.inner_product(G[i])/(G[i]. inner_product(G[i]))
OP = OP + scalar*G[i]
OP

(0, -2/5, 4/5)

Finally here we make A into a matrix with orthogonal columns to coincide
with Proposition 5.3.3. We then compute the matrix of the projW with respect
to the standard basis.

A= A.transpose ()
A* (A.conjugate_transpose ()*A).inverse () *

A.conjugate_transpose ()

[ 1 0 0]
[ 0 1/5 -2/5]
[ 0 -2/5 4/5]
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\left[\begin{array }{rrr}
1 \amp 0 \amp 0 \\
0 \amp \frac {1}{5} \amp -\frac {2}{5} \\
0 \amp -\frac {2}{5} \amp \frac {4}{5}
\end{array}\right]

5.3.3 More on orthogonal projections
We return to a motivating example: how to deal with inconsistent linear system
Ax = b. Since the system is inconsistent, we know that ‖Ax − b‖ > 0 for every
x in the domain. Want we want to do is find a vector x̂ which minimizes the
error, that is for which

‖Ax̂− b‖ ≤ ‖Ax− b‖

for every x in the domain.
So we let W be the column space of the m×n matrix A and let b̂ = projW b.

Since b̂ is in the column space, the system Ax = b̂ is consistent. With x̂ any
solution to Ax = b̂ Corollary 5.2.15 says that

‖Ax̂− b‖ ≤ ‖Ax− b‖

for every x in the domain.
To compute this solution, there are multiple paths. Of course, we could

compute the orthogonal projection, b̂ and solve the consistent system Ax = b̂,
but what if we could solve it without finding the orthogonal projection? That
would be a significant time-saver.

Let’s start from the premise that we have found the orthogonal projection,
b̂ of b into W = C(A), and a solution x̂ to Ax = b̂. Now by Theorem 5.2.10,
b = b̂+ b⊥ where

b⊥ = b− b̂ = b− Ax̂ ∈ W⊥.

Since W , the column space of A, is the image (range) of the linear map x 7→ Ax,
we deduce that

〈Ax,Ax̂− b〉m = 0.

By Proposition 5.2.16, we deduce

〈Ax,Ax̂− b〉m = 〈x,A∗(Ax̂− b)〉n = 0,

for every x ∈ Cn. By the positivity property of any inner product, that means
that A∗(Ax̂ − b) = 0. Thus to find x̂, we need only find a solution to the new
linear system

A∗Ax̂ = A∗b.

We summarize this as
Corollary 5.3.10 Let A ∈ Mm×n(C), and b ∈ Cm. Then there is an x̂ ∈ Cn so
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that
‖Ax̂− b‖ ≤ ‖Ax− b‖

for all x ∈ Cn. Moreover, the solution(s), x̂ are acquired by solving the consistent
linear system A∗Ax̂ = A∗b.

Checkpoint 5.3.11 Does it matter which solution x̂ we pick? In a
theoretical sense the answer is no, but in a computational sense, the answer is
probably. Of course if the system has a unique solution, the issue is resolved, but
if it has more than one solution, there are infinitely many since any two differ
by something in the nullspace of A. How should one choose?

5.3.4 Least Squares Examples
A common problem is determining a curve which best describes a set of observed
data points. The curve may be a polynomial, exponential, logarithmic, or some-
thing else. Below we investigate how to produce a polynomial which represents
a least squares approximation to a set of data points. We begin with the
simplest example, linear regression.

Consider the figure below in which two observed data points are plotted at
(xi, yi) and (xj, yj). The goal is to find an equation of a line of the y = mx + b
which “best describes” the given data, but what does that mean? Since in
general, not all data points will lie on any chosen line, each choice of line will
produce some error in approximation. Our first job is to decide on a method
to measure the error. Looking at this generally, suppose we have observed data
{(xi, yi) | i = 1 . . . n} and we are trying the find the best function y = f(x)
which fits the data.

2 2 4 6 8

5

10

15

(xi, yi)

(xj, yj)

(xi, mxi + b)

Line: y=mx+ b

(xj, mxj + b)

Figure 5.3.12 The concept of a least squares approximation
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We could set the error to be

E =
n∑

i=1

(yi − f(xi)),

but we immediately see this is a poor choice for when yi > f(xi) the error is
counted as positive while when yi < f(xi), the error is counted as negative, so
it would be possible for a really poor approximation to produce a small error by
having positive errors balanced by negative ones. Of course one solution would
be simply to take absolute values, but they are often a bit challenging to work
with, so for this and reasons connected to the inner product on Rn, we choose a
sum of squares of the errors:

E =
n∑

i=1

(yi − f(xi))
2,

so for our linear model the error is

E =
n∑

i=1

(yi −mxi − b)2.

So where is the linear algebra? It might occur to you in staring that the
expression for the error that if we had two vectors

Y =

 y1
...

yn

 and Z =

 mx1 + b
...

mxn + b


that our error is

E = ‖Y − Z‖2 = 〈Y − Z, Y − Z〉.
It is clear where the vector Y comes from, but let’s see if we can get a matrix

involved to describe Z. Let

A =

 x1 1
...

xn 1

 .

Then

Z =

 mx1 + b
...

mxn + b

 = A

[
m
b

]
.

What would it mean if all the data points were to lie on the line? Of course
it would mean the error is zero, but to move us in the direction of work we have
already done, it would mean that

A

[
m
b

]
=

 y1
...

yn

 ,
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in other words the linear system

AX = Y

is solvable with solution X =

[
m
b

]
.

When the data points do not all lie on the line, the original system is incon-
sistent, but Corollary 5.3.10 tells us how to find the best solution X̂ =

[
m
b

]
for which

‖AX̂ − Y ‖ ≤ ‖AX − Y ‖

for all X ∈ R2. Recalling that our error E = ‖AX̂ − Y ‖2, this will solve our
problem.

A simple example.
Suppose we have collected the following data points (x, y):

{(2, 1), (5, 2), (7, 3), (8, 3)}.

We construct the matrix

A =

 x1 1
...

xn 1

 =


2 1
5 1
7 1
8 1

 ,

and

Y =

 y1
...

yn

 =


1
2
3
3


Using Corollary 5.3.10, we solve the consistent linear system

A∗AX̂ = A∗Y :

A∗A =

[
2 5 7 8
1 1 1 1

]
2 1
5 1
7 1
8 1

 =

[
142 22
22 4

]

and

A∗Y =

[
2 5 7 8
1 1 1 1

]
1
2
3
3

 =

[
57
9

]

We note that A∗A is invertible, so that[
142 22
22 4

] [
m
b

]
=

[
57
9

]
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has a unique solution:
X̂ =

[
m
b

]
=

[
5/14
2/7

]
,

that is the desired line is y = 5/14x+ 2/7. We plot the data points and the line
of regression below. Note that the first point lies on the line.

2 4 6 8

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Figure 5.3.13 A simple linear regression
We now consider higher degree polynomial approximations. For background,

we know that two points determine a line so we need to use linear regression
as soon as we have more than two points. Lagrange interpolation tells us
that given n points in the plane, no two on a vertical line, there is a unique
polynomial of degree n−1 which passes through them. We consider the quadratic
case. So as soon as there are more than 3 points, we are no longer guaranteed
a unique quadratic curve passing through them, so we desire a least squares
approximation.

Now we are looking for coefficients b0, b1, b2 so that y = b2x
2 + b1x+ b0 best

approximates the data. As before assume that we have observed data

(xi, yi) = (60, 3.1), (61, 3.6), (62, 3.8), (63, 4), (65, 4.1), i = 1 . . . 5.

In our quadratic model we have five equations of the form:

yi = b2x
2
i + b1xi + b0 + εi

where εi is the difference between the observed value and the value predicted by
the quadratic. As before we have a matrix equation of the form

Y = AX + ε(X)
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where

A =


602 60 1
612 61 1
622 62 1
632 63 1
652 65 1

 , X =

 b2
b1
b0

 , and Y =


3.1
3.6
3.8
4

4.1

 .

Again, we seek an X̂ so that

‖Y = AX̂‖ ≤ ‖y − AX‖ = ‖ε(X)‖ (E(X) = ‖ε(X)‖2).

So we want to solve the consistent system

A∗AX̂ = A∗Y.

We have

A∗A =

 75185763 1205981 19359
1205981 19359 311
19359 311 5

 , A∗Y =


723613

10

11597
10

93
5

 , and X̂ =


− 141

2716

90733
13580

−715864
3395

 .

So the quadratic is

y = − 141

2716
x2 +

90733

13580
x− 715864

3395
.

The points together with the approximating quadratic are displayed below.

59 60 61 62 63 64 65 66
2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Figure 5.3.14 A quadratic least squares approximation
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5.4 Diagonalization of matrices in Inner Product
Spaces

We examine properties of a matrix in a inner product space which guarantee it
is diagonalizable. We also lay the ground work for singular value decomposition
of an arbitrary matrix.

In particular, we shall show that a real symmetric matrix and a complex
unitary matrix can always be diagonalized.

While such a result is remarkable in and of itself since these properties must
somehow guarantee that for such matrices each eigenspace has geometric mul-
tiplicity equal to its algebraic multiplicity, it leads us to discover an important
result about the representation of any real or complex m×n matrix A. The key
is that for any such matrix, both A∗A and AA∗ are Hermitian matrices. What is
even more interesting is that diagonalization of A∗A still tells us very important
information about the original matrix A.

5.4.1 Some relations between A and A∗

Let’s begin with some simple properties concerning the rank of a matrix.
Proposition 5.4.1 Let A be an m× n matrix with entries in any field F .

