
Abstract Algebra Refresher

Review, Amplification, Examples



Abstract Algebra Refresher
Review, Amplification, Examples

Thomas R. Shemanske
Dartmouth College

Version: December 30, 2022



©2020 Thomas R. Shemanske

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is included in the
appendix entitled “GNU Free Documentation License.” All trademarks™ are
the registered® marks of their respective owners.



Preface

These notes are not intended as a first or second course in abstract algebra,
though they assume the reader has seen the material in a basic algebra course,
covered for example in [1].

These notes will undertake a review of many basic topics from a typical first
course, often taking the opportunity to interleave more advanced concepts with
simpler ones when convenient. It will refresh the reader’s memory of definitions,
structural results, core examples, and provide some computational tools to help
the reader come to a deeper appreciation of the ideas first met perhaps a long
time ago.

Computations in these notes uses Sage (sagemath.org) which is a free, open
source, software system for advanced mathematics. Sage can be used either on
your own computer, a local server, or on SageMathCloud (cocalc.com).

Thomas R. Shemanske
Hanover, NH
2020
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Chapter 1

A quick review of a first course

As stated in the preface, these notes presume the reader has seen the material
in a basic abstract algebra course such as in

1.1 What is Algebra?
Well, if you ask a random acquaintance “what is algebra?”, more than likely
the answer will be something which they learned in high school, though a quick
perusal of your textbook may cast a bit of doubt. Still, shouldn’t there be some
connection between that subject you learned in high school and the one by that
name in College?

In high school, algebra was about solving equations or simple systems of
equations, about how to use the quadratic formula to find points of intersection
of two conics, and so on. Linear Algebra undertakes the systematic study of
solving systems of linear equations which is best answered when cast in terms of
algebraic structures called vector spaces, and structure preserving maps between
them. Abstract algebra, often called modern algebra, fully embraces the study
of sets endowed with one or more binary operations.

One of the main goals of mathematics is to classify things by type, and to
characterize when two things are of the same type. For vector spaces being of
the same type is called isomorphic, and you learned that two vector spaces are
isomorphic if and only if they have the same dimension. That is a remarkably
simple characterization. For groups, rings and fields, this characterization is
significantly more challenging.

Another important goal of mathematics is to see the manner in which a given
object can be built up from simpler ones. For example,

• When is a group G isomorphic to the direct product of simpler groups?

• How can one classify all the groups G which contain a normal subgroup
isomorphic to a fixed group H having prescribed quotient G/H?

Abstract algebra creates an extensive toolbox with which to embark on these
investigations.

1



CHAPTER 1. A QUICK REVIEW OF A FIRST COURSE 2

1.2 Partitions and Equivalence Relations
In our bid to classify things by type, we introduce the notion of isomorphism
to say two objects are of the same type. That means that when we look at the
set of all objects (say groups), we partition that set of objects into equivalence
classes so that any two objects in one class are isomorphic, but no two objects
from different classes can be isomorphic.

The notions of a partition and of a set of equivalence classes are deeply
intertwined. Let’s review the basics.

Given a nonempty set X, a partition of X is simply a collection of non-
overlapping subsets whose union is the original set. For example, the pieces of a
puzzle form a partition of the image which is their union. The set of all M&M’s
in a bag can be partitioned by color. We give a formal definition.
Definition 1.2.1 Let X be a non-empty set. A partition of X is a collection
P = {Xi | i ∈ I} of nonempty subsets so that

• X =
⋃
i∈I

Xi, and

• Xi ∩Xj = ∅ for all i 6= j.

♢
The closely related notion is that of an equivalence relation on a nonempty

set. Formally, we have
Definition 1.2.2 Let X be a non-empty set. A relation on X is a subset
R ⊆ X × X, that is a collection of ordered pairs. Often instead of saying
(x, y) ∈ R, write x ∼ y and say x is related to y.

An equivalence relation on X is a relation which satisfies three properties:

• x ∼ x (i.e., (x, x) ∈ R) for all x ∈ X. This is called the reflexive property
of the relation.

• If x ∼ y, then y ∼ x, that is, whenever the ordered pair (x, y) ∈ R, then
also (y, x) ∈ R. This is called the symmetric property of the relation.

• If x ∼ y and y ∼ z, then x ∼ z, that is, if (x, y), (y, z) ∈ R, then so it
(x, z). This is called the transitive property of the relation.

♢
Let ∼ be an equivalence relation on a setX. For each x ∈ X, the equivalence

class containing x is given by:

[x] = {y ∈ X | y ∼ x}.

Notice that by the reflexive property, x ∈ [x], and we did not need to fuss in the
definition about whether y ∼ x, or x ∼ y since the relation is symmetric. And
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the transitive property shows that two equivalence classes are either the same
or disjoint. It follows that

Proposition 1.2.3 Let ∼ be an equivalence relation on a set X. Then P = {[x] |
x ∈ X} forms a partition of X. In words, the set of equivalence classes forms a
partition of the set.

Conversely, we have

Proposition 1.2.4 Given a partition P = {Xi | i ∈ I} of a set X, the relation
x ∼ y if and only if x, y ∈ Xj for some (unique) j ∈ I defines an equivalence
relation on X in which the equivalence classes are the elements of the original
partition.
Example 1.2.5 The Integers modulo n. One of the most familiar example
comes from introducing an equivalence relations on the integers, Z. We fix a
positive integer n, and define the relation by

j ∼ k iff j ≡ k (mod n).

Then the set of equivalences classes is called the integers modulo n. There are
multiple notations for this, but the set of classes is generally denoted

Zn (or) Z/nZ = {[k] | k ∈ Z}.

As you recall from your course, Zn consists of n equivalence classes often
denoted with representatives given by [0], [1], . . . , [n− 1]. □
Example 1.2.6 Similarity classes of matrices. If F is a field, we say that
two matrices A,B ∈ Mn(F ) are similar if there is an invertible matrix P so
that B = P−1AP. We often adopt the more general term that A and B are
conjugate.

Once again it is easy to verify that similarity is an equivalence relation. If you
have had an advanced linear algebra course, you would know that each similarity
class [A] has a distinguished representative which is the rational canonical
form of A. □

Now often, as in the case of Zn, we wish to introduce an algebraic structure
on the set of equivalence classes. With Zn you know that the operations

[a] + [b] = [a+ b] and [a][b] = [ab]

makes Zn into a commutative ring with identity.
Insight 1.2.7 And other times, algebraic objects that we have known since
grade school suddenly reveal themselves in the guise of equivalence classes. The
rational numbers, Q, is such an example. How can something we understand so
intrinsically be hiding this underlying structure?

Well, if we went back to grade school we could solve the following arithmetic
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problem using some curious-looking rules learned long ago:

2

5
+

3

7
=

29

35
.

Just what is the rule that tells you how to add a

b
+
c

d
? Yes, after a moment’s

thought you could write down the rule, but where in the world did it come from
and why is such a complicated-looking rule really needed?

Indeed, what could we possible mean by writing

1

2
=

2

4
=

5

10
, etc.?

It is becoming very clear that this symbol a
b

or a/b has a nontrivial meaning.
It is easy to believe writing a/b where there is a distinguished numerator and

denominator that we are doing nothing more than introducing a fancy notation
for an ordered pair (a, b) where the first coordinate is the numerator and the
second the denominator. But then we note that while 1

2
=

2

4
, it is not true that

(1, 2) = (2, 4). So it is time to understand what we have been doing for years
without a thought about higher-level mathematics.

The short version is that we define a set X as

X = Z× Z \ {0},

the set of ordered pairs with arbitrary first coordinate, but nonzero second coor-
dinate. Then we define the relation (a, b) ∼ (c, d) iff ad − bc = 0. As this is an
equivalence relation, we can talk about its equivalence classes, and we denote
the equivalence class of (a, b) not as [(a, b)], but as a/b or a

b
.

Then we are left with the task of giving definitions for addition and multipli-
cation which are well-defined on the equivalence classes, that is independent of
the choice of representative of the class. But you know all that.

1.3 Structure-preserving maps and quotient struc-
tures

In our attempt to understand the structure of algebraic objects, we frequently
try to gain insight by looking at substructures and quotient structures as well
as maps between algebraic structures.

1.3.1 Morphisms
Having studied groups, rings, vector spaces and similar objects, you have con-
sidered the notion of a homomorphism, a structure-preserving map. While
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the notions of a linear map, group or ring homomorphism differ in the details,
they all are defined to preserve whatever structure the algebraic object has. For
example,

• A linear map T : V → W between two vector spaces over the same field
F requires that for all v, v′ ∈ V and λ ∈ F,

T (v + v′) = T (v) + T (v′) and T (λv) = λT (v),

transporting the structure of vector addition and scalar multiplication on
V to the corresponding ones on W.

• A group homomorphism φ : G→ H between groups G,H requires that
for all g, g′ ∈ G,

φ(g ∗ g′) = φ(g) ∗ φ(g′)
transporting the binary operation on G to the one on H.

• A ring homomorphism φ : R → S between rings R,S requires that for
all r, r′ ∈ R

φ(r + r′) = φ(r) + φ(r′) and φ(r ∗ r′) = φ(r) ∗ φ(r′),

transporting the additive abelian group structure and multiplicative struc-
ture on R to the corresponding structures on S.

The subject of category theory generalizes the notion of a homomorphism
to an extreme providing a definition of a morphism φ : X → Y between
objects X and Y, where the objects need not be restricted to algebraic objects,
but could include things like topological or analytic spaces.

In this very general context, one defines the notion of an isomorphism, as
a morphism φ : X → Y for which there is a morphism ψ : Y → X, so that
φ ◦ ψ = idY and ψ ◦ φ = idX . In particular, this means that φ is a bijective
morphism.

Remark 1.3.1 When you studied algebra for the first time, you noted (and may
have proven) that given a bijective homomorphism φ : X → Y between algebraic
objects (groups, rings, etc), that the inverse map, ψ, which is guaranteed to exist
set theoretically, is automatically a homomorphism.

It is important to note that this result is not always true in other categories.
For example, in topology, the notion of a morphism is that of a continuous map,
so that an isomorphism is a continuous bijection for which there is a continuous
inverse. It is possible to have a continuous bijection whose inverse is not contin-
uous. As an easy example consider the map from the half-open interval to the
complex unit circle

φ : [0, 1) → S1 = {z ∈ C | |z| = 1}

given by φ(x) = e2πix. The inverse map is not continuous, for if it were, the two
spaces would be topologically isomorphic implying that any topological property
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which holds for one would hold for the other. But the unit circle is compact
(closed and bounded in Euclidean space), while the half-open interval is not
compact.

The bottom line is that we catch a break in dealing with algebraic homomor-
phisms, and need only verify that our chosen homomorphism is bijective.

1.3.2 Quotients
Given an algebraic object X and a sub-object Y (e.g., group and subgroup, ring
and subring, vector space and subspace), we can ask whether the quotient X/Y
is again an algebraic object of the same type.

The notion of a quotient is certainly deeply connected with that of homomor-
phisms, the most universal theorem being the first isomorphism theorem,
which for a homomorphism φ : X → Y always has the form

X/ kerφ ∼= Imφ

In general the kernel, kerφ, always has the right properties to guarantee that
the quotient X/ kerφ is an algebraic object of the same type. While it is always
true if W is a subspace of a vector space V, that V /W is again a vector space,
quotients do not always have the desired properties. Recall for groups, one needs
a subgroup H to be a normal subgroup of a group G for the set of cosets G/H
to be a group, and we need S to be an ideal of a ring R for the quotient R/S
to be a ring. Indeed these definitions arise and are natural precisely because
they describe the conditions under which a quotient will have the appropriate
structure.

1.3.3 Cosets, partitions, and equivalence relations
Meeting the notion of a coset for the first time often seems to cause a bit of con-
fusion, some of which arises from notation (additive or multiplicative), and some
of which arises from failing to understand the underlying equivalence relation.
Let’s try to understand all the issues.

There are couple of considerations. The first is that vector spaces and rings
have underlying group structures so that when we form cosets with them, they
are first and foremost group cosets. The set of cosets may enjoy additional
structure depending on the context, but what sets the notation — and the
equivalence relation — is the group structure.

Second in most (though not all) introductions to abstract algebra, groups
enter the picture first, and being a set with a single binary operation, it is very
often written multiplicatively. This works well in our experience since in most
settings (think rings) addition is commutative, but multiplication may not be
(e.g., matrices). So introducing notation for a group that may or may not be
abelian, multiplication is generally the more intuitive choice. So for a group G,
subgroup H, and element x ∈ G, we write xH or Hx depending on whether we
are talking about left cosets or right cosets.
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The complication arises when we have a ring R and an ideal I and want to
discuss the structure of the set of cosets R/I. Now we need both operations of
multiplication and addition, so choosing a multiplicative notation for the groups
structure would lead to a notational nightmare. Moreover, the additive groups
structure is now abelian, so it is a bit more natural to use additive one for cosets,
so we write x+ I (or I + x though they turn out to be the same since addition
is commutative).

Now that we have some sense of why we choose the notation, let’s understand
the equivalence relation and the associated partition. Since all the cosets start
out with an underlying group, we use group notation (both multiplicative and
additive) to describe the cosets and equivalence relation.