1. Let P (resp. Q) be any invertible m×m (resp. n×n) matrix with entries
in F . Then

rank(PAQ) = rankA.
Equivalently, one can say that elementary row or column operations on a
matrix do not change its rank.

2. rankA = rankAT (i.e., row rank is equal to column rank).

3. If A has complex entries then rankA = rankA∗.

Proof of (1). See Theorem 3.4 of [1]. ■

Proof of (2). Recall the the number of pivots is equal to the row and column rank,
so consider the reduced row-echelon form of the matrix, noting that elementary
row operations do not change the row space nor the dimension of the column
space. ■

Proof of (3). The difference between A∗ and AT is simply that the entries
of AT have been replaced by their complex conjugates, so if there were a linear
dependence among the rows of (say) A∗, conjugating that relation would produce
a linear dependence among the rows of AT . ■
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5.4.2 A closer look at matrices A∗A and AA∗.
In Corollary 5.3.2, we have seen both of these products of matrices when the
columns of A are orthonormal; one product producing an identity matrix, the
other the matrix of the orthogonal projection into the column space of A. But
what can we say in general (when the columns are not orthonormal vectors)?

Proposition 5.4.2 Let A be any m × n matrix with real or complex entries.
Then

rankA = rank(A∗A) = rank(AA∗).

Proof. We first show that rankA = rank(A∗A). Since A is m × n and A∗A is
n×n, both matrices represent linear transformations from a domain of dimension
n. As such, the rank-nullity theorem says that

n = rankA+ nullityA = rank(A∗A) + nullity(A∗A).

We show that the two nullspaces (kernels) are equal, hence have the same dimen-
sion, and the statement about ranks will follow.
Since any linear map takes 0 to 0, it is clear that kerA ⊆ kerA∗A. Conversely,
suppose that x ∈ kerA∗A. Then A∗Ax = 0, hence 〈x,A∗Ax〉 = 0, so by Propo-
sition 5.2.16,

0 = 〈x,A∗Ax〉 = 〈Ax,Ax〉

which implies Ax = 0 by the positivity of the inner product. Thus kerA∗A ⊆
kerA, giving us the desired equality.
To show that rankA = rankAA∗, we show equivalently (see Proposition 5.4.1)
that rankA∗ = rankAA∗. We showed above that for any matrix B, rankB =
rankB∗B, so letting B = A∗, we conclude

rankA∗ = rank((A∗)∗A∗) = rank(AA∗).

■
Let us note another common property of AA∗ and A∗A.

Proposition 5.4.3 Let A be any m × n matrix with real or complex entries.
Then the nonzero eigenvalues of A∗A and AA∗ are the same. Note that zero may
be an eigenvalue of one product, but not the other.

Proof. This result is fairly general. Suppose that A,B are two matrices for
which both products AB and BA are defined, and suppose that λ is a nonzero
eigenvalue for AB. This implies there exists a nonzero vector v for which ABv =
λv. Multiplying both sides by B and noting multiplication by B is a linear map,
we conclude that

(BA)Bv = λ(Bv),

which shows that λ is an eigenvalue of BA so long as Bv 6= 0 (eigenvectors
need to be nonzero). But if Bv = 0, then ABv = λv = 0 which implies λ = 0,
contrary to assumption.
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For the eigenvalue λ = 0, the situation can be (and often is) different. Let
A =

[
1 1

]
, and consider B = AT . Then

AB =
[
2
]

while BA =

[
1 1
1 1

]
.

The matrix AB is clearly non-singular, while the rank of BA is one, hence having
a non-trivial nullspace. ■

Before proceeding, we need to make a few more definitions and raise one
cautionary note. For the caution, observe that in general results we state for
complex matrices A hold analogously for real matrices, replacing A∗ by AT .
The Spectral Theorem for complex matrices and the Spectral Theorem for real
matrices have distinctly different hypotheses, and we want to spend a bit of time
explaining why.

While all the terms we list below are defined in the section on definitions,
it is useful for comparison to list them explicitly here. Let A ∈ Mn(C) and
B ∈ Mn(R)

• A is normal if AA∗ = A∗A.

• A is unitary if AA∗ = A∗A = In

• A is Hermitian if A = A∗.

• B is normal if BBT = BTB.

• B is orthogonal if BBT = BTB = In

• B is symmetric if B = BT .

Note that both Hermitian and unitary matrices are normal, though for ex-
ample a Hermitian matrix is unitary only if A2 = In. Analogous observations
are true for real matrices. The point here is that the complex Spectral Theo-
rem holds for the broad class of normal matrices, but the real Spectral Theorem
holds only for the narrower class of real symmetric matrices. We still need to
understand why.

We first consider some properties of real orthogonal matrices and complex
unitary matrices.

Proposition 5.4.4 Let P ∈ Mn(R) (resp. U ∈ Mn(C)). The following state-
ments are equivalent:

1. P is an orthogonal matrix (resp. U is a unitary matrix).

2. P TP = In (resp. U∗U = In).

3. PP T = In (resp. UU∗ = In).

4. P−1 = P T (resp. U−1 = U∗)
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5. 〈Pv, Pw〉 = 〈v, w〉 for all v, w ∈ Rn (resp. 〈Uv, Uw〉 = 〈v, w〉 for all
v, w ∈ Cn.)

Proof. As a sample consider the case where A∗A = In. This says that A has a
left inverse, but since A is a square matrix, it also has a right one and they are
equal.
For the last statement, recall from Proposition 5.2.16 that for any matrix A ∈
Mn(C),

〈Av,w〉 = 〈v, A∗w〉

for all v, w ∈ Cn. It follows that for an orthogonal/unitary matrix

〈Av,Aw〉 = 〈v, A∗Aw〉 = 〈v, w〉.

■
Below we state some simple versions of the spectral theorems.

Theorem 5.4.5 The Spectral Theorem for normal matrices. If A ∈
Mn(C) is a normal matrix, then there is a unitary matrix U and complex scalars
λ1, . . . , λn so that

diag(λ1, . . . , λn) = U∗AU.

In particular, any complex normal matrix can be unitarily diagonalized. The
columns of U are eigenvectors for A and form an orthonormal basis for Cn.

Theorem 5.4.6 The Spectral Theorem for real symmetric matrices. If
A ∈ Mn(R) is a symmetric matrix, then there exists an orthogonal matrix P and
real scalars λ1, . . . , λn so that

diag(λ1, . . . , λn) = P TAP.

In particular, any real symmetric matrix can be orthogonally diagonalized. The
columns of P are eigenvectors for A and form an orthonormal basis for Rn.

Remark 5.4.7 To gain some appreciation of why there is a difference in hypothe-
ses between the real and complex versions of the spectral theorem, consider the
matrix A =

[
0 1

−1 0

]
, and note that A is orthogonal (hence normal), but not

symmetric. One immediately checks that that characteristic polynomial of A,
χA = x2 + 1, has no real roots which means A has no real eigenvalues so cannot
possibly be diagonalized to say nothing of orthogonally diagonalized. Clearly
one important element of the spectral theorem is that the characteristic polyno-
mial must split completely (factor into all linear factors) over the field. This is
given for the complex numbers since they are algebraically closed, but not so for
the real numbers. So in the real case, we must somehow guarantee that a real
symmetric matrix has only real eigenvalues.

We state the following proposition for complex Hermitian matrices, but it
also applies to real symmetric matrices since for a real matrix, AT = A∗. Also
note that every real or complex matrix has all its eigenvalues in C.
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Proposition 5.4.8 Let A be a complex Hermitian matrix, and λ an eigenvalue
for A. Then λ is necessarily a real number.

Proof. Let λ be an eigenvalue of A, and let v be an eigenvector for λ. Then

λ〈v, v〉 = 〈λv, v〉 = 〈Av, v〉 = 〈v, A∗v〉 = 〈v, Av〉 = 〈v, λv〉 = λ〈v, v〉,

where we have used the Hermitian property (A∗ = A) and the sesquilinearity of
the inner product. Since v 6= 0, we know that 〈v, v〉 6= 0, from which we conclude
λ = λ, hence λ is real. ■

Analogous to Proposition 4.4.6 for arbitrary matrices, we have

Proposition 5.4.9 Let A ∈ Mn(C) be Hermitian matrix. Then eigenspaces
corresponding to distinct eigenvalues are orthogonal.

Proof. Suppose that λ and µ are distinct eigenvalues for A. Let v be an eigen-
vector with eigenvalue λ and w be an eigenvector with eigenvalue µ. Then

λ〈v, w〉 = 〈λv, w〉 = 〈Av,w〉 (1)
= 〈v, A∗w〉

(2)
= 〈v, Aw〉 = 〈v, µw〉 = µ〈v, w〉 (3)

= µ〈v, w〉,

where (1) is true by Proposition 5.2.16, (2) is true since A is Hermitian, (3)
is true by Proposition 5.4.8 and the remaining equalities hold using standard
properties of the inner product. Rewriting the expression, we have

(λ− µ)〈v, w〉 = 0,

and since λ 6= µ, we conclude 〈v, w〉 = 0 as desired. ■
The proof of the spectral theorems is rather involved. Of course any matrix

over C will have the property that its characteristic polynomial splits, but we
have also shown this for real symmetric matrices. The hard part is showing
that each eigenspace has dimension equal to the algebraic multiplicity of the
eigenvalue. For this something like Schur’s theorem is used as a starting point.
See Theorem 6.21 of [1].

We would like to use the spectral theorems to advance the proof of the
singular value decomposition (SVD) of a matrix, though it is interesting to note
that other authors do the reverse, see section 5.4 of [3].

Remark 5.4.10 We conclude this section with another interpretation of the
spectral theorem, giving a spectral decomposition which will be mirrored in the
next section on the singular value decomposition.

We restrict our attention to n×n matrices A over the real or complex number
which are Hermitian (i.e., symmetric for a real matrix), and consequently for
which all the eigenvalues are real. We list the eigenvalues λ1, . . . , λn, though
this does not mean they need be all distinct. By Theorem 5.4.5, there exists a
unitary matrix U whose columns {u1, . . . , un} form an orthonormal basis of Cn
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consisting of eigenvectors for A so that

diag(λ1, . . . , λn) = UAU∗.

In the discussion preceding Corollary 5.3.2 we used the column-row rule for
matrix multiplication to show that

UU∗ = u1u
∗
1 + · · ·+ unu

∗
n

which is the orthogonal projection into the column space of A (all of Cn in this
case), but viewed as the sum of one-dimensional orthogonal projections onto the
spaces spanned by each ui. It follows that
Proposition 5.4.11 Spectral decomposition of a Hermitian matrix. Let
A ∈ Mn(C) be a Hermitian matrix with (real) eigenvalues λ1, . . . , λn. Let U be
the unitary matrix whose orthonormal columns ui are eigenvectors for the λi.
Then

A = U diag(λ1, . . . , λn)U
∗ = λ1u1u

∗
1 + · · ·+ λnunu

∗
n.

Proof. By the spectral theorem,

diag(λ1, . . . , λn) = U∗AU

or
A = (U∗)−1 diag(λ1, . . . , λn)U

−1 = U diag(λ1, . . . , λn)U
∗,

since U is unitary, so U−1 = U∗, and the result follows. ■

5.5 Singular Value Decomposition
We show how the spectral decomposition for Hermitian matrices gives rise to
an analogous, but very special decomposition for an arbitrary matrix, called the
singular value decomposition (SVD).

We shall state without proof the version of the SVD which holds for linear
transformations between finite-dimensional inner product spaces, but its state-
ment is so elegant, it’s depth of importance is almost lost.

Then we state and prove the matrix version, providing some examples to
demonstrate its utility.

5.5.1 SVD for linear maps
We begin with a statement of the singular value decomposition for linear maps
as paraphrased from Theorem 6.26 of [1].

Theorem 5.5.1 Let V,W be finite-dimensional inner product spaces and
T : V → W a linear map having rank r. Then there exist orthonormal bases
{v1, . . . , vn} for V and {w1, . . . , wm} for W, and positive scalars σ1 ≥ · · · ≥ σr
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so that

T (vi) =

{
σiui if 1 ≤ i ≤ r

0 if i > r.

Moreover, the σi are uniquely determined by T, and are called the singular
values of T.

Another way to state the main part of this result is the if the orthonormal
bases are BV = {v1, . . . , vn} and BW = {w1, . . . , wm}, then the matrix of T with
respect to these bases has the form

[T ]BW
BV

=

[
D 0
0 0

]

where D =

 σ1 0
. . .

0 σr

 and the lower right block of zeros of [T ]BW
BV

has size

(m− r)× (n− r).

Remark 5.5.2 Staring at the form of the matrix above, does it really seem all
that special or new? Indeed, we know that given an m × n matrix A, we can
perform elementary row and column operations on A, represented by invertible
matrices P,Q so that

PAQ =

[
Ir 0
0 0

]
.

Now the matrices P,Q just represent a change of basis as happens in the
theorem. Specifically (and assuming for convenience of notation that V = Cn,
W = Cm with standard bases En and Em), the matrices P and Q give rise to
bases BV for V , and BW for W, so that

PAQ = [I]BW
Em [T ]EmEn [I]

En
BV

= [T ]BW
BV

=

[
Ir 0
0 0

]
,

so that with the obvious enumeration of the bases, the map T acts by vi 7→ 1 ·wi

for 1 ≤ i ≤ r, and vi 7→ 0 for i > r.
But then we look a bit more carefully. The elementary row and column

operations just hand us new bases with no special properties. We could make
both bases orthogonal via Gram-Schmidt, but then would have no hope that vi 7→
1 · wi for 1 ≤ i ≤ r, and vi 7→ 0 for i > r. In addition, we know that orthogonal
and unitary matrices are very special since they preserve inner products, so the
geometric transformations that are taking place in Cn and Cm are rigid motions
with the only stretching effect given by the singular values. In other words, there
is actually a great deal going on in this theorem which we shall now explore.
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5.5.2 SVD for matrices
We begin with an arbitrary m×n matrix A with complex entries. Let B = A∗A,
and note that B∗ = B, so B is an n×n Hermitian matrix and the Spectral The-
orem implies that there is an orthonormal basis for Cn consisting of eigenvectors
for B = A∗A having (not necessarily distinct) eigenvalues λ1, . . . , λn.

We have already seen in Proposition 5.4.8 that Hermitian matrices have real
eigenvalues, but we can say more for A∗A. Using the eigenvectors and eigenvalues
from above, we compute:

‖Avi‖2 = 〈Avi, Avi〉 = (Avi)
∗(Avi) = v∗iA

∗Avi

= v∗i (A
∗A)vi

(1)
= v∗i λivi

(2)
= λiv

∗
i vi

(3)
= λi,

where (1) is true since vi is an eigenvector for A∗A, (2) is true since in a vector
space scalars commute with vectors, and (3) is true since the vi are unit vectors.
Thus in addition to the eigenvalues of A∗A being real numbers, the computation
shows that they are non-negative real numbers.

We let σi =
√
λi. The σi are called the singular values of A, and from the

computation above, we see that

σi = ‖Avi‖.

We may assume that the eigenvalues are labeled in such a way that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

Usually we introduce the notation that σ1, . . . , σr > 0, and σi = 0 for i > r. We
shall show now that r = rankA so that r = n if and only if rankA = n.

Proposition 5.5.3 The number of positive singular values of a matrix A equals
its rank.
Proof 1. Proposition 5.4.3 shows that rankA = rankA∗A, so we need only show
that r = rankA∗A. Now recall that {v1, . . . , vn} is an orthonormal basis of Cn

consisting is eigenvectors for A∗A.
Now the rank of A∗A is the dimension of its range, the number of linearly inde-
pendent vectors in {A∗Av1, . . . , A

∗Avn}, and the rank-nullity theorem says that
since A∗Avi = 0 for i > r, we know the nullity is at least (n− r) and the rank at
most r. We need only show that {A∗Av1, . . . , A

∗Avr} is a linearly independent
set to guarantee the rank is r.
Suppose that

r∑
i=1

αiA
∗Avi = 0.

Since the vi are eigenvectors for A∗A, we deduce
r∑

i=1

αiλivi = 0,
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and since the vi are themselves linearly independent, each coefficient αiλi = 0.
Since we are assuming that λi > 0 for i = 1, . . . , r, we conclude all the αi = 0,
making the desired set linearly independent, which establishes the result. ■

Proof 2. A slightly more direct proof that r = rankA begins by recalling that
σi = ‖Avi‖, so we know that Avi = 0 for i > r. Again by rank-nullity, we deduce
the rank is at most r and precisely is the number of linearly independent vectors
in {Av1, . . . , Avr}. In fact, we show that this is an orthogonal set of vectors, so
linearly independent by Proposition 5.2.2. Since {v1, . . . , vn} is an orthonormal
set of vectors, for j 6= k we know that vj and λkvk are orthogonal. We compute

〈Avk, Avj〉 = (Avj)
∗(Avk) = v∗jA

∗Avk = v∗j (λkvk) = λk〈vk, vj〉 = 0,

which gives the result. ■
We summarize what is implicit in the second proof given above.

Corollary 5.5.4 Suppose that {v1, . . . , vn} is an orthonormal basis of Cn con-
sisting of eigenvectors for A∗A arranged so that the corresponding eigenvalues
satisfy λ1 ≥ · · · ≥ λn. Further suppose that A has r nonzero singular values.
Then {Av1, . . . , Avr} is an orthogonal basis for the column space of A, hence
rankA = r.

We are now only a few steps away from our main theorem:

Theorem 5.5.5 Let A ∈ Mm×n(C) with rank r and having singular values
σ1 ≥ · · · ≥ σn. Then there exists an m× n matrix

Σ =

[
D 0
0 0

]
where D =

 σ1 0
. . .

0 σr


and unitary matrices U ∈ Mm(C) and V ∈ Mn(C), so that

A = UΣV ∗.

Proof. Given A, we construct an orthonormal basis of Cn, {v1, . . . , vn}, consisting
of eigenvectors for A∗A arranged so that the corresponding eigenvalues satisfy
λ1 ≥ · · · ≥ λn. Note that the matrix V = [v1 v2 · · · vn] with the vi as its
columns is a unitary matrix.
By Corollary 5.5.4, we know that {Av1, . . . .Avr} is an orthogonal basis for the
column space of A and we have observed that σi = ‖Avi‖, so let

ui =
1

σi

Avi, i = 1, . . . , r.

Then {u1, . . . , ur} is an orthonormal basis for the column space of A which we
extend to an orthonormal basis {u1, . . . , um} of Cm. We let U be the unitary
matrix with orthonormal columns ui. We now claim that

A = UΣV ∗
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where

Σ =

[
D 0
0 0

]
and D =

 σ1 0
. . .

0 σr

 .