Let G be a group, H a subgroup, and x ∈ G. We define left cosets:

xH = {y ∈ G | y = xh for some h ∈ H} = {xh | h ∈ H}
x+H = {y ∈ G | y = x+ h for some h ∈ H} = {x+ h | h ∈ H}

We denote the set of left cosets by

G/H = {xH | x ∈ G} or {x+H | x ∈ G}

depending upon whether we are using multiplicative or additive notation.
Now it is obvious that each coset is a subset of G, and what you prove is

that the set of left cosets forms a partition of G. Since the identity of the group,
e, is contained in every subgroup H, every element x ∈ G is an element of the
coset xH since x = xe ∈ xH. It follows that

G =
⋃
x∈G

xH,

the first property of a partition.
The critical condition is that cosets are either disjoint or identical which

makes their collection a partition.

Proposition 1.3.2 The (left) cosets of H in G are either disjoint or identical.
Proof. Suppose we have two cosets xH and yH. If they are disjoint that is fine,
but if they intersect, we must show that are equal. Let’s do this out in full detail
so we better understand the rule we shall write down for determining whether
or not two cosets are equal.

Let z ∈ xH ∩ yH. To show that xH = yH (recall they are sets), we must
show xH ⊆ yH and yH ⊆ xH. The argument we give will be symmetric, so we
need only show one containment, say xH ⊆ yH.

The condition z ∈ xH ∩ yH says that we may write

z = xh1 = yh2 for some h1, h2 ∈ H,

so x = yh2h
−1
1 ∈ yH, and so of course every element xh ∈ xH is equal to

xh = yh2h
−1
1 h ∈ yH which gives the desired conclusion xH ⊆ yH. ■
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What we must also understand is that while
G =

⋃
x∈G

xH

there is a great deal of redundancy in the (multi)set {xH | x ∈ G}. An example
should help.
Example 1.3.3 Let G = S3, the symmetric group on 3 letters, i.e., the permu-
tations of the set {1, 2, 3}. Let H = {e, (1 2)} be the cyclic subgroup generated
by the transposition (1 2).
Solution. Then the set of left cosets is

G/H = {H, (1 3)H, (2 3)H} = {H, (1 2 3)H, (1 3 2)H}

where

H = (1 2)H, (1 3)H = (1 2 3)H, and (2 3)H = (1 3 2)H.

Note that the associated partition of G is

PL = {P1 = {1, (1 2)}, P2 = {(1 3), (1 2 3)}, P3 = {(2 3), (1 3 2)},

where the Pi are simply the elements in the respective cosets.
For the record we record the set of right cosets and their associated partition

which differs from the one from left cosets (since H is not a normal subgroup of
G).

H\G = {H,H(1 3), H(2 3)} = {H,H(1 3 2), H(1 2 3)}

The associated partition is of G is

PR = {Q1 = {1, (1 2)}, Q2 = {(1 3), (1 3 2)}, Q3 = {(2 3), (1 2 3)}.

□
To distinguish when two cosets are equal or the same, we have the following

criterion.
Proposition 1.3.4 Let G be a group and H a subgroup. Then two (left) cosets
xH and yH are equal if and only if and of the following equivalent conditions
hold:

• y−1x ∈ H

• x = yh for some h ∈ H

• x−1y ∈ H

• y = xh for some h ∈ H
Proof. It is quite straightforward to show that these four conditions are all
equivalent, but the important part is why they are equivalent to xH = yH.

The key to that is to remember Proposition 1.3.2, that cosets are disjoint or
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equal, so to show that xH = yH, one needs only show that xH ∩ yH 6= ∅. So it
is enough to show that x ∈ yH or y ∈ xH which lead naturally to the conditions
in the proposition. ■
Remark 1.3.5 If our operation is commutative, cosets are often written addi-
tively, so we would have two cosets x+H and y +H equal if and only if and of
the following equivalent conditions hold:

• −y + x ∈ H

• x = y + h for some h ∈ H

• −x+ y ∈ H

• y = x+ h for some h ∈ H

1.3.4 Introducing an algebraic structure on the set of cosets.
Whether we are talking about the quotients of groups, rings, or vector spaces,
there is always an underlying group G and a subgroup H. For quotient groups
this is obvious; for rings, the group is the additive group of the ring, and for
vector spaces, the group is the additive group of the vector space.

To make a set of cosets into a group, we need H to be a normal subgroup
of G. Recall that
Proposition 1.3.6 Let G be a group and H a subgroup of G. The following
conditions are equivalent and define what it means for H normal subgroup of
G.

• gHg−1 = H for all g ∈ G

• gH = Hg for all g ∈ G

• gHg−1 ⊆ H for all g ∈ G
Proof. The equivalence of the first two is easy to check, and of course the first
implies the third, so we are left to show that gHg−1 ⊆ H for all g ∈ G implies
that gHg−1 = H for all g ∈ G.

Fix a g ∈ G for which gHg−1 ⊆ H; we must show the reverse inclusion
H ⊆ gHg−1. Since xHx−1 ⊆ H for all x ∈ G, choose x = g−1. Then

g−1Hg ⊆ H which implies H ⊆ gHg−1,

which is the desired inclusion. ■
Checkpoint 1.3.7 Why is normality the correct notion to make a set
of cosets into a group? Let’s make sense of the question. Our set of left
cosets is

G/H = {xH | x ∈ G}.
Our job (still working multiplicatively) is to define the product of two cosets in
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a well-defined manner:
xH · yH = zH

for some z ∈ G. Now everybody knows that they want the answer to be

xH · yH = xyH,

but it is not clear that always makes sense.
Let’s go back to our example with G = S3 and H = {e, (1 2)}. We observed

that the cosets paired up as

H = eH = (1 2)H, (1 3)H = (1 2 3)H, and (2 3)H = (1 3 2)H.

So to be well-defined, whatever definition we come up with cannot depend on
how we name the sets, so in our case it must be true that (for example)

(1 2)H · (1 3)H = eH · (1 2 3)H,

but if we used our desired rule we would get

(1 2)H · (1 3)H = (1 3 2)H while eH · (1 2 3)H = (1 2 3)H

which are not equal.
The exercise is to see how the definition of normality arises naturally in trying

to rectify this ambiguity.
Remark 1.3.8 Given a vector space V and a subspace W , we know that the ad-
ditive structure of V is that of an abelian group, which means W is automatically
a normal subgroup, which in turn says the set of cosets is an additive abelian
group. But as the group operation is additive, we write the cosets additively, so
the set of left cosets

V /W = {v +W | v ∈ V }

is a group under the natural operation

(v +W ) + (v′ +W ) = (v + v′) +W .

We then go farther to define a vector space structure on the abelian group
V /W by

λ(v +W ) = λv +W,

an operation we easily check is well defined.
Similarly, given a ring R and a subring S, we know that the set of cosets

R/S = {r + S | r ∈ R}

is an abelian group under addition, but what about multiplication? Can we
make the set of cosets into a ring?
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Checkpoint 1.3.9 Why is the property of being an ideal the correct
property to make R/S into a ring? For any subring S of R we already have
the quotient group R/S = {r+ S | r ∈ R}. It is natural to define multiplication
as

(r + S) · (r′ + S) = rr′ + S,

but we need to check that things are well-defined.
To do so we need to ensure that for s, t ∈ S,

(r + s+ S) · (r′ + t+ S) = rr′ + S,

but our would-be definition tells us we would need

rr′ + rt+ sr′ + st+ S = rr′ + S.

Since S is subring we know that st ∈ S, but we also need that rt + sr′ ∈ S
for any s, t ∈ S. Thus we arrive at the condition that S be a two-sided ideal
of R, namely that in addition to being a subring of R, we must have

R · S ⊆ S and S ·R ⊆ S.

1.4 A fundamental isomorphism theorem for groups,
rings, vector spaces

If X,Y are algebraic objects of the same type (group, ring, vector space) and
φ : X → Y is a homomorphism of the appropriate type, then first and foremost
all such φ are group homomorphisms, and that is what sets the stage.

It follows that the kernel of the homomorphism is the kernel of the underlying
group homomorphism, so kerφ = {x ∈ X | φ(x) = e} where e is the identity of
the underlying group, in particular, e = 0 for rings and vector spaces.

We also recall that the kernel of any group homomorphism is a normal sub-
group; the kernel of any ring homomorphism is a two-sided ideal, and the kernel
of any linear map a vector subspace. So in all cases X/ kerφ is an algebraic
object of the same type as X, but always a group.
Theorem 1.4.1 Fundamental theorem for group homomorphisms. Let
G,H be groups, and let φ : G → H be a homomorphism. Let K be any normal
subgroup of G with K ⊆ kerφ, and let π : G → G/K be the usual projection
(g 7→ gK). Then there exists a unique group homomorphism φ∗ : G/K → H, so
that for all g ∈ G, φ(g) = φ∗(π(g)). In this case we say that φ factors through
the quotient G/K.

Moreover, the image of φ∗ is the same as the image of φ, and kerφ∗ =
kerφ/K.
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G H

G/K

φ

π
φ∗

Figure 1.4.2 Factoring a homomorphism through a quotient
Proof. The condition that φ(g) = φ∗(π(g)) requires that

φ∗(gK) = φ(π(g)) = φ(g)

from which it is immediate that there is only one possible definition for φ∗ (hence
uniquely defined), and also that the images of φ and φ∗ are the same.

Presuming the map φ∗ is well-defined, we see that it is a group homomor-
phism since

φ∗(gKg
′K) = φ∗(gg

′K) = φ(gg′) = φ(g)φ(g′) = φ∗(gK)φ∗(g
′K),

where we have used the group operation on G/K and that φ is a group homo-
morphism.

The most important issue is that the map makes sense, i.e., is well-defined.
In this case, we must check that

φ∗(gK) = φ∗(gkK) for any k ∈ K.

But
φ∗(gkK) = φ(gk) = φ(g)φ(k) = φ(g) = φ∗(gK)

since φ(k) = e because K ⊆ kerφ.
Finally, we compute

kerφ∗ = {gK ∈ G/K | φ∗(gK) = φ(g) = eH},

but that says

kerφ∗ = {gK ∈ G/K | g ∈ kerφ} = kerφ/K.

■
An immediate corollary of this theorem is the

Theorem 1.4.3 First Isomorphism Theorem. Let G,H be groups, and let
φ : G→ H be a homomorphism. Then

G/ kerφ ∼= Imφ.
Proof. Let K = kerφ. The fundamental theorem gives us a surjective homo-
morphism φ∗ : G/K → Imφ whose kernel is K/K = eK = eG/K , the identity of
G/K, so the map φ∗ is injective. ■
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Remark 1.4.4 The importance of the fundamental theorem cannot be over-
stated. The main takeaway is that if ever faced with the job of finding a ho-
momorphism Ψ : G/N → H you do your best to recognize a homomorphism
ψ : G → H whose kernel contains N. In this way, the map you define is not
only more natural, but you never have to check that the map Ψ : G/N → H is
well-defined. Attempting to define the map directly forces you to always check
that fact.
Example 1.4.5 The canonical example? For a positive integer n, we have
the group Zn consisting of all the congruence classes of integers modulo n. The
set nZ (all the integer multiples of n) is a (normal) subgroup of Z, so Z/nZ is a
group. We want to show that

Z/nZ ∼= Zn.

Solution. Of course we could write down a map taking m + nZ 7→ [m]n, but
then we would have to check that it is well-defined, a homomorphism, and even-
tually an isomorphism.

Instead we invoke the fundamental theorem. There is certainly a natural
map φ : Z → Zn which takes an integer m to its residue class [m]n modulo n. It
is a homomorphism by virtue that Zn is a group:

m+m′ 7→ [m+m′]n = [m]n + [m′]n

and it is certainly surjective. What is the kernel of φ?

kerφ = {m ∈ Z | [m]n = [0]n} = nZ.

By the first isomorphism theorem, the result is achieved. □
Now what we want to achieve is a fundamental (and first isomorphism) the-

orem for rings, vector spaces, etc. The key is that all these maps are group
homomorphisms at their core and so most of the theorems are already in place.
Theorem 1.4.6 A meta fundamental theorem for homomorphisms.
Let X,Y be algebraic objects of the same type and φ : X → Y an associated
homomorphism. Suppose that Z ⊆ kerφ has enough structure so that X/Z is
again an algebraic object of the same type as X and Y. Let π : X → X/Z be
the standard projection. Then there is a unique homomorphism φ∗ : X/Z → Y
(of the appropriate type) so that φ = φ∗ ◦ π whose image is the same as φ, and
whose kernel is kerφ∗ = kerφ/Z.
Proof. Because all these structures have underlying group structures, that map
φ∗ is uniquely determined, well-defined and has the correct kernel and image.
The only thing missing is to verify that φ∗ has the additional properties necessary
to be a homomorphism of the correct type (e.g., ring or vector space). But this is
easily checked. For example, if the objects were rings, then Z would necessarily
be an ideal. The map φ∗ takes x+Z to φ(x). We check (using the ring structure
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of X/Z and that φ is a ring homomorphism) that

φ∗((x+ Z)(x′ + Z)) = φ∗(xx
′ + Z) = φ(xx′)

= φ(x)φ(x′) = φ∗(x+ Z)φ∗(x
′ + Z).

■
Remark 1.4.7 The above meta theorem now tells us that Z/nZ ∼= Zn as rings
as well as abelian groups.

There are further isomorphism theorems that you learned, but they require
some new constructions which we give in the next section.

1.5 New algebraic objects from old: products
and sums

With one of our goals to understand how a given algebraic object can be de-
composed into simpler objects, it is necessary to understand how to build larger
objects up from smaller ones. In one direction this leads to additional isomor-
phism theorems alluded to previously, but it also leads to things like direct and
semi-direct products which are used to reveal the structure of many groups.

As usual, we begin with the simplest of our algebraic objects under consider-
ation, groups. Suppose that H and K are two subgroups of a group G.
Question 1.5.1 A natural question is what is the smallest subgroup of G which
contains both H and K?
Answer. Mathematics has an answer for us, but it may not be satisfying. The
answer is that the smallest subgroup of G containing both H and K is

〈H,K〉 :=
⋂

J⊇H∪K

J

where the intersection is over all subgroups J of G which contain H and K.
It is a very good answer in that it makes it clear such a group exists and is

unique, but it gives us no idea how to construct it. □
Let’s try again from a slightly different angle. If J is any subgroup of G

which contains H and K, then since it is closed, it must contain all the products
of the form hk and kh for k ∈ K and h ∈ H. We could ask a more naive question.

Question 1.5.2 Given subgroups H and K of a group G, when is HK := {hk |
h ∈ H, k ∈ K} a subgroup of G, and perhaps when are HK and KH related?

□
The answer to the question above is a well-known theorem.

Theorem 1.5.3 Let H and K be subgroups of a group G. Assume that K
is a normal subgroup of G, or more generally that H contained in NG(K), the
normalizer of K. Then HK = KH is a subgroup of G, in particular the smallest
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subgroup of G containing H and K.
An important fact to remember is the HK = KH does not mean that the

elements of H and K commute, rather that for h ∈ H, k ∈ K, there exists
h′ ∈ H, k′ ∈ K so that hk = k′h′.
Proof of Theorem 1.5.3. The proof is just some simple manipulations using the
concept of the normalizer. It should be clear that the identity is an element of
HK.

Given h, h′ ∈ H, k, k′ ∈ K, we need to know that (hk)(h′k′) = h′′k′′ for some
h′′ ∈ H and k′′ ∈ K. But

(hk)(h′k′) = h(h′h′−1)k(h′k′) = (hh′)(h′−1kh′)k′ = h′′k′′

where h′′ = hh′ and k′′ = (h′−1kh′)k′, the last using H ⊆ NG(K).
Given h ∈ H, k ∈ K, we need to know that (hk)−1 = h′k′ for some h′ ∈ H

and k′ ∈ K. But

(hk)−1 = k−1h−1 = (h−1h)k−1h−1 = h−1(hk−1h−1) = h′k′.

Finally to show HK = HK, we need to show the inclusions HK ⊆ KH and
KH ⊆ HK. With predictable notation we see

hk = hk(h−1h) = (hkh−1)h = k′h

kh = (hh−1)kh = h(h−1kh) = hk′.

■
Example 1.5.4 Let G = S3, the symmetric group on three letters having order
6. Let K = 〈(1 2 3)〉 = 〈(1 3 2)〉 be the subgroup generated by either 3-cycle.
We know this to be a normal subgroup the easiest reason being a consequence
of Lagrange’s theorem (reviewed in the next chapter). Let H be any subgroup
of order two (i.e., generated by any of the three transpositions. Then HK is a
subgroup of G; indeed G = HK, a fact we shall explore in the next chapter as
well. □

Next we turn our attention to rings and their ideals.
Definition 1.5.5 Let R be a ring with ideals I and J . We can define three new
ideals from them: their sum and product and intersection. The sum, I + J is
the smallest ideal of R which contains both I and J. The product, IJ , is the
smallest ideal of R which contains all the the elements of the form ij with i ∈ I
and j ∈ J. And of course the intersection, I ∩ J is the largest ideal contained in
both.

While these properties define the ideals, the first two are not constructive
definitions, but their characterization is not too hard to discern. One just has
to ask how to make the generating sets closed under the operations of addition
and multiplication by elements of the ring. One finds

I + J = {i+ j | i ∈ I, j ∈ J}
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IJ =

{
r∑

k=1

ikjk | ik ∈ I, jk ∈ J

}
I ∩ J = {k | k ∈ I and k ∈ J}

so the elements in IJ are finite sums of products of the form ij. ♢
Example 1.5.6 Let R = Z and let I, J be ideals. We know that all the ideals
of Z are principal ideals, so let’s look at three interesting cases.

1. I = 12Z and J = 4Z

2. I = 12Z and J = 15Z

3. I = 12Z and J = 5Z

The resulting ideals I + J, IJ, and I ∩ J are:

1. I + J = 4Z; IJ = 48Z; I ∩ J = 12Z

2. I + J = 3Z; IJ = 180Z; I ∩ J = 60Z

3. I + J = Z; IJ = 60Z; I ∩ J = 60Z

□
Checkpoint 1.5.7 Let R = Z and let I = mZ and J = nZ be ideals.

• Determine I+J, IJ, and I∩J in terms of m and n. The expressions should
be quite familiar to you.

• Based upon the examples above, one might conjecture that

(I + J) · (I ∩ J) = IJ .

Note that (I + J) · (I ∩ J) is a product of ideals. Do you think it’s always
true for ideals of Z? It is not true in all rings.



Chapter 2

Basic results in group theory

2.1 Cosets and some applications
While there are algebraic objects with fewer defining properties than groups
(monoids, semigroups, groupoids), the notion of a group is where we start our
review of standard results.

One of the most fundamental structure theorems is the theorem of Lagrange.
Theorem 2.1.1 Lagrange’s theorem. Let G be a finite group, and H a
subgroup of G. Then

|G| = [G : H] · |H|,

where [G : H] is the number of cosets in G/H.

Proof. Recall that the proof is very straightforward. We know that the (left)
cosets of H in G form a partition of G. Since everything is finite let’s enumerate
the cosets G/H = {gkH | k = 1, . . . , r}, so r = [G : H]. Then G is the disjoint
union of the cosets meaning both

G =
r⋃

k=1

gkH but also |G| =
r∑

k=1

|gkH|.

However any two cosets have the same cardinality, |H|, so

|G| =
r∑

k=1

|H| = r|H| = [G : H]|H|.

■
Corollary 2.1.2 Lagrange’s theorem not only says that the order of any subgroup
divides the order of a group, but also that the order any element in a group divides
the order of the group, the later since the order of an element x ∈ G equals the
order of the cyclic subgroup H = 〈x〉 it generates.

17
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Proposition 2.1.3 Let H,K be finite subgroups of a group G. Then the cardi-
nality of the set HK = {hk | h ∈ H, k ∈ K} is given by

|HK| = |H||K|
|H ∩K|

.

Proof. Whether or not HK is a subgroup of G, we can view HK as a union of
cosets:

HK = {hk | h ∈ H, k ∈ K} =
⋃
h∈H

hK.

Now all the cosets hK have the same size as K, so

|HK| = |K| · number of distinct cosets.

We see that for h1, h2 ∈ H,

h1K = h2K ⇐⇒ h−1
2 h1 ∈ K ⇐⇒ h−1

2 h1 ∈ H ∩K ⇐⇒ h1H ∩K = h2H ∩K.

Thus the number of distinct cosets in {hK | h ∈ H} equals the number of
distinct cosets in {h(H ∩K) | h ∈ H}. But H is a group and H ∩K a subgroup,
so by Lagrange’s theorem, we know that the number of cosets of H ∩K in H is

|H/H ∩K| = |H|/|H ∩K|.

Thus
|HK| = |K| · number of distinct cosets = |K| |H|

|H ∩K|
.

■
Remark 2.1.4 In the special case that HK is a subgroup of G (see Theo-
rem 1.5.3), we shall see this result follows from the second isomorphism theorem
for groups.

Example 2.1.5 Let G be the symmetric group S3, and let H = 〈(1 2)〉 and
K = 〈(2 3)〉 be cyclic groups of order 2 generated by the given transpositions. It
is clear by inspection that H ∩K = {1}, so |HK| = 2·2

1
= 4. By Corollary 2.1.2,

since 4 ∤ 6, HK cannot be a subgroup of G. □
Example 2.1.6 In a different direction, and still with G = S3, if H = 〈(1 2)〉
and K = 〈(1 2 3)〉, then H and K have orders 2 and 3 respectively. It follows
that |H ∩K| = 1 since by Lagrange |H ∩K| must divide |H| = 2 and |K| = 3,
hence must divide their gcd which is 1. Thus HK has order 6, so HK = G. In
particular HK is a group. □
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2.2 Understanding quotients and further isomor-
phism theorems

Proposition 1.3.6 gives equivalent conditions for a subgroup H of a group G
to be normal. We also know that the kernel of any group homomorphism is a
normal subgroup; indeed being normal is equivalent to being the kernel of some
homomorphism, though that fact is not in and of itself all that useful. On the
other hand, both conditions are themselves useful as we shall see in examples.

Example 2.2.1 Let F be a field, and G = GLn(F ), the general linear group
(of invertible n× n matrices with entries in F ). From the point of view of rings,
if R = Mn(F ) is the ring of n × n matrices with entries in F, then G = R×,
the unit group of the ring R. Let K = SLn(F ), the special linear group, the
subset of invertible matrices whose determinant is one.

Give two proofs that K is a normal subgroup of G, one using Proposi-
tion 1.3.6, and the other characterizing K as the kernel of a group homomor-
phism.
Solution 1. Directly, one can use determinants both to show that K is a
subgroup, but also that it is normal. For the normality part, let g ∈ G and
k ∈ K. To check that gkg−1 ∈ K, one needs only observe that

det(gkg−1) = det(g) det(k) det(g)−1 = det(k) = 1

to show gkg−1 ∈ K. We have used the fact that deg(g−1) = det(g)−1, and of
course that det g, det k are nonzero scalars in F , which commute.
Solution 2. A second solution is to recognize K as the kernel of a homomor-
phism. One that comes to mind is

φ : GLn(F ) → F×

given by φ(g) = det g. Then K is obviously the kernel. □
Example 2.2.2 With the notation as above, show that GLn(F )/SLn(F ) is an
abelian group.
Solution. Since K = SLn(F ) is a normal subgroup of G = GLn(F ), we know
at least that the quotient is a group. One could show it is abelian directly by
showing that gKg′K = g′KgK since

gKg′K = g′KgK ⇐⇒ gg′K = g′gK ⇐⇒ g−1g′−1gg′ ∈ K

via determinants, but that is a bit grungy, and does not really leave us with a
sense of what G/K looks like.

We return to the homomorphism

φ : GLn(F ) → F×
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given by φ(g) = det g. We already know the kernel, and a moment’s thought
convinces you that φ is surjective for given α ∈ F×, φ takes the diagonal matrix
diag(α, 1, . . . , 1) to α. Thus via the first isomorphism theorem,

GLn(F )/SLn(F ) ∼= F×

the multiplicative group of a field which is certainly an abelian group. □
Theorem 2.2.3 Second Isomorphism Theorem. Let H,K be subgroups of
a group G, and suppose that H ⊆ NG(K) (e.g., if K ⊴ G). Then HK ≤ G,
K ⊴ HK and

HK/K ∼= H/(H ∩K).

Proof. By Theorem 1.5.3, we have seen the condition H ⊆ NG(K) proves that
HK is a subgroup of G, and also easily shows that K ⊴ HK. For the rest, we
try to let our theorems do the work.

Consider the homomorphism

φ : H → HK/K

which is the composition of natural homomorphisms given by

H → HK via h 7→ h · 1 ∈ HK

and the projection
HK → HK/K via hk 7→ hkK,

so φ(h) = hK.
Since the coset hkK = hK, we see the map φ is surjective. For the kernel,

we see that φ(h) = hK = K iff h ∈ H ∩K, and the first isomorphism theorem
gives the result. ■
Remark 2.2.4 Note that when H,K are finite subgroups, this theorem is
stronger than Proposition 2.1.3 which computed the cardinality of HK.

Exercise 2.2.1 Let F be a field, G = GLn(F ), K = SLn(F ), and H = Dn(F )
the subgroup of diagonal matrices in G. You have already observed that K is a
normal subgroup of G.

(a) Show that H = Dn(F ) is not a normal subgroup of G.

Solution. Recall that the process of diagonalizing a matrix A (if pos-
sible) is one of finding an invertible matrix P so that P−1AP = D is
diagonal, which means (generally) PDP−1 = A is not diagonal. For a
specific example,[

2 1
1 1

] [
1 0
0 2

] [
2 1
1 1

]−1

=

[
0 2

−1 3

]
.

(b) Show that G = HK.
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Solution. Let A ∈ G = GLn(F ), and let α = detA ∈ F×. Then

diag(α−1, 1, . . . , 1)A ∈ SLn(F ),

so
G = GLn(F ) ⊆ HK,

and of course HK ⊆ G, which finishes the argument.

(c) Apply the second isomorphism theorem to H,K.

Solution. Since we know that K ⊴ G, the theorem applies, so we have

GLn(F )/SLn(F ) = HK/K ∼= H/(H ∩K) ∼= F×.

Of course we could have proven this directly with the determinant map
using domain H.

Theorem 2.2.5 Third Isomorphism Theorem. Let G be a group with
normal subgroups H,K, and suppose that H ≤ K. Then K/H ⊴ G/H, and

(G/H)/(K/H) ∼= G/K.
Proof. It is simply refreshing to let our theorems do all the work in the proof
of this theorem with a seemingly complicated statement. With H,K normal in
G, it is immediate that H ⊴ K, so all the quotients G/H, G/K, and K/H are
groups. Now we let the theorems take over.

By the fundamental homomorphism theorem, the natural surjective map
(projection) π : G → G/K factors through the quotient G/H, so essentially
for free we are handed a natural (well-defined) surjective homomorphism

π∗ : G/H → G/K

defined by π∗(gH) = gK. We need only ask for its kernel and apply the first
isomorphism theorem. But

ker π∗ = {gH ∈ G/H | gK = K} = {gH ∈ G/H | g ∈ K} = K/H.