Note that

AV = [Av1 · · · Avn] = [Av1 · · · Avr 0 · · · 0] = [σ1u1 · · · σrur 0 · · · 0]

and also that

UΣ = [u1, . . . um] =


σ1 0

. . .
0 σr

0

0 0

 = [σ1u1 . . . σrur 0 . . . 0]

Thus
AV = UΣ,

and since V is a unitary matrix, multiplying both sides of the above equation on
the right by V −1 = V ∗ yields

A = UΣV ∗.
■

Remark 5.5.6 In complete analogy with Proposition 5.4.11, we have a spectral-
like decomposition of A :

A = UΣV ∗ = σ1u1v
∗
1 + · · ·+ σrurv

∗
r . (5.5.1)

Remark 5.5.7 A few things to notice about the SVD. First, let’s pause
to note how the linear maps version of the SVD is implicit in what we have
done above. We constructed an orthonormal basis {v1, . . . , vn} of Cn, defined
σi = ‖Avi‖, and for i ≤ r = rankA set u=

1

σi

vi. We noted {u1, . . . , ur} is an
orthonormal subset of Cm which we extended to an orthonormal subset of Cm.
So just from what we have seen above, we have

Avi =

{
σiui if 1 ≤ i ≤ r

0 if i > r.
.

What we shall see below is even more remarkable in that there is a duality
between A and A∗. We shall see that with the same bases and σi,

A∗ui =

{
σivi if 1 ≤ i ≤ r

0 if i > r.
.

There are some other important and useful things to notice about the con-
struction of the SVD. First is that matrices U, V are not uniquely determined
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though the singular values are. In light of this, a matrix can have many singular
value decompositions all of equal utility.

Perhaps more interesting from a computational perspective and evident from
Equation (5.5.1) is that adding the vectors ur+1, . . . , um to form an orthonormal
basis of Cm is completely unnecessary in practice. One only uses u1, . . . , ur.

Now we are in desperate need of some examples. Let’s start with computing

an SVD of A =

 7 1
5 5
0 0

.

Example 5.5.8 A computation of a simple SVD. The process of computing
an SVD is very algorithmic, and we follow the steps of the proof.

Let A be the 3 × 2 matrix A =

 7 1
5 5
0 0

. Then A∗A = ATA is 2 × 2, so in

the notation of the theorem, m = 3 and n = 2. It is also evident from inspecting
A that it has rank r = 2, so in this case we will have r = n = 2, so the general
form of Σ will be “degenerate” with the last n− r columns missing.

We compute
A∗A =

[
74 32
32 26

]
which has characteristic polynomial χA = (x− 10)(x− 90). The singular values
are σ1 =

√
90 ≥ σ2 =

√
10. Thus the matrix Σ has the form

Σ =

 3
√
10 0

0
√
10

0 0

 .

It follows from the spectral theorem that eigenspaces of a Hermitian matrix
associated to different eigenvalues are orthogonal, so we can find any unit vectors
v1, v2 which span the one-dimensional eigenspaces, and together they will form
an orthonormal basis for C2. We compute eigenvectors for A∗A by row reducing
A∗A− λiI2, and obtain:

Eigenvectors =
{[

2
1

]
,

[
−1
2

]}
7→ {v1, v2} =

{[
2/
√
5

1/
√
5

]
,

[
−1/

√
5

2/
√
5

]}
.

So, V =

[
2/
√
5 −1/

√
5

1/
√
5 2/

√
5

]
.

For the matrix U , we first look at

Av1 =

 7 1
5 5
0 0

[ 2
1

]
=

 15
15
0

 7→ u1 =

 1/
√
2

1/
√
2
0

 ,

Av2 =

 7 1
5 5
0 0

[ −1
2

]
=

 −5
5
0

 7→ u2 =

 −1/
√
2

1/
√
2
0

 .
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Finally we extend the orthonormal set {u1, u2} to an orthonormal basis for

C3, say {u1, u2, u3} =


 1/

√
2

1/
√
2
0

 ,

 −1/
√
2

1/
√
2
0

 ,

 0
0
1

.

Then with U =

 1/
√
2 −1/

√
2 0

1/
√
2 1/

√
2 0

0 0 1

, V =

[
2/
√
5 −1/

√
5

1/
√
5 2/

√
5

]
, Σ = 3

√
10 0

0
√
10

0 0

 , we have

A =

 7 1
5 5
0 0

 = UΣV ∗

=

 1/
√
2 −1/

√
2 0

1/
√
2 1/

√
2 0

0 0 1

 3
√
10 0

0
√
10

0 0

[ 2/
√
5 1/

√
5

−1/
√
5 2/

√
5

]
.

□
Having computed the SVD:

A =

 7 1
5 5
0 0

 =

 1/
√
2 −1/

√
2 0

1/
√
2 1/

√
2 0

0 0 1

 3
√
10 0

0
√
10

0 0

[ 2/
√
5 1/

√
5

−1/
√
5 2/

√
5

]
,

let’s see how Equation (5.5.1) is rendered:

A = UΣV ∗ = σ1u1v
∗
1 + · · ·+ σrurv

∗
r

=
√
90

 1/
√
2

1/
√
2
0

 [ 2/
√
5 1/

√
5
]
+
√
10

 −1/
√
2

1/
√
2
0

 [ −1/
√
5 2/

√
5
]

=
√
90

 2/
√
10 1/

√
10

2/
√
10 1/

√
10

0 0

+
√
10

 1/
√
10 −2/

√
10

−1/
√
10 2/

√
10

0 0


=

 6 3
6 3
0 0

+

 1 −2
−1 2
0 0

 =

 7 1
5 5
0 0

 .

We shall explore the significance of this kind of decomposition when we look at
an application of the SVD to image compression.

Before that, let’s summarize creating an SVD algorithmically, and then take
a look at what the decomposition can tell us.
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5.5.3 An algorithm for producing an SVD
Given an m×n matrix with real or complex entries, we want to write A = UΣV ∗,
where U, V are appropriately sized unitary matrices (orthogonal if A has all real
entries), and Σ is a block matrix which encodes the singular values of A. We
proceed as follows:

1. The matrix A∗A is n×n and Hermitian (resp. symmetric if A is real), so it
can be unitarily (resp. orthogonally) diagonalized. So find an orthonormal
basis of eigenvectors {v1, . . . , vn} of A∗A labeled in such a way that the
corresponding (real) eigenvalues satisfy λ1 ≥ · · · ≥ λn. Set V to be the
matrix whose columns are the vi. Then we know that λ1

. . .
λn

 = V ∗(A∗A)V.

This step probably involves the most work. It involves finding the char-
acteristic polynomial of A∗A, and for each eigenvalue λ, finding a basis
for the eigenspace for λ (i.e., the nullspace of (A∗A − λIn)), then using
Gram-Schmidt to produce an orthogonal basis for the eigenspace, and fi-
nally normalizing to produce unit vectors. Note that by Proposition 5.4.9,
eigenspaces corresponding to different eigenvalues of a Hermitian matrix
are automatically orthogonal, so working on each eigenspace separately
will produce the desired basis.
We shall review how to use Sage to help with some of these computations
in the section below.

2. Let σi =
√
λi and assume σ1 ≥ · · · ≥ σr > 0, σr+1 = · · · = σn = 0, knowing

that it is possible for r to equal n.

3. Remember that {Av1, . . . , Avr} is an orthogonal basis for the column space
of A, so in particular, r = rankA. Normalize that set via ui =

1

σi

Avi

and complete to an orthonormal basis {u1, . . . , ur, . . . , um} of Cm. Put
U = [u1 . . . um], the matrix with the ui as column vectors.

4. Then

A = UΣV ∗ = U


σ1 0

. . .
0 σr

0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

V ∗.
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5.5.4 Can an SVD for a matrix A be computed from AA∗

instead?
This is a very important question, but why? Well, suppose that A is m×n. Then
A∗A is n×n while AA∗ is m×m, but both matrices are Hermitian and the first
step of the SVD algorithm is to unitarily diagonalize a Hermitian matrix. If m
and n differ in size, it would be nice to do the hard work on the smaller matrix.
But we really did develop our algorithm based on using A∗A, so let’s see if we
can figure out how to use AA∗ instead.

We know that using the Hermitian matrix A∗A, we deduce an SVD of the
form

A = UΣV ∗ = U


σ1 0

. . .
0 σr

0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

V ∗,

with U, V unitary matrices. It follows that

A∗ = V Σ∗U∗ = V


σ1 0

. . .
0 σr

0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)

U∗

where we note that upper r × r block of Σ∗ is the same as that of Σ since the
only nonzero entries in Σ are on the diagonal and are real.

Recall from Proposition 5.4.3 that the nonzero eigenvalues of A∗A and AA∗

are the same, which means the singular values (and hence the matrix Σ or Σ∗)
can be determined from either A∗A or AA∗. Also both U and V are unitary
matrices which means that

A∗ = V Σ∗U∗

is a singular value decomposition for A∗.
More precisely, if we put B = A∗ and compute an SVD for B, our algo-

rithm would have us start with the matrix B∗B = AA∗, and we would deduce
something like

B = A∗ = U1Σ1V
∗
1 .

Taking conjugate transposes would give

A = V1Σ
∗
1U

∗
1 ,

providing an SVD for A.

Example 5.5.9 Compute an SVD for a 2×3 matrix. To compute an SVD
for A =

[
1 2 3
3 2 1

]
, we have two choices: work with A∗A which is 3×3 or work

with AA∗ which is 2 × 2. Since we are doing the work by hand, we choose the
smaller example, but remember that in working with AA∗ we are computing an
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SVD for B = A∗ and will have to reinterpet as above.
We check that B∗B = AA∗ =

[
14 10
10 14

]
, which has characteristic polyno-

mial ∣∣∣∣ 14− x 10
10 14− x

∣∣∣∣ = (14− x)2 − 100 = (x− 4)(x− 24).