■
Example 2.2.6 A simple is to take G = Z, so all subgroups are normal, and for
positive integers m,n, let K = mZ and H = mnZ. Thus

(Z/mnZ)/(mZ/mnZ) ∼= Z/mZ.

□
Theorem 2.2.7 Fourth Isomorphism/Correspondence Theorem. Let
φ : G→ G′ be a surjective homomorphism between groups G,G′ having kernel K.
Then there is a one-to-one correspondence between the subgroups of G′ and those
of G which contain K. Moreover, under the correspondence, normal subgroups
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correspond to normal subgroups.
Sketch. The correspondence is straightforward:

H ′ ≤ G′ 7→ φ−1(H ′) = {g ∈ G | φ(g) ∈ H ′} ≤ G,

H ≤ G 7→ φ(H).

The one important fact to prove in order to establish the correspondence is
one-to-one is to note that for H ≤ G,

φ−1(φ(H)) = HK,

but since K ≤ H, we have HK = H. ■
Example 2.2.8 What are the subgroups of Z/24Z?
Answer. Consider the natural surjective homomorphism φ : Z → Z/24Z, and
use the correspondence theorem. There is a one-to-one correspondence between
the subgroups of Z/24Z and the subgroups of Z which contain 24Z (the kernel).
But every subgroup of Z is of the form nZ for some n, and nZ ⊇ 24Z if and only
if n | 24. So the subgroups of Z containing 24Z are

dZ for d = 1, 2, 3, 4, 6, 8, 12, 24,

so for these same d the subgroups of Z/24Z are dZ/24Z. □

2.3 Group Actions and applications
A powerful tool both within algebra and other areas of mathematics is the notion
of a group action. There are two equivalent ways in which the characterize a
group action. We begin with the more “constructive” one.
Definition 2.3.1 Let G be a group and X a set. We say that G acts on the
set X if there is a map G × X → X, denoted (g, x) 7→ g · x, satisfying two
properties:

• e · x = x for all x ∈ X. Here e is the identity of the group G.

• g1 · (g2 · x) = (g1g2) · x for all g1, g2 ∈ G and x ∈ X.

♢
Example 2.3.2 We say that the group G acts on itself by conjugation if
X = G and the map G×G→ G is given by (g, x) 7→ gxg−1. □
Example 2.3.3 Let G be a group, H a subgroup, and X = G/H the set of left
cosets. We say that the group G acts on G/H by left translation if the map
G×G/H → G/H is given by (g, xH) 7→ gxH. □
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Example 2.3.4 Let G be a finite group and for a prime p, suppose that pm | |G|.
Let

X = {H ≤ G | |H| = pm}.
The Sylow theorems tell us that X is a non-empty set. We let the group G act
on X by conjugation via

(g,H) 7→ gHg−1.

We note that this makes sense since for a given g ∈ G, the map φg : G → G
given by φg(x) = gxg−1 is an isomorphism, and as such

gHg−1 = φg(H)

is a subgroup of G having the same cardinality at H, so is again in X. □
There is an equivalent way in which to think of a group action G acting on

a set X, and that is as a group homomorphism φ : G→ Per(X), where Per(X)
is the set of bijections X → X viewed as a group under function composition.
Proposition 2.3.5 Equivalent notions of group actions. There is a one-
to-one correspondence between group actions of a group G on a set X described
as a map G×X → X, and homomorphisms G→ Per(X) given by:

• Given an action denoted by (g, x) 7→ g · x, define the homomorphism φ :
G→ Per(X) by

φ(g) = φg ∈ Per(X) where φg(x) = g · x.

• Conversely, given a homomorphism φ : G → Per(X) given by φ(g) =
φg ∈ Per(X), define the map G×X → X by

(g, x) 7→ φg(x).

These correspondences are inverse to one another.
Remark 2.3.6 This may seem a bit complicated at first glance. Simply realize
that the homomorphism φ : G → Per(X) has as its codomain the group of
bijective functions X → X. These are simply bijections as in general X has no
algebraic structure. On the other hand, this explains our notation: Since φ(g)
is a function, it makes intuitive sense to name it as such, so we set φ(g) = φg

where φg : X → X is a bijective map.
There are very good reasons for utilizing this correspondence. Group actions

viewed as maps G ×X → X are easy to describe, but have less obvious group-
theoretic implications. However, an action described as a homomorphism φ :
G→ Per(X) has obvious algebraic objects related to it, such as its kernel.

Example 2.3.7 Let a group G act on itself by left translation. That means
there is a map G × G → G given by (g, x) 7→ gx where the juxtaposition gx is
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the product in the group.
The associated permutation representation is

φ : G→ Per(G) given by φ(g) = φg with φg(x) = gx,

and is called the left regular representation of G.
What is the kernel of φ? By definition,

kerφ = {g ∈ G | φ(g) = φg = ePer(G)},

the identity bijection. That means that φg(x) = gx = x for all x ∈ X = G.
Simply taking x = eG tells us that g = e, so the kernel is trivial and this
permutation representation is injective. □

As a corollary of this observation we obtain Cayley’s theorem.
Theorem 2.3.8 Cayley’s theorem. Every group G is isomorphic to subgroup
of a permutation group, in particular Per(G). If G is finite with |G| = n, then
G is isomorphic to a subgroup of Sn.

To gain further insight into group actions, we need to define two more notions,
an orbit and a stabilizer.
Definition 2.3.9 Let G act on a set X and let x ∈ X.

• The stabilizer or isotropy subgroup of x is

Gx := {g ∈ G | g · x = x}.

• The orbit of x is

Gx = G · x := {g · x | g ∈ G} = {y ∈ X | y = g · x for some g ∈ G}.

Note that Gx is a subgroup of G, while Gx is a subset of X. ♢
Consider a couple of examples to anchor these definitions.

Example 2.3.10 Let G act on itself by conjugation, and let x ∈ X. Then

Gx = {gxg−1 | g ∈ G}

is the conjugacy class of x, while

Gx = {g ∈ G | gxg−1 = x}

is the centralizer of x. □
Example 2.3.11 Let G be a group, and X = {H ≤ G} be the set of subgroups
of G. G acts on X by conjugation. Let x = H ∈ X. Then

Gx = {gHg−1 | g ∈ G}
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is the conjugacy class of H, while

Gx = {g ∈ G | gHg−1 = H}

is the normalizer of H. □
Exercise 2.3.1 Let G act by conjugation on the set X of all subgroups of G as
in the second example above.

(a) What does it mean when the size of the orbit is one, meaning the orbit
consists only of H? How is an orbit of size one related to the stabilizer?

Answer. An orbit of size one says H = gHg−1 for all g ∈ G, that is H
is a normal subgroup. It follows that in this case, the isotropy subgroup
(normalizer of H) is all of G, so

|Gx| = 1 ⇐⇒ Gx = G.

We shall generalize this below.

(b) Let G = S3 and X all the subgroups of S3. For each x ∈ X, compute the
orbit and stabilizer.

Answer. All proper subgroups of S3 are cyclic which makes our notation
easier. Let e be the identity, t be any transposition: (1 2), (2 3), or (1 3),
and T be either 3-cycle: (1 2 3) or (1 3 2).

x = {e} Gx = {e} Gx = G.

x = 〈t〉 Gx = {〈(1 2)〉, 〈(2 3)〉, 〈(1 3)〉} Gx = 〈t〉.
x = 〈T 〉 Gx = {x} Gx = G.

x = S3 Gx = {x} Gx = G.

Theorem 2.3.12 Orbit-Stabilizer theorem. Let G act on a set X, and let
x ∈ X. Then there is a bijection

G/Gx ↔ Gx

between the set of left cosets G/Gx and the orbit Gx given by

gGx ↔ gx.

As a consequence, we have that

[G : Gx] = |Gx|,

the index of the stabilizer equals the size of the orbit. Of course this statement
is only really useful when the quantities are finite.
Proof. Let’s show that the map gGx 7→ gx is well-defined. Suppose that gGx =
hGx. By Proposition 1.3.4, the two cosets are equal iff h−1g ∈ Gx, the stabilizer.
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So gGx = hGx iff h−1gx = x iff gx = hx (using the basic properties of a group
action). Thus the map is not only well-defined but also one-to-one. It is also
clear that it is surjective since given gx ∈ Gx, the coset gGx maps onto it.

The final statement is immediate since

|Gx| = |G/Gx| = [G : Gx],

the last equality by definition. ■
Since we know that that cosets of Gx in G partition G, it should come as no

surprise that the orbits partition X.

Proposition 2.3.13 Let G act on a set X. Then the set of orbits {Gx | x ∈ X}
form a partition of X.
Proof. By Definition 1.2.1, we need only check that every element of X is in
some orbit, and that two orbits are either disjoint or equal.

By the property of a group action that requires e · x = x for all x ∈ X, we
see that x ∈ Gx (no matter what G is).

Suppose that z ∈ Gx ∩Gy. We must show that Gx = Gy. By symmetry, it
is enough to show Gx ⊆ Gy. Since z ∈ Gx ∩Gy, we may write

z = g1x = g2y.

But that means that x = (g−1
1 g2)y, so for any g ∈ G,

gx = (gg−1
1 g2)y ∈ Gy

which completes the proof. ■
Finally, let’s prove a couple of nontrivial results with group actions. For the

first, we learned early on that a subgroup H for which the index [G : H] = 2 is
normal (since there are only two (left or right) cosets one of which is H). The
following is a good deal stronger.
Proposition 2.3.14 Let G be a finite group, and H a subgroup whose index,
[G : H] = p, is the smallest prime which divides the order of G. Then H is a
normal subgroup of G.

We use a lemma to simply the proof of the proposition, but which is useful
in its own right.
Lemma 2.3.15 Let G be a group, H a subgroup, and let G act on the coset space
G/H by left translation. Let φ : G → Per(G/H) be the associated permutation
representation. Then kerφ ≤ H.
Proof. The permutation representation φ acts by

φ(g) = φg where φg(xH) = gxH.

We note that k ∈ kerφ if and only if φ(k) = φk is the identity map. So if
k ∈ kerφ, then

φk(xH) = kxH = xH
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for all x ∈ G. But simply choosing x = e gives us that kH = H which means
k ∈ H. ■

Now we return to our proposition.
Proof of Proposition 2.3.14. Let G be a finite group, and H a subgroup whose
index, [G : H] = p, is the smallest prime which divides the order of G. Let G act
on G/H by left translation. By the lemma, the kernel K = kerφ ⊆ H. To show
that H is normal, we do it indirectly, by showing that H = K which is known
to be a normal subgroup!

We know that K ⊆ H ⊆ G and that G/K ∼= Imφ ≤ Per(G/H) by the first
isomorphism theorem. By Lagrange’s theorem

|G/K| = [G : K] | [G : H]! = |Per(G/H)| = p!.

By a simple homework type exercise we know that

[G : K] = [G : H][H : K] = p[H : K].

Putting things together we infer that

[H : K] | (p− 1)!.

But again by Lagrange,
[H : K] | |H| | |G|,

so
[H : K] | gcd(|G|, (p− 1)!) = 1

since p was the smallest prime dividing |G|. Since [H : K] = 1, H = K is a
normal subgroup of G. ■

Another standard application of group actions provides the class equation
which we use to show that every group of order p2 (p prime) is abelian. We of
course know that every group of order p is cyclic, hence abelian.

As preface, given a finite group G we let G act on itself by conjugation. Thus
the orbits are conjugacy classes of elements, and stabilizers are centralizers. An
element z ∈ G lies in the center, Z(G), of G if and only if its conjugacy class
consists solely of the element z, and hence its centralizer, CG(z), is the entire
group G. Because we know that that orbits partition the set (in this case the
group G), we can write G as the disjoint union of orbits (conjugacy classes)

G = Gg1 tGg2 t · · · tGgt,

recalling that the classes of size one correspond to the elements in the center of
G.

Theorem 2.3.16 Class Equation. Let G be a finite group, and g1, . . . , gr
representatives of the distinct conjugacy classes of G which are not contained in



CHAPTER 2. BASIC RESULTS IN GROUP THEORY 28

Z(G). Then

|G| = |Z(G)|+
r∑

i=1

[G : Ggi ] = |Z(G)|+
r∑

i=1

[G : CG(gi)].

Proof. As indicated above, we can write G as the disjoint union of orbits:

G = Gh1 t · · · tGht tGg1 tGg2 t · · · tGgr

where the hi are representatives of the conjugacy classes of size one, and the gi
represent those classes of size greater than one. As this is a disjoint union, it
follows that

|G| =
t∑

i=1

|Ghi|+
r∑

i=1

|Ggi|.

The first sum is the order of the center, while each summand in the second

|Ggi| = [G : Ggi ] = [G : CG(gi)]

by the orbit-stabilizer theorem, hence the result. ■
Exercise 2.3.2 For a prime p, a p-group is a finite group whose order is a
power of p.

(a) Let G be any p-group. Show that G has a non-trivial center. Specifically
show that p | |Z(G)|.

Answer. This follows from the class equation:

|G| = |Z(G)|+
r∑

i=1

[G : CG(gi)],

where g1, . . . , gr are representatives of the conjugacy classes of size greater
than one. But that means that each [G : CG(gi)] > 1 and since [G :
CG(gi)] | |G| by Lagrange, each [G : CG(gi)] is a power of p, in particular
divisible by p. Thus

|Z(G)| ≡ |G| −
r∑

i=1

[G : CG(gi)] ≡ 0 (mod p).

(b) Let G be a group, and suppose that G/Z(G) is cyclic. Show that G is
abelian.

Answer. Let’s write Z for Z(G). G/Z cyclic means that G/Z = 〈xZ〉
for some x ∈ G. To show that G is abelian, choose g, h ∈ G and we shall
show they commute.
By our assumption, gZ = xmZ and hZ = xnZ for some integers m,n. This
means that g = xmz1 and h = xnz2 for some elements zi ∈ Z. It follows
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that

gh = xmz1x
nz2 = z1x

m+nz2 = z2x
n+mz1 = z2x

nxmz1 = xnz2x
mz1 = hg

using that the zi commute with all elements in the group and xmxn = xnxm.

(c) Let G be a group of order p2. Show that G is abelian.

Answer. From the first exercise, we know that |Z(G)| = p or p2. If
|Z(G)| = p2, then G = Z(G), so is abelian. Assume to the contrary,
|Z(G)| = p (so G is not abelian). But Z(G) ⊴ G, and since G/Z(G) has
order p, it is cyclic. But the previous exercise shows that G is abelian, a
contradiction.

2.4 Some structure and classification theorems
Here we state with few proofs some structure theorems which advance the goal
of classifying finite groups. We also include a few examples. We begin with a
major result whose proof relies on group actions.

We have defined a p-group as any group whose order is a power of a prime
p. Suppose that G is a finite group of order n and p is prime dividing n. Write
n = pkn0 where p ∤ n0, so k is the largest exponent so that pk | n. A p-subgroup
H of G is simply any subgroup which is a p-group. A Sylow p-subgroup of G is
a subgroup whose order is the largest power of p dividing the order of the group,
in this case pk. We are about to state a result showing that such subgroups
always exist.

Theorem 2.4.1 Sylow theorems. Let G be a group of order n = pkn0 with
p a prime and p ∤ n0. Then

• There exist subgroups of G of all orders pℓ with 1 ≤ ℓ ≤ k. In particular,
Sylow p-subgroups exist for all primes p dividing |G|. Every p-subgroup of
G is contained in a Sylow p-subgroup of G.

• For a fixed prime p, if P and Q are two Sylow p-subgroups of G, they are
conjugate, i.e., there exists g ∈ G with P = gQg−1.

• Let np equal the number of Sylow p-subgroups of G. Then np ≡ 1 (mod p)
and np | n0 = |G|/pk.}

Underlying concepts. Let p be a prime dividing |G|, and let X be the set of
all Sylow p-subgroups in G. The first Sylow theorem says that X is non-empty.
Note that G acts on X by conjugation: if P ∈ X, then since x 7→ gxg−1 is an
(inner) automorphism, gPg−1 is a subgroup of G having the same order as P , so
is again an element of X.

Now that we have a group action, we can talk about orbits and stabilizers.
So let P ∈ X be a Sylow p-subgroup. The second Sylow theorem says that the
orbit G · P = X; G is said to act transitively on X.
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But now np is the number of Sylow p-subgroups in G, but that is simply the
size of X. Thus

np = |X| = |G · P | = [G : NG(P )],
where the last equality comes from the orbit-stabilizer theorem. Now we always
have the inclusions

P ≤ NG(P ) ≤ G

and

n0 =
|G|
|P |

= [G : P ] = [G : NG(P )][NG(P ) : P ] = np[NG(P ) : P ].

In particular np | n0, part of the third Sylow theorem. ■
The normal subgroups of a group provide insight into its structure. A group

G whose only normal subgroups are G and {e} is called a simple group and
are fundamental to the so-called Hölder program. For groups which are not sim-
ple, their normal subgroups often lead to their characterization as a product of
smaller groups, which we investigate shortly. A corollary of the Sylow theorems
provides a simple way to determine if a Sylow p-subgroup is normal.
Corollary 2.4.2 In the notation of the Sylow theorem, np = 1 if and only if the
Sylow p-subgroup is normal.
Proof. Suppose that np = 1 and P is given Sylow p-subgroup. For any g ∈ G,
gPg−1 is also a Sylow p-subgroup, and since there is only one, P = gPg−1 for
any g ∈ G, so P ⊴ G.

Conversely, suppose that P is a normal Sylow p-subgroup, and let Q be any
Sylow p-subgroup. By the second Sylow theorem, Q = gPg−1 for some g ∈ G.
But since P is normal, Q = P , hence np = 1. ■

Recall that given two groupsG1 andG2, we can make their Cartesian product,
G1 ×G2, of ordered pairs into a group under component-wise operations. What
we would like is to characterize when a given group is isomorphic to a direct
product of groups.
Proposition 2.4.3 Let G be a group and H,K subgroups. Suppose that

• H and K are both normal subgroups.

• H ∩K = {e}

• G = HK(= KH)

Then the map H ×K → HK = G given by (h, k) 7→ hk is an isomorphism, and
G is called the (internal) direct product of the subgroups H and K.
Proof. Let φ : H×K → G be defined by φ((h, k)) = hk. The map φ is surjective
by the third assumption, and it is one-to-one by the second assumption:

hk = h′k′ ⇐⇒ (h′)−1h = k′k−1,

but since H ∩K = {e}, (h′)−1h = k′k−1 = e, thus (h, k) = (h′, k′).
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Showing that φ is a homomorphism is we need to exercise a bit of care.

φ((h1, k1)(h2, k2)) = φ((h1h2, k1k2)) = h1h2k1k2

φ((h1, k1))φ((h2, k2)) = h1k1h2k2.

So we need to show that

h1h2k1k2 = h1k1h2k2 ⇐⇒ h2k1 = k1h2

for any hi ∈ H and ki ∈ K. While in general HK = KH being a subgroup
of G does not imply that the elements commute, but when both subgroups are
normal (and have trivial intersection) we gain some added power:

hk = kh ⇐⇒ h−1k−1hk = e,

but using the normality of each subgroup, we see

h−1k−1hk = (h−1k−1h)k ∈ K

h−1k−1hk = h−1(k−1hk) ∈ H

and since
H ∩K = {e},

the elements commute, and our map φ is a homomorphism. ■
Before giving an example, we state an important, but simple result which

can be viewed as one version of the Chinese Remainder Theorem, though we
give a direct proof.

Proposition 2.4.4 Let Zn denote a cyclic group of order n, so Zn
∼= Z/nZ.

Zm × Zn
∼= Zmn iff gcd(m,n) = 1.

Proof. Let d = gcd(m,n), and note that mn

d
= m

n

d
= n

m

d
is a product of

integers. It follows that every element of Zm × Zn has exponent mn/d. So if
d > 1, there is no element of order mn in Zm × Zn, so the group is not cyclic.

Conversely, suppose that d = 1. Let x ∈ Zm have order m and y ∈ Zn have
order n, and put z = (x, y) ∈ Zm × Zn. Since

z = (x, y) = (x, e)(e, y) = (e, y)(x, e)

it is easy to see that z has exponent mn. We want to show that the order of z is
mn.

So suppose that ℓ is any exponent for z. So

zℓ = (xℓ, yℓ) = (e, e).

Since m is the order of x, we know that m | ℓ, and since n is the order of y, we
know that n | ℓ. But d = gcd(m,n) = 1 which implies that mn | ℓ. Thus ℓ = mn
is the smallest exponent, hence the order.
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Thus Zm × Zn is cyclic of order mn, so

Zm × Zn
∼= Zmn

as there is a unique cyclic group of any given order (up to isomorphism). ■
Example 2.4.5 Let p < q be primes with p ∤ (q− 1). Then every group of order
pq is cyclic.
Solution. We first apply the Sylow theorems to G. Let Hp and Hq be (respec-
tively) Sylow p and q-subgroups of G. Because they have prime order, we know
that Hp

∼= Zp and Hq
∼= Zq. We want to know that G is the direct product of Hp

and Hq. That they have trivial intersection is immediate from Lagrange since
they have relatively prime orders.

Given their trivial intersection, Proposition 2.1.3 tells us that |HpHq| = pq,
so necessarily G = HpHq. All the remains is for us to show that each of the Sylow
subgroups is normal.

Proposition 2.3.14 tells us that since [G : Hq] = p is the smallest prime
dividing the order of G, that it must be normal, though we give an independent
proof using the Sylow theorems.

In the notation of the Sylow theorems, the subgroups will both be normal iff
np = nq = 1. By the Sylow theorems, we know that

np ≡ 1 (mod p) and np | q, while nq ≡ 1 (mod q) and nq | p.

Since nq | p, nq = 1 or p. But if nq = p, then nq = p ≡ 1 (mod q) which says
that q | (p − 1). But p < q by assumption, so that is impossible. Thus nq = 1
implying Hq is a normal subgroup.

Similarly, np = 1 or q. If np = q, then np = q ≡ 1 (mod p), implying that
p | (q − 1), contrary to assumption.

Thus both subgroups are normal, have trivial intersection, and their product
is G, so by Proposition 2.4.3,

G ∼= Hp ×Hq
∼= Zp × Zq

∼= Zpq

the last isomorphism by Proposition 2.4.4. □
Remark 2.4.6 The condition that p ∤ (q − 1) was absolutely critical in the
previous example. Consider groups of order 6 = 2 · 3. Since 2 | (3 − 1) the
argument we gave does not show the Sylow 2-subgroup is normal. Indeed it
need not be.

If G = S3, the symmetric group, we know that the Sylow group H3 is nor-
mal (generated by either 3-cycle), however there are 3 Sylow 2-subgroups, each
generated by a different transposition, so n2 = 3, and Sylow 2-subgroups are not
normal.

Moreover, it is clear that S3 6∼= H2 ×H3 since the later is abelian, while S3 is
not. Of course if the group had been G = Z/6Z, both Sylow subgroups would
be normal, and G ∼= H2 ×H3.
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Finally, this is not an isolated situation. After all for any odd prime q,
2 | (q − 1), so any group of order 2q can have this issue. Indeed, we know the
problem will arise, since there are dihedral groups (non-abelian of order 2n) for
every n ≥ 3.

Remark 2.4.7 It is also worth noting that when a group G has subgroups H,K
with G = HK, H ∩ K = {e} and only one of H or K is normal, there is still
something that can be said, namely that G is a semi-direct product of H and
K. The structure is more complicated since that map φ : H ×K → G given by
(h, k) 7→ hk is not a homomorphism.

One of the remarkably pretty results from group theory is the classification
of finite abelian groups. While relatively easy to state, the proof is rather long.
You will find direct proofs in textbooks focused on just on groups, or more
general proofs which apply to finitely generated modules over PIDs of which
finite abelian groups are a special case.

We begin with an intermediate result which we shall use to give the full
result.
Theorem 2.4.8 Let G be a finite abelian group whose order n has prime factor-
ization n = pe11 · · · perr . Let Hi be a Sylow pi-subgroup of G. Then

G ∼= H1 × · · · ×Hr.
Proof. The proof is by induction on r. First note that all subgroups of G are
normal since G is abelian. If r = 1 there is nothing to prove, and the case of
r = 2 is a direct application of Proposition 2.1.3 and Proposition 2.4.3.

Now consider r = 3. By Proposition 2.4.3, H := H1H2
∼= H1×H2. Moreover

H is normal since G is abelian, and H ∩ H3 = {e} by Lagrange. Again by
Proposition 2.1.3 and Proposition 2.4.3, we have

G = HH3
∼= H ×H3

∼= H1 ×H2 ×H3.

Now assume that r ≥ 4, and as above we have constructed

H := H1 · · ·Hr−1
∼= H1 × · · · ×Hr−1.

The same arguments now show that G = HHr
∼= H × Hr which finishes the

proof. ■
Having reduced the structure of a finite abelian group to a direct product

of its Sylow p-subgroups, we now characterize all the isomorphism types of an
abelian p-group.
Theorem 2.4.9 Let G be a finite abelian group of order pn for some prime p
and n ≥ 1. Then G ∼= Zpa1 × Zpa2 × · · · × Zpar with a1 ≥ a2 ≥ · · · ≥ ar ≥ 1 and∑r

i=1 ai = n.
Moreover, if H ∼= Zpb1 × Zpb2 × · · · × Zpbs with b1 ≥ b2 ≥ · · · ≥ bs ≥ 1 and∑s

i=1 bi = n, then G ∼= H iff r = s and ai = bi for all 1 ≤ i ≤ r. The powers,
pai, are called the elementary divisors of G.
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Remark 2.4.10 The integers a1 ≥ a2 ≥ · · · ≥ ar ≥ 1 with
∑r

i=1 ai = n is said
to form a partition of n.

One defines the partition function, p(n), which counts the number of par-
titions of the positive integer n. The first few values are easy to compute:

p(0) := 1; p(1) = 1; p(2) = 2; p(5) = 7; p(10) = 42, . . . .

On the other hand, larger values can be more challenging:

p(20) = 627

p(40) = 37338

p(100) = 190, 569, 292

p(200) = 3, 972, 999, 029, 388

There are many theorems about the partition function including asymptotics:

p(n) ∼ eκ
√
n

4n
√
3

as n→ ∞ where κ = π
√
2/3, or generating functions:

∞∏
m=1

(
1

1− xm

)
=

∞∑
n=0

p(n)xn.

There are also recurrence formulas which produce the exact numbers listed above.

Example 2.4.11 Up to isomorphism find all abelian groups of order p5, that is
find a set of representatives of all the isomorphism classes of abelian groups of
order p5.
Solution. We begin by listing the partitions of 5:

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

so p(5) = 7, so there will be 7 isomorphism classes. The integers in the partition
correspond to the elementary divisors pa in the decomposition.

Thus G is isomorphic to precisely one of the following abelian groups:

Zp5

Zp4 × Zp

Zp3 × Zp2

Zp3 × Zp × Zp

Zp2 × Zp2 × Zp

Zp2 × Zp × Zp × Zp

Zp × Zp × Zp × Zp × Zp.