So ordered in descending order, we have

λ1 = 24 ≥ λ2 = 4, (and) σ1 = 2
√
6 ≥ σ2 = 2

so the rank r = 2. It is easy to see that[
1
1

]
and

[
1

−1

]
are corresponding eigenvectors which we normalize as

v1 =
1√
2

[
1
1

]
and v2 =

1√
2

[
1

−1

]
.

We now compute

u1 =
1

σ1

Bv1 =
1√
3

 1
1
1

 and u2 =
1

σ2

Bv2 =
1√
2

 −1
0
1

 ,

which we complete to an orthonormal basis for C3 with u3 =
1√
6

 1
−2
1

 .

Thus if we put

U =
1√
6

 √
2 −

√
3 1√

2 0 −2√
2

√
3 1

 and V =
1√
2

[
1 1
1 −1

]
,

we check that

B = U

 2
√
6 0
0 2
0 0

V ∗ =
1√
6

 √
2 −

√
3 1√

2 0 −2√
2

√
3 1

 2
√
6 0
0 2
0 0

 1√
2

[
1 1
1 −1

]
,

so that

A = B∗ = V Σ∗U∗ =
1√
2

[
1 1
1 −1

] [
2
√
6 0 0
0 2 0

]
1√
6

 √
2

√
2

√
2

−
√
3 0

√
3

1 −2 1

 .

□
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5.5.5 Some Sage computations for an SVD

In the example above we computed an SVD for A =

[
1 2 3
3 2 1

]
by computing

an SVD for A∗ =

 1 3
2 2
3 1

 and converting, but since all the explicit work is for

B = A∗, we do our Sage examples using that matrix.
First we parallel our computations done above following our algorithm, and

then we switch to using Sage’s builtin SVD algorithm. Why waste time if we
can just go to the answer? It is probably better to judge for yourself.

First off, set up for pretty output and square brackets for delimeters, a style
choice. Next, enter and print the matrix B.

%display latex
latex.matrix_delimiters("[", "]")
B=matrix(QQbar ,[[1 ,3] ,[2 ,2] ,[3 ,1]])
B

Form C = B∗B, our Hermitian matrix.

C=B.conjugate_transpose ()*B;C

Find the characteristic polynomial of B∗B, and factor it. Remember that all
the eigenvalues are guaranteed to be real and the eigenspaces will have dimension
equal to the algebraic multiplicities.

C.characteristic_polynomial ().factor ()

Ask Sage to give us the eigenvectors which, when normalized, will form the
columns of the matrix V. The output of the eigenmatrix_right() command
is a pair, the first entry is the diagonalized matrix, and the second the matrix
whose columns are the corresponding eigenvectors. It is useful to see both so as
to be sure the eigenvectors are listed in descending order of eigenvalues. Ours
are fine, so we let V be the matrix of (unnormalized) eigenvectors.

C.eigenmatrix_right ()

Next we grab the second entry in the above pair, the matrix of eigenvectors.

V=C.eigenmatrix_right ()[1]
V

Now we normalize the column vectors:
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for j in range(V.ncols()):
w=V.column(j)
if w.norm() != 0 :

V[:,j] = w/w.norm()
V

Next we think about the U matrix. Technically, we have the orthonormal
vectors vi and need to find Bvi and normalize them by dividing by σi =

√
λi.

However, especially if doing pieces of the computation by hand so as to produce
exact arithmetic, we can simply apply B to the unnormalized eigenvectors and
normalize the result since the arithmetic (which we perform by hand) will be
prettier.

We already have eigenvectors
[
1
1

]
for λ1 = 24, and

[
1

−1

]
for eigenvalue

λ2 = 4, but we need to apply B to them, normalize the result and complete that
set to an orthogonal basis for C3. So we fast forward and have two orthogonal

vectors Bv1 =

 1
1
1

 and Bv2 =

 −1
0
1

 . How do we find a vector orthogonal

to the given two?
The orthogonal bit is easy; we can Gram-Schmidt our way to an orthogonal

basis, but first we should choose a vector not in the span of the first two. Again
since we have a small example, this is easy, but the method we suggest is to build
a matrix with the first two rows the given orthogonal vectors, add a (reasonable)
third row and ask for the rank. Really, we need only invoke Gram-Schmidt, and
either we will have a third orthogonal vector or only the original two. We show
what happens in both cases.

We build a container for the orthogonal vectors.

%display latex
latex.matrix_delimiters("[", "]")
D= matrix(QQbar ,[[1,1,1],[-1,0,1],[0,0,0]]);D

First we add a row we know to be in the span of the first two; it is the sum
of the first two, and Gram-Schmidt kicks it out.

D[2]=[0 ,1 ,2];D

We see Gram-Schmidt knew the third row was in the span of the first two.

G,M=D.gram_schmidt ();G

Then we add a more reasonable row, and Gram-Schmidts produces an or-
thogonal basis.
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D[2]=[1 ,0 ,2];D

G,M=D.gram_schmidt ();G

To produce the orthogonal (unitary) matrix U , we must normalize the vectors
and take the transpose to have the vectors as columns.

Sage also has the ability to compute an SVD directly once the entries of the
matrix have been converted to RDF or CDF (Real or Complex double precision).
This conversion can be done on the fly or by direct definition; we show both
methods. The algorithm outputs the triple (U,Σ, V ).

B=matrix(QQ ,[[1 ,3] ,[2 ,2] ,[3 ,1]])
B,B.change_ring(RDF).SVD()

B=matrix(RDF ,[[1 ,3] ,[2 ,2] ,[3 ,1]])
B,B.SVD()

5.5.6 Deductions from seeing an SVD
Suppose that A is a 2× 3 real matrix and that A has the singular value decom-
position

A = UΣV ∗ =

[
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

] [ √
6 0 0
0 0 0

] 1/
√
3 1/

√
3 −1/

√
3

1/
√
2 −1/

√
2 0

1/
√
6 1/

√
6 2/

√
6

 .

Question 5.5.10 What is the rank of A?

Answer. This is too easy. The rank r is the number of nonzero singular values,
so rankA = 1. □
Question 5.5.11 What is a basis for the column space of A?

Answer. Recall that {Av1, . . . , Avr} is a basis for the column space of A, and
normalized, those vectors are u1, . . . , ur, the first r columns of U. Since r = 1,

the set {u1} =

{[
1/
√
2

1/
√
2

]}
is a basis. □

Question 5.5.12 What is a basis for the kernel (nullspace) of A?

Answer. Hmmm. A bit trickier, or is it? The matrix A is 2× 3, meaning the
linear map LA defined by LA(x) = Ax is a map from C3 → C2. By rank-nullity,
we deduce that nullityA = 2, and how conviently (recall the singular values), we
have Av2 = Av3 = 0, which means {v2, v3} is a basis for the nullspace. □
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5.5.7 SVD and image processing
Matlab was used to render a (personal) photograph into a matrix whose entries
are the gray-scale values 0-255 (black to white) of the corresponding pixels in
the original jpeg image. The photo-rendered matrix A has size 2216 × 1463,
and most likely is not something we want to treat by hand, but that is what
computers are for.

But suppose I hand the matrix A to some nice software and it returns an
SVD for A, say

A = UΣV ∗ = σ1u1v
∗
1 + σ2u2v

∗
2 + · · ·+ σrurv

∗
r .

Recall that σ1 ≥ σ2 ≥ · · ·, so that the most significant features of the image
(matrix) are conveyed by the early summands σiuiv

∗
i each of which is an m× n

matrix of rank 1. Now it turns out that the rank of our matrix A is r = 1463, so
that is a long sum. What is impressive about the SVD is how quickly the early
partial sums reveal the majority of the critical features we seek to infer.

So let’s take a look at the renderings of some of these partial sums recalling
that it takes 1463 summands to recover the original jpeg image.

Here is the rendering of the first summand. Notice how all the rows (and
columns) are multiples of each other reflecting that the matrix corresponding to
this image has rank 1.

Figure 5.5.13 Image output from first summand of SVD
Here is the rendering of the partial sum of the three summands. Hard to

know what this image is.
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Figure 5.5.14 Image output using first three summands of SVD
Even with the partial sum of 5 summands, interpreting the image is prob-

lematic, but remember it takes 1463 to render all the detail. But also, once you
know what the image is, you will come back to this rendering and already see
essential features.

Figure 5.5.15 Image output using first five summands of SVD
Below are the renderings of partial sums with 10, 15, 25, 50, 100, 200, 500,
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1000, and all 1463 summands. Look at successive images to see how (and at what
stage) the finer detail is layered in. Surely with only 10 summands rendered,
there can be no question of what the image is.

Figure 5.5.16 Image output using first 10 summands of SVD

Figure 5.5.17 Image output using first 15 summands of SVD
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Figure 5.5.18 Image output using first 25 summands of SVD

Figure 5.5.19 Image output using first 50 summands of SVD
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Figure 5.5.20 Image output using first 100 summands of SVD

Figure 5.5.21 Image output using first 200 summands of SVD
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Figure 5.5.22 Image output using first 500 summands of SVD

Figure 5.5.23 Image output using first 1000 summands of SVD
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Figure 5.5.24 Original image (all 1463 summands)

5.5.8 Some parting observations on the SVD
Back in Theorem 5.2.17 and Corollary 5.2.18 we defined the so-called four fun-
damental subspaces. Let us see how they are connected via the singular value
decomposition of a matrix.

We started with an m× n matrix A having rank r, and an SVD of the form
A = UΣV ∗ :

[u1 · · · ur︸ ︷︷ ︸
ColA

ur+1 · · · um︸ ︷︷ ︸
kerA∗

]


σ1 0

. . .
0 σr

0

0 0





v∗1
...

v∗r
v∗r+1

...
v∗n



ColA∗

 kerA

(5.5.2)

We have the orthonormal basis {u1, . . . , um}for Cm of which {u1, . . . , ur} is
an orthonormal basis for ColA, the column space of A. So that means that
{ur+1, . . . , um} is an orthogonal subset of (ColA)⊥ = kerA∗ by Theorem 5.2.17.

By Corollary 5.2.11, we know that Cm = ColA⊞ (ColA)⊥, so

m = dimCm = dim ColA+ dim(ColA)⊥,

so dim(ColA)⊥ = m − r, and it follows that {ur+1, . . . , um} is an orthonormal
basis for (ColA)⊥ = kerA∗.
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Turning to the right side of the SVD, we know that

‖Avi‖ = σi for i = 1, . . . , n,

and by the choice of r, we know that

Avr+1 = · · · = Avn = 0.

Since the rankA = r, the nullityA = n − r which means that {vr+1, . . . , vn} is
an orthonormal basis for kerA.

Finally it follows that {v1, . . . , vr} is an orthonormal basis for (kerA)⊥ =
ColA∗. Note that when A is a real matrix, ColA∗ = ColAT = RowA.

In display (5.5.2), we have seen a certain symmetry between the kernels and
images of A and A∗, and in part we saw that above in Subsection 5.5.4 where
we used the SVD for A∗ to obtain one for A. We connect the dots a bit more
with the following observations.

In constructing an SVD for A = UΣV ∗, we had an orthonormal basis
{v1, . . . , vn} which were eigenvectors for A∗A with eigenvalues λi = σ2

i . Not-
ing that ‖Avi‖ = σi, we set ui =

1

σi

Avi for i = 1, . . . , r, observed it was an
orthormal set and extended in to an orthonormal basis {u1, . . . , um} for Cm.

From the definiton, ui =
1
σi
Avi we see that Avi = σiui. What do you think

A∗ui should equal?
We compute

A∗ui =
1

σi

A∗(Avi) =
1

σi

(A∗A)vi =
1

σi

λivi = σivi.

Thus we have the wonderfully symmetric relation:

Avi = σiui and A∗ui = σivi for i = 1, . . . , r.

Typically in a given singular value decompostion, A = UΣV ∗, the columns of
U are called the left singular vectors of A, while the columns of V are called
the right singular vectors.

5.6 Exercises (with solutions)

Exercises

1. Let W =




x1

x2

x3

x4

 ∈ R4

∣∣∣∣∣ x1 + 2x2 + 3x3 + 4x4 = 0

.

(a) Find bases for W and W⊥.

Solution. W is the solution space to Ax = 0 where A is the 1 × 4
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matrix A =
[
1 2 3 4

]
; it is a hyperplane in R4. We easily read

a set of independent solutions from the matrix A which is already in
reduced row-echelon form. Taking x2, x3, x4 as free variables, we may
take as a basis:

{w1, w2, w3} =




−2
1
0
0

 ,


−3
0
1
0

 ,


−4
0
0
1


 .

Thinking the four fundamental subspaces (Theorem 5.2.17), we know
that the

W⊥ = (kerA)⊥ = C(A∗) = Span




1
2
3
4


 .

If you did not recall that fact, it is clear that this vector is in W⊥,
but since

4 = dimR4 = dimW + dimW⊥,

we see we already have a spanning set.

(b) Find orthogonal bases for W and W⊥.

Solution. Since W⊥ = Span




1
2
3
4


 is one-dimensional, the

given basis is automatically an orthogonal basis.

For W, we use Gram-Schmidt: We take v1 = w1 =


−2
0
0
1

 , and

compute

v2 = w2 −
〈w2, v1〉
〈v1, v1〉

v1 =


−3/5
−6/5

1
0


and

v3 = w3 − · · · =


−2/7
−4/7
−6/7

1

 .
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(c) Find the orthogonal projection of b =


1
1
1
1

 onto the subspace W .

Hint. It is definitely worth noting that R4 = W⊞W⊥. The question
is, how to leverage that fact.

Solution. The issue we want to leverage is that

projW = IV − projW⊥ .

Since we know that W⊥ = Span {e} where e =


1
2
3
4

, we compute

projW⊥(b) =
〈b, e〉
〈e, e〉

e =
10

30


1
2
3
4

 =
1

3


1
2
3
4

 .

Now using the observation, we compute

projW (b) = b− projW⊥(b) =


1
1
1
1

− 1

3


1
2
3
4

 =
1

3


2
1
0

−1

 .

One alternative is that having gone to the trouble of finding an or-
thogonal basis for W, we could brute force the answer from Defini-
tion 5.2.13.
Other alternatives: if we made our orthogonal basis for W into an
orthonormal one, we could use Corollary 5.3.2. Or perhaps with a
bit less fuss, we could simply take advantage of Proposition 5.3.3 as
follows: Let

A =


−2 −3 −4
1 0 0
0 1 0
0 0 1

 .

Then

A(A∗A)−1A∗ =


29
30

− 1
15

− 1
10

− 2
15

− 1
15

13
15

−1
5

− 4
15

− 1
10

−1
5

7
10

−2
5

− 2
15

− 4
15

−2
5

7
15


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is the matrix of the projection map [projW ] with respect to the stan-
dard basis, so that

projW (b) = A


1
1
1
1

 =
1

3


2
1
0

−1

 .

I am pretty sure which method I prefer!

2. Let A =

 3 0 0
0 1 2
0 2 1

 ∈ M3(R).

(a) What observation tells you that A is diagonalizable without any com-
putation?

Solution. It is a real, symmetric matrix so not only is it diagonal-
izable, it is orthogonally diagonalizable.

(b) Compute the characteristic polynomial.

Solution.

χA = det(xI − A) = det

 x− 3 0 0
0 x− 1 −2
0 −2 x− 1

 = (x− 3)[(x− 1)2 − 4]

= (x− 3)(x2 − 2x− 3) = (x− 3)3(x+ 1).

(c) Determine a basis for each eigenspace.

Solution.

A+ I =

 4 0 0
0 2 2
0 2 2

 7→

 1 0 0
0 1 1
0 0 0

 7→ v1 =

 0
−1
1


A− 3I =

 0 0 0
0 −2 2
0 2 −2

 7→

 0 1 −1
0 0 0
0 0 0

 7→ v2 =

 1
0
0

 v3 =

 0
1
1



Note that v′3 =

 1
1
1

 is another obvious choice for an independent

eigenvector, though not as useful for a later part (since v2 and v3 are
orthogonal).

(d) Find a matrix P so that P−1AP is diagonal.
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Solution. The matrix P is any matrix with the eigenvectors as
columns. For example, if we want the diagonal matrix to be 3

3
−1

 choose P =

 1 0 0
0 1 −1
0 1 1

 ,

or if we want the diagonal matrix to be −1
3

3

 choose P =

 0 1 0
−1 0 1
1 0 1

 .

Other matrices are certainly possible.

(e) Determine whether the matrix A is orthogonally diagonalizable. If
not, why; if so, find an orthogonal matrix Q so that QTAQ is diagonal.

Solution. Since A is a real symmetric matrix, we know it is orthog-
onally diagonalizable. The columns of the matrices P above have
orthogonal columns. We need only normalize the columns, say

Q =

 0 1 0

−1/
√
2 0 1/

√
2

1/
√
2 0 1/

√
2

 .

3. View R7 as an inner product space with the usual inner product.
(a) let T : R7 → R7 be a linear map with the property that 〈T (v), v〉 = 0

for all v ∈ R7. Show that T is not invertible.

Hint. Calculus tells you that a polynomial of degree 7 and real
coefficients has at least one real root.

Solution. Let χT be the characteristic polynomial of T . Since the
degree is odd, the hint says χT has a real root, that is, T has a real
eigenvalue λ. Let v be a (nonzero) eigenvector with T (v) = λv. We
now consider the requirement that 〈T (v), v〉 = 0.

〈T (v), v〉 = 〈λv, v〉 = λ〈v, v〉 = 0.

Since v 6= 0, we cannot have 〈v, v〉 = 0, so we must have λ = 0, which
says zero is an eigenvalue, and hence the nullspace is nontrivial. This
means that T is not invertible.

(b) Show by example that there exist linear maps T : R2 → R2 with
〈T (v), v〉 = 0 for all v ∈ R2, but with T invertible. Verify that your
T satisfies the required conditions.

Hint. If we consider the previous part, the dimension only mattered
to produce a real eigenvalue, so that provides a direction to look.
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Solution. Let [T ]E =

[
0 1

−1 0

]
where E is the standard basis for

R2. Then χT = x2 +1 which has no real roots. In particular, 0 is not
an eigenvalue which means the nullspace is zero, so T is invertible.
We claim that 〈T (v), v〉 = 0 for all v ∈ V . We can read off the action
of T from the matrix:

T (e1) = −e2 and T (e2) = e1, so T (ae1 + be2) = be1 − ae2.

We check

〈T (ae1 + be2), ae1 + be2〉 = 〈be1 − ae2, ae1 + be2〉 = ba− ab = 0,

for all a, b.
4. Let V be a finite-dimensional real inner product space, and T : V →

V a linear operator satisfying T 2 = T , that is T (T (v)) = T (v) for all
v ∈ V . To eliminate trivial situations, assume that T is neither the zero
transformation, nor the identity operator.