□
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Now we would like to combine Theorem 2.4.8 and Theorem 2.4.9 into one
theorem, which characterizes finite abelian groups by their invariant factors.
Theorem 2.4.12 Every finite abelian group is isomorphic to exactly one group
of the form Zn1 ×Zn2 × · · · ×Znr where and n1 | n2 | · · · | nr ≥ 2. It follows that
|G| = n1n2 · · ·nr. The ni are called the invariant factors of G.
(Main Idea). We know that every finite abelian group is a direct product of its
Sylow p-subgroups, each one of which has a decomposition in terms of elementary
divisors. To combine these products we use the Chinese Remainder theorem for
groups joining the largest powers of elementary divisors for each of the primes
into the first invariant factor, then the second largest into the second invariant
factors, and so on. ■

An example translating between the two types should make things clear.
Example 2.4.13 To go from the invariant factor decomposition to the product
of Sylow subgroups:

Z20 × Z300
∼= (Z4 × Z5)× (Z4 × Z3 × Z25)
∼= (Z4 × Z4)× Z3 × (Z5 × Z25)
∼= H2 ×H3 ×H5 (Sylow subgroups)

Now we go from Sylow/elementary divisor to invariant factor decomposition
collecting the largest powers of elementary divisors, then second largest and so
on.

(Zp × Zp2 × Zp3)× (Zq × Zq5) ∼= (Zp)× (Zp2 × Zq)× (Zp3 × Zq5)
∼= Zp × Zp2q × Zp3q5 = Zn1 × Zn2 × Zn3 .

□
Remark 2.4.14 While the Sylow/elementary divisor method may seem more
natural, and is certainly the easier way to list all the isomorphism classes of
an abelian groups of a given order, the invariant factor decomposition reveals
deeper structure of the group. For example, while we know that if

G ∼= Zn1 × Zn2 × · · · × Znr

with n1 | n2 | · · · | nr ≥ 2, then the group has order n = n1 · · ·nr and that every
element in the group has order dividing n. The invariant factor decomposition
tells us more, namely that the largest order of an element in the group is nr.

We do one last example listing the isomorphism classes in both elementary
divisor and invariant factor forms
Example 2.4.15 Up to isomorphism, classify all abelian groups of order 6125 =
53 · 72.
Solution. First we decompose G into a product of its Sylow subgroups: G ∼=
H5 ×H7 with |H5| = 53 and |H7| = 72. Next for each Sylow subgroup we need
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to compute its possible elementary divisors, and to do so, we need to compute
the partitions of 2 and 3:

Partitions of 3: 3 = 2 + 1 = 1 + 1 + 1

Partitions of 2: 2 = 1 + 1

This translates to the following possibilities for the elementary divisor decompo-
sition of each Sylow subgroup:

H5
∼= Z53 or Z52 × Z5, or Z5 × Z5 × Z5

H7
∼= Z72 or Z7 × Z7.

Finally we assemble all the data we have computed to arrive at all the possible
isomorphism classes both in terms of elementary divisors and invariant factors.

Z53 × Z72 Z6125

Z53 × Z7 × Z7 Z7 × Z875

Z5 × Z52 × Z72 Z5 × Z1225

Z5 × Z52 × Z7 × Z7 Z35 × Z175

Z5 × Z5 × Z5 × Z72 Z5 × Z5 × Z245

Z5 × Z5 × Z5 × Z7 × Z7 Z5 × Z35 × Z35

elementary divisors invariant factors

□
Checkpoint 2.4.16 The group G = Z25×Z245 is also an abelian group of order
6125, but does not appear in the lists given in the example above. To which
groups in the above list is it isomorphic?
Hint. Decompose the given direct product into elementary divisors

2.5 The Symmetric Group
For a set X, denote by SX the set of bijective maps f : X → X. We make SX

into a group with composition of functions as the binary operation: (f, g) 7→ f◦g,
so f ◦ g(x) = f(g(x)).

The identity element is the identity map idX : X → X defined by idX(x) = x
for all x ∈ X. Every element f ∈ SX has an inverse since each f is one-to-one
and onto. The operation is associative since composition of maps is.

When X is finite, say |X| = n, we assume X = {1, 2, . . . , n} and write Sn for
SX . It is easy to check that |Sn| = n!. The group Sn is called the symmetric
group on n letters. Any subgroup of Sn is called a permutation group.

Note that S1 = {id} and S2 = {id, σ} (where σ interchanges 1 and 2) are
cyclic groups. For n ≥ 3, it is easy to check that Sn is nonabelian.
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Consider σ ∈ S11 described somewhat cumbersomely by

σ =

(
1 2 3 4 5 6 7 8 9 10 11
5 1 3 2 7 6 4 9 8 11 10

)
where σ takes an element in the top row to the element directly below it. It is
more convenient to write σ as a product of disjoint cycles.

Recall that a cycle of length k (or a k-cycle) is a permutation, τ ∈ SX ,
for which there exist a1, . . . , ak ∈ X satisfying

τ(ai) = ai+1 for 1 ≤ i ≤ k, τ(ak) = a1, and τ(x) = x for all other x ∈ X.

The cycle τ is written as τ = (a1 a2 · · · ak).

Example 2.5.1 For example, we can write

σ =

(
1 2 3 4 5 6 7 8 9 10 11
5 1 3 2 7 6 4 9 8 11 10

)
as as a product of disjoint cycles:

σ = (1 5 7 4 2)︸ ︷︷ ︸
5−cycle

(3)(6)︸ ︷︷ ︸
1−cycles

(8 9)(10 11)︸ ︷︷ ︸
2−cycles

.

□
Recall the the following properties:

Proposition 2.5.2
1. Every permutation can be written uniquely as the product of disjoint cycles.

2. The cycle can be represented as

(a1 . . . ar) = (a2 a3 . . . ar a1) = (a3 a4 . . . , ar a1 a2) = · · ·

3. Disjoint cycles commute.
The process by which we write a permutation as a product of disjoint cycles

can be presented as algorithmic, but it also has a natural interpretation in terms
of group actions.

Suppose we are given a permutation σ in Sn and want to find its representa-
tion as a product of disjoint cycles. Let G = 〈σ〉 be the cyclic group generated
by σ. Then G acts on X = {1, . . . , n} by (τ, k) 7→ τ(k). Given a group action,
we know that the set X is partitioned into orbits. Each orbit corresponds to one
of the disjoint cycles in the decomposition:

G · k = Orbit of (k) = {τ(k) | τ ∈ 〈σ〉}.

The only difference between the orbit and the cycle, is that the elements in the
cycle are ordered to convey a bit more information:

(k σ(k) σ2(k) · · · σℓ−1(k))
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where ℓ is the smallest positive integer such that σℓ(k) = k. So now the propo-
sition above is clearer: the cycles are uniquely determined because the orbits
under the action of 〈σ〉 are, an orbit can be named by any element it contains
since the group acts transitively on each orbit, and X being the disjoint union of
orbits does not depend on the order in which you write the orbits in the union.
Exercise 2.5.1

(a) Show that the order (as a group element in Sn) of an r-cycle σ = (a1 a2 · · · ar)
is r.

Solution. σ takes ai to ai+1 for 1 ≤ i ≤ r and ar to a1, it is straightfor-
ward to check by induction that σj takes ai to ai+j with i + j read with
least positive residues modulo r. It follows that the order of σ is r.

(b) Write a permutation σ ∈ Sn as a product of disjoint cycles: σ = σ1 · · · σs.
Show that the order of σ is the least common multiple of the lengths of
the cycles σi.

Solution. Let mj be the length (order) of the cycle σj, and let M =
lcm{m1, . . . ,ms}. Then, since disjoint cycles commute,

σM = (σ1 · · · σs)M = σM
1 · · · σM

s = 1

since each mj is a multiple of M. It follows from Lagrange that the order
of σ divides M. Suppose that N = |σ|, then since disjoint cycles commute,

σN = (σ1 · · · σs)N = σN
1 · · · σN

s = 1,

hence
σ−N
1 = σn

2 · · · σN
t .

Recall that the σj are disjoint cycles so as permutations only move sets
which are disjoint from one another. That is, σ1 cannot move any integer
in the sets moved by σ2, . . . , σs, yet their Nth powers are equal. The only
resolution is that σ−N

1 = 1 = σN
1 . This implies m1 | N . Since the cycles

commute, we may do the same trick for all the σj to conclude mj | N for
all j, and hence M | N . Thus |σ| =M .

Exercise 2.5.2 Write a permutation σ ∈ Sn as the product of disjoint cycles
—including the 1-cycles:

σ = σ1 · · · σr,
and let ai denote the length of σi. Because disjoint cycles commute, we may
assume that the cycles are arranged in so their lengths appear in descending
order and since we include the 1-cycles their lengths form a partition of the
integer n.

If σ = σ1 · · · σr has lengths a1 ≥ · · · ≥ ar ≥ 1, then we call the r-tuple
(a1, . . . , ar) the cycle type of σ.



CHAPTER 2. BASIC RESULTS IN GROUP THEORY 39

(a) Let τ = (a1 a2 · · · ak) be any k-cycle. Show that for any permutation σ,

στσ−1 = (σ(a1) σ(a2) · · · σ(ak)),

so in particular, conjugation takes a k-cycle to another k-cycle.

Solution. Let’s first see where we send an integer of the form ℓ =
σ(ai) for some i. We see that \[\sigma\tau\sigma^{-1}(\sigma(a_i)) =
\sigma\tau(a_i) = \sigma(a_{i+1}),\] where we read the subscripts mod-
ulo k, so we might conjecture that στσ−1 = (σ(a1) σ(a2) · · · σ(ak)), how-
ever to be sure, we must show that στσ−1 fixes all other integers. So now
let ℓ be an integer, with ℓ 6= σ(ai) for any i. Then σ−1(ℓ) 6= ai for any i,
so τ leaves it unchanged, so that σ takes it back to ℓ. So no integer other
than the σ(ai) is moved by στσ−1, and our decomposition is complete.

(b) Let τ, τ ′ ∈ Sn be any two cycles of length k. Show that there is an element
σ ∈ Sn so that

τ ′ = στσ−1.

This means that for each k-cycles in Sn form their own and complete
conjugacy class.

Solution. Let τ = (a1 a2 · · · ak) and µ = (b1 b2 · · · bk). Then for any
permutation σ which takes ai 7→ bi we have the desired equality.

Use the exercises above to deduce the following proposition.
Proposition 2.5.3 There is a one-to-one correspondence between conjugacy
classes of elements in Sn are partitions of the integer n.
Proof. Let σ ∈ Sn and consider its conjugacy class. Write σ as the product of
disjoint cycles (including the 1-cycles):

σ = σ1 · · · σr with mi = |σi|.

We have observed that (arranged in descending order since disjoint cycles com-
mute), m1, . . . ,mr is a partition of n. Since conjugation is an (inner) automor-
phism,

τστ−1 = τστ−1 · · · τσrτ−1,
and by the exercises above τσjτ−1 is again a cycle of length mj, so the resulting
cycles in τστ−1 again produce the same partition of n.

Given a partition of n, there is certainly a permutation with that cycle type,
just by listing the integers from 1 to n, and grouping them into cycles of the
desired length.

So we have a surjective map from permutations to partitions which is well-
defined on conjugacy classes. We have another exercise which shows that two
cycles of a given length are always conjugate and this extends to a product of
disjoint cycles. ■

Permutations are divided into even and odd permutations according to one
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of the following two equivalent schemes. The virtue of the first definition is that
it is clearly well-defined.

Define a function sgn : Sn → {±1} as follows: for a permutation σ ∈ Sn,
write σ as the product of disjoint cycles (including the 1-cycles), say σ = σ1 · · · σt.
Then we define

sgn(σ) = (−1)n−t.

It follows that sgn(1) = 1 = (−1)n−n, and sgn((a b)) = (−1)n−(n−1) = −1. For a
permutation σ, the value sgn(σ) is called the sign of the permutation.

For the second definition, note that any cycle can be written as the product
of transpositions:

(a1 a2 · · · ar) = (a1 ar) · · · (a1 a3)(a1 a2),

hence so can any permutation (though not in a unique way). If

σ = τ1 · · · τr,

where all the τi are transpositions, then it is also true that

sgn(σ) = (−1)r.

Proposition 2.5.4 The definitions are the sign function given above are equiv-
alent. Moreover, sgn : Sn → {±1} is a group homomorphism, and is surjective
for n ≥ 2. It’s kernel is called the alternating group, denoted An.
Remark 2.5.5 For n ≥ 2, it follows from the first isomorphism theorem that An

is a normal subgroup of index 2 in Sn. For n ≥ 3, it is generated by the 3-cycles,
and for n ≥ 5, it is simple group.



Chapter 3

Basic results in ring theory

3.1 Basic definitions and motivations
Like most algebraic objects, certain adjectives can be applied to rings to refine
their properties. Some familiar examples:

• Non-commutative rings: n × n matrices (n ≥ 2), Hamilton’s quater-
nions: H, the four-dimensional vector space of R with basis {1, i, j, k}
subject to the relations ij = k = −ji and i2 = j2 = k2 = −1.

• Commutative rings: fields, Z, Z/nZ, polynomial rings with coefficients
in a commutative ring.

• Integral domains: (also called entire rings) are commutative rings with
identity and no zero divisors such as Z, Z/nZ (iff n is prime), polynomial
rings whose coefficient ring is an integral domain.

Much of ring theory evolved to accommodate generalizations of properties
of the integers to more general rings. Attempts to extend the notion of unique
factorization in the integers led both to the notion and importance of ideals and
to entire subjects like algebraic number theory and algebraic geometry.

3.2 Factoring in integral domains
Let’s review some ideas surrounding the concept of factorization in rings to
remind ourselves of how certain terminology became relevant. Let’s begin with
factorization in the integers Z. The Fundamental theorem of arithmetic is often
phrased as
Theorem 3.2.1 Fundamental Theorem of Arithmetic. Every integer
n > 1 is either prime or can be factored as a product of primes. And such a
factorization is unique up to a rearrangement of the factors.

41
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Remark 3.2.2 We simply take the statement of the fundamental theorem in
this context at face value, but as soon as we begin to poke at the edges, all sorts
of questions come up.

• So why is there this restriction to integers greater than one? Well, ok, we
are smart enough to avoid 0 and 1, and perhaps even −1, but what’s the
matter with the integers n < −1?

• Then there is the word prime which in the integers plays two roles. A
prime in Z acts as both an irreducible element and a prime element, but
how exactly are those roles evidenced?

• Moreover, a prime in Z seems to be slightly more restrictive in its meaning
than in general (an integer p ≥ 2 whose only positive divisors are 1 and
itself). Why those restrictions?

There are many properties that make the integers special, but the facts that
the unit group consists of only two elements, ±1, and that irreducibles and
primes are the same, strongly influence how the Fundamental Theorem is stated
when compared to a statement describing unique factorization in a more general
integral domain.

Let’s start with an arbitrary integral domain R, and consider what we might
mean by unique factorization. Certainly we must begin with some statement
which says we have factored the given element and it can’t be factored anymore.
We should exclude trying to factor 0 or units in the ring, and we shouldn’t
fuss about the order of factors nor associates. For example, we don’t want to
distinguish factorizations like

6 = 2 · 3 = 3 · 2 · 1 = (−2) · (−3).

But as we said in Z, this is easy to control since there are only two units.
In Q[x], we would like to say that f(x) = 2x cannot be factored anymore (is

irreducible) even though

2x = 2 · x = (2/3) · (3x) = · · · .

On the other hand, in Z[x], the polynomial 2x is not irreducible since f(x) =
2x = 2 · x and neither 2 nor x are units in Z[x].

So factoring into irreducibles seems like a pretty natural notion, though we
still have to deal with associates.
Example 3.2.3 So let’s take a nonzero, non-unit element a in an integral domain
R and try to factor it into irreducibles. What works and what might go wrong?
Solution. Factoring is a simple process. We ask if the given (nonzero, non-
unit) element a is irreducible. If it is, we are done. However if it is not, that
means there is a nontrivial factorization, that is as a product

a = a1b1

where neither factor is a unit. Now we iterate.
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If both a1, b1 are irreducibles, we are done, otherwise assume a1 is not. Then
a1 has a nontrivial factorization

a1 = a2b2

where neither factor is a unit. And we iterate. So what’s the problem? There
does not seem to be any mechanism to force this procedure to terminate. □

In the example above, we see that it is natural to try to factor in any integral
domain, but what is lacking is a mechanism to terminate the procedure. While
not often discussed in a first algebra course, this leads quite naturally to the
notion of a Noetherian ring, but before we define it, let’s make the transition
from elements to ideals seem natural.

We are talking about the factorization of elements in a ring R. We say that
the element b divides the element a (written b | a) if there exists a c ∈ R so
that a = bc, in other words if b is a factor of a. Now one issue is that if b | a,
then so does bu for any unit u since

a = bc = (bu)(u−1c).

Notice that b | a if and only if the principal ideals (a) ⊆ (b), and in an
integral domain, (b) = (b′) if and only if b and b′ are associates. So principal
ideals capture the notion of factoring and of associates all in one concept.

Returning to our example of factoring, if a factored non-trivially as a = a1b1,
and a1 was not irreducible, then a1 = a2b2 with neither a2, b2 units. In terms of
ideals we would have

(a) ⊊ (a1) ⊊ (a2) ⊊ · · · .
This means that until at some point in the factorization an irreducible appeared
in the factorization, this ascending chain of ideals would go on indefinitely.
Addressing this issue is one of the conditions which define a Noetherian ring.
Theorem 3.2.4 Let R be a commutative ring with identity. The following three
conditions are equivalent and define what it means for the ring to be Noetherian.

1. R satisfies the ascending chain condition (ACC), meaning that given
any ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

in R, there exists an index r ≥ 1 so that

Ir = Ir+1 = Ir+2 = · · · .

2. Every ideal I ⊆ R is finitely generated.

3. Every non-empty collection of ideals has a maximal element.
You certainly know of Noetherian integral domains since every PID is au-

tomatically Noetherian since every ideal is generated by a single element. The
main takeaway here is the following result.
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Theorem 3.2.5 Let R be a Noetherian integral domain. Then every nonzero,
non-unit in R can be factored as a finite product of irreducibles.
Proof. From the example and discussion above, the Noetherian condition tells
us that as we begin to fact a nonzero, non-unit an irreducible must eventually
appear as one of its factors.

So if a = π1a1 where π1 is irreducible, we ask if a1 is a unit. If it is, we are
done. Otherwise a1 = π2a2 with π2 irreducible. Again if a2 is a unit we are done.
Otherwise a3 = π3a3. So again at this stage we are building another ascending
chain of ideals:

(a) ⊊ (a1) ⊊ (a2) ⊊ · · ·

which must terminate, but terminating means at the last stage ar−1 = πrar with
πr irreducible and ar a unit, which terminates the factorization. ■

Example 3.2.6 The ring Z[
√
−5] = {a+ b

√
−5 | a, b ∈ Z} is a Noetherian inte-

gral domain, so every nonzero, non-unit factors as a finite product of irreducibles,
just like in Z. But where Z enjoys unique factorization, Z[

√
−5] does not. So

primes in Z are somehow different than irreducibles in Z[
√
−5]. We investigate

how.
Solution. That the ring R = Z[

√
−5] is Noetherian follows from somewhat

more advanced knowledge: Since Z is a PID, it is Noetherian, and so by the
Hilbert basis theorem, so is the polynomial ring Z[x]. Now an easier exercise
is that that homomorphic image of a Noetherian ring is Noetherian, and our
ring R is the homomorphic image of Z[x] under the evaluation map induced by
x 7→

√
−5. The ring is an integral domain since it is a subring of the field C.

Now to come to the more relevant part. We can write down a sentence like
6 = 2 · 3 = (1 +

√
−5)(1−

√
−5)

and claim this shows the ring does not have unique factorization, but that is just
an assertion without much proof.

What does it mean to say this is a counterexample to unique factorization?
Well we would have to know that 2, 3, 1±

√
−5 are all irreducible and not asso-

ciates.
Both of these questions can be answered using the norm map N : Z[

√
−5] →

Z given by
N(a+ b

√
−5) = (a+ b

√
−5)(a− b

√
−5) = a2 + 5b2.

It is easy to see that since N(α) = αα, the product of the element and its
complex conjugate, that N(αβ) = N(α)N(β) for any α, β ∈ R = Z[

√
−5].

The first lemma to prove is that α is a unit in Z[
√
−5] if and only ifN(α) = ±1

(actually +1 in our case since a2 + 5b2 ≥ 0 for all a, b). It follows that the units
of Z[

√
−5] = {±1}, so it is at least clear that none of the factors in the two

factorizations of 6 are associates.
To show that 2, 3, 1±

√
−5 are all irreducible is done case by case. We show

that 2 is irreducible in Z[
√
−5]. Suppose not. Then

2 = αβ
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where neither α, β are units, i.e., have norm 1. But since the norm is multiplica-
tive,

4 = N(2) = N(α)N(β),
where now this equation is an equation in Z where we have unique factorization.
So the only possibilities are that N(α) = 1, 2, or 4. We cannot have N(α) = 1
since that means that α is a unit, nor can be have N(α) = 4 since that forces β to
be a unit. So our only chance for a nontrivial factorization is ifN(α) = N(β) = 2.
But since a2 + 5b2 = 2 has no solutions for a, b ∈ Z, we are forced to conclude
that one of α or β is a unit, meaning that 2 is irreducible in Z[

√
−5]. The other

cases are analogous. □
The failure of unique factorization in the ring Z[

√
−5] is a consequence of the

fact that not all irreducibles are primes. Having shown that they are irreducible,
it is easy to show the elements are not prime. Recall, we have

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

so that means that 2, 3, 1±
√
−5 all divide 6, so in particular

2 | (1 +
√
−5)(1−

√
−5).

We need to show that 2 does not divide either 1+
√
−5 nor its conjugate. But an

easy lemma is that in an integral domain, if π1 | π2 where the πi are irreducible,
then they must be associates. Since we know the units of the ring are only ±1,
it is clear they are not associate. So these 4 elements are irreducible, but not
prime in Z[

√
−5].

The theorem we can now prove is
Theorem 3.2.7 Let R be a Noetherian integral domain in which every irreducible
element is a prime element. Then R is a unique factorization domain, meaning
that every nonzero, non-unit in R has a factorization into a finite product of
irreducibles which is unique in the sense that if

a = π1 · · · πr = π′
1 · · · π′

s

are two factorizations of a into irreducibles, then r = s, and (after a possible
reordering) πj and π′

j are associates for all j = 1, . . . , r.

(sketch). Only the uniqueness statement remains to be shown, and the proof
here is exactly as it is in Z, so we simply sketch the argument.

Proceed by induction on r. If r = 1, then by the definition of an irreducible,
it can have no nontrivial factorizations which makes s = 1 and π1 = π′

1. For
r ≥ 2, we know that π1 | a, so

π1 | π′
1 · · · π′

s.

Since the irreducible π1 is prime, it must divide one of the factors on the right
hand side, so without loss of generality (since products commute), we can say
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π1 | π′
1. Again, both being irreducibles, they must be associate, so we may write

π1 · · · πr = π′
1 · · · π′

s = π1π
′′
2π

′
3 · · · π′

s,

where π′′
2 is an associate of π′

2.
Since we are in an integral domain, the cancellation law holds yielding

π2 · · · πr = π′′
2π

′
3 · · · π′

s,

and the argument finishes by induction. ■
The problem of course is how do we know if we are in a ring which has the

property that every irreducible is prime? You may recall you spent time learning
about Euclidean domains, PIDs, and UFDs and the relationship between them.
What you leveraged to produce examples is that Euclidean domains are all PIDs,
and that all PIDs are UFDs, but identifying a PID which was not Euclidean or
a UFD which is not a PID was not immediately obvious. Let’s first collect a few
more tools and then dive into those issues.

3.3 Ideals and quotients
Let R,S be rings. A ring homomorphism φ : R → S is (as usual) a structure-
preserving map, in this case taking sums to sums and products to products. It is
in particular a homomorphism of the additive groups of the rings, so its kernel
is kerφ := {r ∈ R | φ(r) = 0}, and is an ideal of the ring R.

The fundamental homomorphism theorem for rings says that given a ring
homomorphism φ : R → S and any ideal I ⊆ kerφ, there is a well-defined ring
homomorphism φ∗ : R/I → S with φ∗ ◦ π = φ. Here π : R → R/I is the usual
projection. In particular the first isomorphism theorem says

R/ kerφ ∼= Imφ.

Exercise 3.3.1 Let R,S be rings with identities and φ : R → S a (nontrivial)
ring homomorphism.

(a) Show that φ(1R) an idempotent in S, so φ(1R) = 1S or is a zero divisor in
S.

Answer. s := φ(1R) = φ(1R · 1R) = φ(1R)φ(1R) = s2 so φ(1R) is an
idempotent. Rearranging we see that

φ(1R)(φ(1R)− 1S) = 0

from which the conclusion follows.

(b) Conclude that if S is an integral domain, then φ(1R) = 1S.
Let A be a commutative ring with identity, and let A[x] denote the ring of

polynomials in the variable x with coefficients in A.
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Proposition 3.3.1 Let a ∈ A.
• Then every element p ∈ A[x] has an expression of the form p(x) = c0 +
c1(x− a) + · · ·+ cn(x− a)n for uniquely determined ci ∈ A.

• A[x]/(x− a) ∼= A

Proof. Let p(x) = b0+b1x+ · · ·+bnxn be the usual expression for the polynomial.
Consider the polynomial q(x) = p(x+ a). After a bit of algebra, the polynomial
q(x) has the expression q(x) = c0+c1x+· · ·+cnxn, for some (uniquely determined)
ci ∈ A. But then

p(x) = q(x− a) = c0 + c1(x− a) + · · ·+ cn(x− a)n.

For the second statement, consider the evaluation homomorphism eva : A[x] →
A given by p(x) 7→ p(a). It is immediate that eva is a surjective homomorphism.
To compute its kernel, let p ∈ A[x] and write p as p(x) = c0 + c1(x− a) + · · · +
cn(x− a)n. Then

eva(p) = 0 ⇐⇒ p(a) = 0 ⇐⇒ c0 = 0.

It follows that ker eva = (x−a), and the result follows from the first isomorphism
theorem. ■

We would like to understand finitely generated ideals as well as their quotient
rings. Recall a simple but important idea. Suppose that S, T are subsets of a
commutative ring R, and we wish to compare the ideals (S) and (T ). Then

(S) = (T ) ⇐⇒ S ⊆ (T ) and T ⊆ (S),

which follows from the simpler (S) ⊆ (T ) if and only if S ⊂ (T ). Analogous state-
ments hold for groups generated by set or subspaces generated by a collection
of elements. Consider a few examples.