(a) Show that the only possible eigenvalues of T are zero and one.

Solution. Suppose that T (v) = λv for some nonzero vector v. Then

T (v) = T 2(v) = T (T (v)) = T (λv) = λT (v),

so (λ−1)T (v) = 0, which means either λ = 1 (so one is an eigenvalue),
or T (v) = 0 which means the nullspace is not zero, hence zero is an
eigenvalue.

(b) Let Eλ denote the λ-eigenspace. Show that E0 = N(T ), the nullspace
of T , and that E1 is the image of T.

Solution. That E0 = N(T ) is the definition of E0 = {v ∈ V |
T (v) = 0 = 0v}.
If v ∈ E1, then T (v) = 1 · v, but then T (v) = v which says that
v ∈ R(T ). Conversely if w = T (v′) ∈ R(T ), then T (w) = T 2(v′) =
T (v′) = w, so w ∈ E1. Thus the image is precisely E1.

(c) Show that T is diagonalizable.

Solution. dimE0 equals the nullity of T , and from above dimE1 is
the rank, so by rank-nullity, the sum of the sizes of the eigenspaces
(which have trivial intersection) is the dimension of the space, so V
has a basis of eigenvectors for T.

(d) Let W be a subspace of V, and let S = projW be the orthogonal projec-
tion onto the subspace W. Show that S2 = S, so that the orthogonal
projection is one linear map satisfying the given property.
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Solution. By definition, we take an orthonormal basis for W (say
having dimension r), and extend it to an orthonomal basis B = {vi}
for V . Then S(v) =

∑r
i=1〈v, vi〉vi = w and by Theorem 5.2.10 we

know that v = w⊥ + w for unique w⊥ ∈ W⊥. Since S(v) = w ∈ W
and w = w + 0, S(w) = w (Corollary 5.2.14), that is S2(v) = S(v).

5. Let A =


1 0 −1

−4 1 6
0 −5 −9
1 5 8

 and b =


1
2
3
4

 .

In answering the questions below, you may find some of the information
below of use. By rref(X) we mean the reduced row-echelon form of the
matrix X.

rref(A) =


1 0 0
0 1 0
0 0 1
0 0 0

 rref(A|b) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



ATA =

 18 1 −17
1 51 91

−17 91 182

 , AT b =

 −3
7
16

 , rref(ATA|AT b) =

 1 0 0 74
0 1 0 −128
0 0 1 71



AAT =


2 −10 9 −7

−10 53 −59 49
9 −59 106 −97

−7 49 −97 90

 , AAT b =


−19
115

−179
160

 , rref(AAT |AAT b) =


1 0 0 1 5
0 1 0 0 2
0 0 1 −1 −1
0 0 0 0 0


(a) Show that the system Ax = b is inconsistent.

Solution. We see that rref(A|b) has a pivot in the augmented col-
umn, meaning the system is inconsistent.

(b) Find a least squares solution to the system Ax = b.

Solution. A least squares solution to Ax = b is obtained by solving
the consistent system ATAx = AT b. From the work above, we read

off the solution x =

 74
−128

71

 .

6. Suppose a real matrix has SVD given by A = UΣV T :

A =

 0 1 0
1 0 0
0 0 1

 √
3 0 0 0

0
√
2 0 0

0 0 0 0




1/
√
3 1/

√
3 1/

√
3 0

1/
√
2 0 −1/

√
2 0

1/
√
6 −2/

√
6 1/

√
6 0

0 0 0 1

 .

(a) Using only your knowledge of the SVD (and no compuation), deter-
mine rankA.
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Solution. The rank is two since there are precisely two nonzero
singular values,

√
3 and

√
2.

(b) Using only your knowledge of the SVD, give a basis for the kernel
(nullspace) of A; explain your process.

Solution. The SVD process begins by finding an orthonormal basis
{v1, . . . , v4} for ATA. With σi = ‖Avi‖ and the rank of A equaling
2, we know the nullity of A is also two, and since Av3 = Av4 = 0,
{v3, v3} gives an orthogonal basis for the kernel.

(c) Using only your knowledge of the SVD, give a basis for the column
space of A, explaining your process.

Solution. The column space is spanned by {Av1, . . . , Avr} where
r = rankA = 2, so {Av1, Av2} is an (orthogonal) basis for the column
space.

7. Let A have singular value decomposition

A = UΣV T =

[
2/
√
5 1/

√
5

1/
√
5 −2/

√
5

] [
8 0
0 2

] [
1/
√
5 2/

√
5

2/
√
5 −1/

√
5

]
.

(a) Prove that A is invertible.

Solution. A is a 2× 2 matrix with two nonzero singular values, so
has rank 2, and so is invertible. Alternatively, it is easy to show that
detA 6= 0.

(b) Using the given SVD, find an expression for A−1.

Solution. A = UΣV T implies that A−1 = (V T )−1Σ−1U−1 =

V

[
1/8 0
0 1/2

]
UT since both U and V are orthogonal matrices.

(c) The goal of this part is to find an SVD for A−1. You should express
your answer (confidently) as an appropriate product of matrices with-
out multiplying things out, though you should explain why the ex-
pression you write represents an SVD for A−1. In particular, a couple
of warm up exercises will help in this endeavor, and no, the answer
in part b is not the correct answer.

• First show that the product of two orthogonal matrices in Mn(R)
is orthogonal.

• Next show that the diagonal matrices (with real entries)[
λ1 0
0 λ2

]
and

[
λ2 0
0 λ1

]
are orthogonally equivalent, i.e., that

there exists an orthogonal matrix P so that[
λ1 0
0 λ2

]
= P

[
λ2 0
0 λ1

]
P T .
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• Now you should be able to proceed using your answer from part
b as a starting point.

Solution.

• For the first warm up, suppose that AAT = In = BBT . Then

(AB)(AB)T = ABBTAT = AInA
T = AAT = In.

• For the second warm up, one can choose

P =

[
0 1
1 0

]
,

but an explanation would be nice. It should be clear that the
standard basis vectors e1, e2 for R2 are eigenvectors for the ma-
trix.

[
λ1 0
0 λ2

]
. It follows that the matrix P with columns

e2, e1 is also a matrix of eigenvectors, but which reverses the
order of appearance of the eigenvalues.

• Now for the main event: The expression for A−1 in the previous
part would be an SVD for A−1 but for the fact that the singular
values do not satisfy σ1 > σ2. Fortunately the warm up exercises
come to the rescue! We see that[

1/2 0
0 1/8

]
=

[
0 1
1 0

] [
1/8 0
0 1/2

] [
0 1
1 0

]
,

and that Q =

[
0 1
1 0

]
is an orthogonal matrix with QT = Q,

hence by the warm ups, so are the matrices QUT = (UQT )T =
(UQ)T and V Q. Thus

A−1 = (V T )−1Σ−1U−1 = V

[
1/8 0
0 1/2

]
UT = (V Q)

[
1/2 0
0 1/8

]
(UQ)T

is an SVD for A−1.



Chapter 6

Basic Definitions and Examples

Here we accumulate basic definitions and examples from a standard first course
in linear algebra.

6.1 Definitions
Listed in alphabetical order.
Definition 6.1.1 Given an n × n matrix A with eigenvalue λ, the algebraic
multiplicity of the eigenvalue is the degree d to which the term (x−λ)d occurs
in the factorization of the characteristic polynomial for A. ♢
Definition 6.1.2 An basis for a vector space is a linearly independent subset
of the vector space whose span is the entire space. ♢
Example 6.1.3 Some standard bases for familiar vector spaces.

• The standard basis for F n is B = {e1, . . . , en} where ei is the column
vector in F n with a 1 in the ith coordinate and zeroes in the remaining
coordinates.

• A standard basis for Mm×n(F ) is

B = {Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n},

where Eij is the m× n matrix with a 1 in row i and column j, and zeroes
in all other entries.

• A standard basis for Pn(F ) is B = {1, x, x2, . . . , xn}, and a standard basis
for P (F ) = F [x] is B = {1, x, x2, x3, . . . }.

□
Definition 6.1.4 The characteristic polynomial of a square matrix A ∈
Mn(F ) is χA = det(xIn − A). One can show that χA is a monic polynomial of
degree n with coefficients in the field F.

130
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Note that some authors define the characteristic polynomial as det(A− xIn)
in which case the leading coefficient is (−1)n, but since the interest is only in
the factorization of χA (in particular any roots it may have), it does not really
matter which definition one uses. ♢
Definition 6.1.5 The column space of an m× n matrix A is the span of the
columns of A. As such, it is a subspace of Fm. ♢
Definition 6.1.6 Given an m×n matrix A with complex entries, the conjugate
transpose of A is the n×m matrix A∗ whose ij-entry is given by

(A∗)ij = Aji = (AT )ij.

♢
Definition 6.1.7 The dimension of a vector space is the cardinality (size) of
any basis for the vector space.

Implicit in the definition of dimension are theorems which prove that every
vector space has a basis, and that any two bases for a given vector space have
the same cardinality. In other words, the dimension is a well-defined term not
depending upon which basis is chosen to consider. When a vector space has a
basis with a finite number of elements, it is called finite-dimensional. ♢
Definition 6.1.8 An elementary matrix is a matrix obtained by performing
a single elementary row (or column) operation to an identity matrix. ♢
Definition 6.1.9 Elementary row (respectively column) operations on
a matrix are one of the following:

• Interchange two rows (resp. columns) of A.

• Multiply a row (resp. column) of A by a nonzero scalar.

• Replace a given row (resp. column) of A by the sum of the given row (resp.
column) and a multiple of a different row (resp. column).

♢
Definition 6.1.10 Given an n× n matrix A with eigenvalue λ, the geometric
multiplicity of the eigenvalue is the dimension of the eigenspace associated to
λ. ♢
Definition 6.1.11 A complex matrix A is called Hermitian if A = A∗. Neces-
sarily the matrix needs to be square. ♢
Definition 6.1.12 The image of a linear map T : V → W is

Im(T ) := {w ∈ W | w = T (v) for some v ∈ V }.

The image of T is a subspace of W ; T is surjective if and only if W = Im(T ). ♢
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Definition 6.1.13 A function f : X → Y between sets X and Y is injective if
for every x, x′ ∈ X, f(x) = f(x′) implies x = x′. ♢
Definition 6.1.14 Let F denote the field of real or complex numbers. For
z = a + bi ∈ C (a, b ∈ R and i2 = −1), we have the notion of the complex
conjugate of z, denoted z = a − bi. Note that when z ∈ R, that is z = a =
a+0i ∈ C, we have z = z. The magnitude (norm, absolutevalue) of z = a+ bi
is |z| =

√
a2 + b2.

Let V be a vector space over the field F. An inner product is a function:

〈·, ·〉 : V × V → F

so that for all u, v, w ∈ V and λ ∈ F :

1. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

2. 〈λv, w〉 = λ〈v, w〉

3. 〈v, w〉 = 〈w, v〉, where the bar denotes complex conjugate.

4. 〈v, v〉 is a positive real number for all v 6= 0.

♢
Definition 6.1.15 An inner product space is a vector space V defined over a
field F = R or C to which is associated an inner product. If F = R, V is called
a real inner product space, and if F = C, then V is called a complex inner
product space. ♢
Definition 6.1.16 An isomorphism is a linear map which is bijective (one-to-
one and onto; injective and surjective). ♢
Definition 6.1.17 The Kronecker delta is defined by

δij =

{
1 if i = j

0 otherwise.

♢
Definition 6.1.18 A linear combination of vectors v1, . . . , vr ∈ V is any
vector of the form a1v1 + · · ·+ arvr for scalars ai ∈ F. ♢
Definition 6.1.19 Let S ⊆ V be a subset of vectors in a vector space V (finite
or infinite). The set S is a linearly dependent subset of V if it is not linearly
independent, that is there exists a finite subset {v1, . . . , vr} ⊆ S, and nonzero
scalars a1, . . . , ar so that

a1v1 + · · ·+ arvr = 0.

♢
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Definition 6.1.20 Let S ⊆ V be a subset of vectors in a vector space V (finite
or infinite). The set S is a linearly independent subset of V if for every finite
subset {v1, . . . , vr} ⊆ S, a linear dependence relation of the form

a1v1 + · · ·+ arvr = 0

forces all the scalars ai = 0. ♢
Definition 6.1.21 Given two vector spaces V and W (defined over the same
field F ), a linear map (or linear transformation) from V to W is a function
T : V → W which is

• additive: T (v + v′) = T (v) + T (v′) for all v, v′ ∈ V , and

• preserves scalar multiplication: T (λv) = λT (v) for all vectors v ∈ V and
scalars λ.

♢
Definition 6.1.22 The minimal polynomial of a square matrix A ∈ Mn(F )
is the monic polynomial, µA, of least degree with coefficients in the field F so
that µA(A) = 0. The Cayley-Hamilton theorem implies that the minimal
polynomial divides the characteristic polynomial. ♢
Definition 6.1.23 A matrix A ∈ Mn(C) is normal if it commutes with its
conjuate transpose: AA∗ = A∗A. ♢
Definition 6.1.24 The nullity of a linear transformation T : V → W is the
dimension of ker(T ), that is, the dimension of its nullspace.

If T : F n → Fm is given by T (x) = Ax for an m × n matrix A, then the
nullity of T is the dimension of the set of solutions of Ax = 0. ♢
Definition 6.1.25 The nullspace of a linear transformation T : V → W is the
kernel of T that is,

ker(T ) = {v ∈ V | T (v) = 0W}.

If T : F n → Fm is given by T (x) = Ax for an m × n matrix A, then the
nullspace of T is often called the nullspace of A, the set of solutions of Ax = 0.

♢
Definition 6.1.26 A matrix A ∈ Mn(R) is an orthogonal matrix if

ATA = AAT = In.

Note that the condition ATA = In is equivalent to saying that the columns of A
form an orthonormal basis for Rn, while the condition AAT makes the analogous
statement about the rows of A. ♢
Definition 6.1.27 The pivot positions of a matrix are the positions
(row,column) which correspond to a leading one in the reduced row-echelon form
of the matrix. The pivots are the actual entry of the original matrix at the pivot
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position.
The pivot columns are the columns of the original matrix corresponding

to the columns of the RREF containing a leading one. ♢
Definition 6.1.28 The rank of a linear transformation T : V → W is the
dimension of its image, Im(T ).

If T : F n → Fm is given by T (x) = Ax for an m×n matrix A, then the rank
of T is the dimension of the column space of A.

By theorem, it is also equal to the dimension of the row space which is the
number of nonzero rows in the RREF form of the matrix A. ♢
Definition 6.1.29 The row space of an m×n matrix A is the span of the rows
of A. As such, it is a subspace of F n. ♢
Definition 6.1.30 Let A,B ∈ Mn(F ). The matrix B is said to be similar
(or conjugate) to A if there exists an invertible matrix P ∈ Mn(F ) so that
B = P−1AP. Note that if we put Q = P−1, then B = QAQ−1, so it does
not matter which side carries the inverse. Also note that this is a symmetric
relationship, so that B is similar to A if and only if A is similar to B. Indeed
similarity (conjugacy) is an equivalence relation. ♢
Definition 6.1.31 Let S ⊆ V be a subset of vectors in a vector space V (finite
or infinite). The span of the set S, denoted Span(S), is the set of all finite linear
combinations of the elements of S. That is to say

Span(S) = {a1v1 + · · ·+ arvr | r ≥ 1, ai ∈ F, vi ∈ S}

♢
Definition 6.1.32 Let V be a vector space over a field F, and let W ⊆ V . W
is called a subspace of V if W is itself a vector space with the operations of
vector addition and scalar multiplication inherited from V.

Of course checking all the vector space axioms can be quite tedious, but
as a theorem you prove much easier criteria to check. Recall that you already
know that V is a vector space, so many of the axioms (associativity, distributive
laws etc) are inherited from V. Indeed, you prove that to show that W is a
subspace of V , it is enough to show that the additive identity of V is in W, and
that W is closed under the inherited operations of vector addition and scalar
multiplication, i.e, whenever w,w′ ∈ W and λ ∈ F , we must have w + w′ ∈ W ,
and λw ∈ W. ♢
Definition 6.1.33 A function f : X → Y between sets X and Y is surjective
if for every y ∈ Y , there exists an x ∈ X such that f(x) = y. ♢

Definition 6.1.34 A matrix A is called symmetric if A = AT . Necessarily the
matrix needs to be square. ♢
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Definition 6.1.35 Given a square matrix A ∈ Mn(F ), we define its trace to
be the scalar

tr(A) :=
n∑

i=1

Aii.

♢
Definition 6.1.36 A matrix A ∈ Mn(C) is an unitary matrix if

A∗A = AA∗ = In.

Note that the condition A∗A = In is equivalent to saying that the columns of A
form an orthonormal basis for Cn, while the condition AA∗ makes the analogous
statement about the rows of A. ♢
Definition 6.1.37 A vector space is a non-empty set V and an associated
field of scalars F , having operations of vector addition, denoted +, and scalar
multiplication, denoted by juxtaposition, satisfying the following properties: For
all vectors u, v, w ∈ V , and scalars λ, µ ∈ F

• closure under vector addition

• u+ v ∈ V

• addition is commutative

• u+ v = v + u

• addition is associative

• (u+ v) + w = u+ (v + w)

• additive identity

• There is a vector 0 ∈ V so that
0 + u = u.

• additive inverses

• For each u ∈ V , there is a vector
denoted −u ∈ V so that u+−u =
0.

• closure under scalar multipli-
cation

• λu ∈ V.

• scalar multiplication distrib-
utes across vector addition

• λ(u+ v) = λu+ λv

• distributes over scalar addi-
tion

• (λ+ µ)v = λv + µv

• scalar associativity

• (λµ)v = λ(µv)

• V is unital

• The field element 1 ∈ F satisfies
1v = v.

♢
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6.2 Some familiar examples of vector spaces
While most of the examples and applications we shall consider are vector spaces
over the field of real or complex numbers, for the examples below, we let F
denote any field. First recall the definition of a vector space [click the link to
toggle the definition].

• For an integer n ≥ 1, V = F n, the set of n-tuples of numbers in F viewed
as column vectors, is a vector space over F .

• For integers m,n ≥ 1, we have the vector space of m×n matrices, denoted
Mm×n(F ). Column vectors are the matrices in Mm×1(F ), while row vectors
are matrices in M1×n(F ).

• For an integer n ≥ 1, we denote by Pn(F ) the vector space of polynomials
of degree at most n having coefficients in F .

• The vector space of all polynomials with coefficients in F is often denoted
as P (F ) in many linear algebra texts, though in more advanced courses
(say abstract algebra) the more typical notation is F [x], a notation we shall
use here.
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