Example 3.3.2 Let f(x) = x− 3 and g(x) = (x− 3)(x− 5) + 7 be polynomials
in Z[x]. Compare the ideal I = (f, g) in Z[x] versus Q[x].

Solution. Often it is useful to replace one set of generators of an ideal, by a
simpler set of generators using the observation above. We claim that in either
ring, Z[x] or Q[x]

I = (f, g) = (f, 7).

We need only check that f, g ∈ (f, 7) and f, 7 ∈ (f, g). But of course g =
f(x− 5) + 7 ∈ (f, 7) and 7 = g − f(x− 5) ∈ (f, g)

So now we simply consider the ideal I = (x − 3, 7). Since 7 ∈ Q× = Q[x]×,
viewed as an ideal in Q[x], I = Q[x].

Viewed as an ideal in Z[x], I is a proper ideal, indeed a maximal ideal, as we
shall show a bit later by proving Z[x]/I = Z[x]/(x− 3, 7) ∼= Z/7Z.

For now, if you wish to prove it is a proper ideal, it suffices to show that 1
cannot be written as h · 7 + h′ · (x− 3) for h, h′ ∈ Z[x]. □
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Example 3.3.3 Every ideal in Z is principal: I = nZ = (n) for some n ∈ Z.
Solution. Every ideal I is a subgroup of the additive group of Z, a cyclic group,
so I = nZ as a group, but this is also an ideal of Z. □
Example 3.3.4 Let n ∈ Z. The ideal I = (n, x) is a proper ideal of Z[x] iff
n 6= ±1.

Solution. If n = ±1, then I contains a unit in Z[x], so I = Z[x]. For the con-
verse, we assume that n 6= ±1 and show that 1 6∈ I. We proceed by contradiction
and suppose that

1 = f · n+ g · x

for some f, g ∈ Z[x].
Notice that g ·x contributes zero to the constant term of f ·n+g ·x no matter

the choice of g, so if a0 is the constant term of f , in order for 1 = f · n+ g · x, it
is necessary that

1 = a0 · n.

But that demands that both a0, n be units in Z[x]× = Z× = {±1} which is not
true by assumption. □

Now we would like to consider quotients of rings and in particular, polynomial
rings, but it is useful to recall a few definitions. First if I, J are two ideals of a
commutative ring R with identity, it is useful to recall the meaning of I + J , IJ ,
and I ∩ J (see Definition 1.5.5).

Definition 3.3.5 Let R be a commutative ring with identity, and P an ideal of
R. Then P is a prime ideal iff

• P is a proper ideal

• For every a, b ∈ R, if ab ∈ P , then either a ∈ P or b ∈ P.

We remark that in a non-commutative ring, a different definition is required:
P is a prime ideal iff P is proper and for any ideals I, J ⊂ R, IJ ⊆ P implies
I ⊆ P or J ⊆ P. If the ring is commutative, this definition is equivalent to the
previous one. ♢
Definition 3.3.6 Let R be a commutative ring with identity, and M an ideal
of R. Then M is a maximal ideal iff

• M is a proper ideal

• Whenever I is an ideal of R with M ⊆ I ⊆ R, then either I =M or R.

♢
Definition 3.3.7 Let R be a commutative ring with identity. Then two ideals
I, J of R are said to be comaximal iff I + J = R. ♢
Example 3.3.8 If M1 6= M2 are maximal ideals in a commutative ring R with
identity, then they are comaximal ideals.



CHAPTER 3. BASIC RESULTS IN RING THEORY 49

Solution. Mi ⊊ M1 +M2 ⊆ R and since the Mi are maximal, M1 +M2 = R.
□

Exercise 3.3.2 Consider the ideals I = (x− 2), J = (x+2) in R[x] with R = Z
or Q.

(a) Show that I, J are comaximal ideals in Q[x], but not in Z[x].

Solution. It is easy to see that 4 ∈ I + J. Since 4 is a unit in Q[x],
I + J = Q[x]. For Z[x], notice that every element of I + J has an even
constant term.

Exercise 3.3.3 Let R be a commutative ring with identity, with I, J ideals in
R.

(a) Show that
(I + J)(I ∩ J) ⊆ IJ ⊆ I ∩ J

Solution. It is clear that IJ ⊂ I ∩ J since I, J are ideals of R. For the
other inclusion, let i ∈ I, j ∈ J, k ∈ I ∩ J . It is enough to check that
(i+ j)k ∈ IJ . Certainly ik ∈ IJ since k ∈ J , and jk ∈ JI since k ∈ I, but
IJ = JI since R is commutative.

(b) Show that if I, J are comaximal ideals, then

IJ = I ∩ J

Solution. Since I + J +R, the above inclusions now read

I ∩ J ⊆ IJ ⊆ I ∩ J .
Recall the Chinese Remainder Theorem for rings.

Theorem 3.3.9 Let R be a commutative ring with identity, and I, J comaximal
ideals. Then

R/IJ = R/(I ∩ J) ∼= R/I ×R/J.
(sketch). From the exercise above we know that IJ = I∩J. Consider the natural
projections

R → R/I ×R/J given by r 7→ (r + I, r + J).

It is immediate to check this is a homomorphism with kernel I ∩ J . The issue
is surjectivity. Since I, J are comaximal, I + J = R, so choose i ∈ I, and j ∈ J
with i+ j = 1. Choose an arbitrary element (a+ I, b+ J) in the codomain, and
put r = bi+ aj. We claim that

r + I = a+ I and r + J = b+ J.

We observe that

r + I = a+ I ⇐⇒ r − a ∈ I ⇐⇒ (bi+ aj)− a ∈ I ⇐⇒ a(j − 1) ∈ I

But i + j = 1, so (j − 1) = i ∈ I. A similar argument shows the element maps
onto b+ J. ■
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Example 3.3.10 Familiar examples include
• If m,n are relatively prime integers in Z, then mZ+ nZ = Z, so

Z/mnZ ∼= Z/mZ× Z/nZ

a result we have used for groups in talking about elementary divisors and
invariant factors.

• From an exercise above and Proposition 3.3.1, you can conclude

Q[x]/(x2 − 4) ∼= Q[x]/(x− 2)×Q[x]/(x+ 2) ∼= Q×Q.

• We still need to work out a more robust analog of the first example for
polynomial rings, but that requires material from the next section.

□
Also recall how to characterize prime and maximal ideals via their induced

quotients.
Proposition 3.3.11 Let R be a commutative ring with identity and let P , M
be proper ideals of R. Then

• P is a prime ideal iff R/P is an integral domain.

• M is a maximal ideal iff R/M is a field. In particular, maximal ideals are
prime.

Example 3.3.12
• (0) is a prime ideal in any integral domain. (0) is a maximal ideal in any

field.

• If n 6= 0, then nZ is a prime ideal in Z iff nZ is a maximal ideal in Z iff
nZ = pZ where p is a prime.

• The principal ideal (x) is a prime ideal in R[x] iff R is an integral domain,
while (x) is a maximal ideal in R[x] iff R is a field.

□
We mention another very useful proposition in dealing with quotients of

polynomial rings. Here is the background. Given a commutative ring R with
identity, fix an element a ∈ R. The natural projection R → R/(a) extends to one
R[x] → R/(a)[x] sending f(x) ∈ R[x] to f(x) ∈ R/(a)[x] by viewing coefficients
of f in R/(a), often stated as reducing them modulo the ideal.

Proposition 3.3.13 Let R be a commutative ring with identity, a ∈ R, and
f(x) ∈ R[x]. Then

R[x]/(f(x), a) ∼= (R/(a))[x]/(f(x)).

Before proving the proposition, we should do an example to motivate what
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appears quite technical.

Example 3.3.14 Let f(x) = x− 3 and g(x) = (x− 3)(x− 5) + 7 in Z[x]. Show
that the ideal I = (f, g) is maximal in Z[x].
Solution. In Example 3.3.2, we showed that I = (f, g) = (f, 7). Now we use
the proposition:

Z[x]/I = Z[x]/(f(x), 7) ∼= (Z/7Z)[x]/(f(x)) = (Z/7Z)[x]/(x− 3) ∼= Z/7Z

the last by Proposition 3.3.1. Since Z[x]/I is a field, Proposition 3.3.11 tells us
that I is maximal in Z[x]. □
Proof of Proposition 3.3.13. Consider the composition of natural surjective
homomorphisms φ:

R[x] → (R/(a))[x] → (R/(a))[x]/(f(x)).

We need only show its kernel is (a, f) to complete the proof by the first iso-
morphism theorem. By walking the elements a, f through the compositions, it is
easy to see that (a, f) ⊆ kerφ. For the reverse, take g(x) = b0+ · · ·+bnxn ∈ R[x].
Then g ∈ kerφ if and only if g ∈ (f(x)).

Write f(x) = c0 + · · · + cmx
m ∈ R[x], and suppose that g(x) = f(x) · h(x),

where h(x) = a0 + · · ·+ adx
d. Then the coefficient of xj in g is

bj =

j∑
k=0

ckaj−k,

or consider the arithmetic in R/(a),

bj + aR =

j∑
k=0

ckaj−k + aR

So if we fix h(x) = a0 + · · · + adx
d ∈ R[x] then bj −

∑j
k=0 ckaj−k is the jth

coefficient of f − gh is in aR. This implies that

g − fh =
n∑

j=0

[bj −
j∑

k=0

ckaj−k]x
j ∈ aR[x],

or g ∈ (a, f) ⊆ R[x]. ■
It is useful to say a few words about polynomial rings, beginning with some

elementary properties.

Proposition 3.3.15 Let R be an integral domain, and p, q ∈ R[x] \ {0}. Then
• deg(pq) = deg(p) + deg(q).

• R[x]× = R×.
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• R[x] is an integral domain.
Polynomial rings in several variables play a fundamental role in algebraic

geometry, so we should say a few words about the different ways to view elements
of those rings. For example, we have the natural corollary to the above result:

Corollary 3.3.16 If R is an integral domain, then so is R[x1, . . . , xn].
The idea behind the proof of the above corollary involves how to view the

polynomial ring and its elements. We examine this in more detail below, but
briefly we want to think of the polynomial ring, R[x1, . . . , xn], in n variables with
coefficients in R as the polynomial ring in one variable, S[xn], with coefficients in
S = R[x1, . . . , xn−1]. Given this view, the proof of the corollary is by induction
on n with the base case being Proposition 3.3.15.

The comments above apply to polynomial rings in any number of variables,
but for simplicity of exposition, we consider the case of two variables.

One way to view elements of R[x, y] is as finite sums of monomials xiyj with
coefficients aij ∈ R :

p(x, y) =
∑
i,j

aijx
iyj.

Alternatively, we can think of p ∈ R[x, y] as an element of (R[x])[y], so that
we could write

p(x, y) =
∑
i,j

aijx
iyj =

∑
k

ϕk(x)y
k = ϕ0(x) + ϕ1(x)y + · · ·+ ϕn(x)y

n,

where the “coefficients”, ϕk(x) ∈ R[x].

Example 3.3.17 Different views of a polynomial in Z[x, y]:

Z[x, y] : 2 + 7y + 4xy + 3x5y

Z[x][y] : 2 + (7 + 4x+ 3x5)y

Z[y][x] : (2 + 7y) + (4y)x+ (3y)x5

We see that in the second representation, the polynomial is simply linear in y.
□

Changing the perspective on how to view a polynomial affects both your in-
tuition as well as the tools you might bring to bear to understand the polynomial.
For example, we have some inkling on how to factor polynomials in one variable,
but have almost no intuition when there is more than one variable.
Example 3.3.18 Viewed as polynomials in Q[x], we immediately know that
x2 − 4 factors non-trivially, but that x2 + 4 does not (is irreducible).

Similarly, we see that x2 + 4y − y2 − 1 factors not by viewing it in Q[x, y],
but thinking of it as analogous to x2 − 4 in Q[y][x] as

x2 − (y − 1)2 = (x− (y − 1))(x+ (y − 1)).

□
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3.4 Euclidean domains, PIDs, UFDs and all that
jazz

You may recall from Theorem 3.2.7, that a Noetherian integral domain in which
every irreducible is prime enjoys unique factorization, but that determining those
properties seems a formidable task. So we consider rings with stronger properties
which imply those conditions, and also look for ways in which to build new UFDs
from old ones.

The definition of a Euclidean domain varies a bit from source to source,
but the main takeaway is that it is an integral domain that admits a division
algorithm. The division algorithm can be leveraged to produce a Euclidean
algorithm, and hence the notion of a greatest common divisor. We shall take
the definition:
Definition 3.4.1 An integral domain R is a Euclidean domain if it is equipped
with a function (norm) d : R \ {0} → Z≥0 so that given two elements a, b ∈ R
with b 6= 0, there exist q, r ∈ R with a = bq + r, and either r = 0 or d(r) < d(b).

♢
Example 3.4.2 The integers Z with the absolute value function d(a) = |a| is a
Euclidean domain. □
Example 3.4.3 If k is a field, then the polynomial ring k[x] with the degree
function as the function d is a Euclidean domain. □
Definition 3.4.4 An integral domain R is a PID (principal ideal domain) if
every ideal in R is principal. An integral domain R is a UFD (unique factoriza-
tion domain) if it satisfies the conclusion of Theorem 3.2.7. ♢

The following theorem presents the familiar relationship among these notions.
Theorem 3.4.5 Every Euclidean domain is a PID, and every PID is a UFD.

The proof of this theorem is standard, but we want to pull out a couple of
propositions which are of independent value.
Proposition 3.4.6 In an integral domain, every prime element is irreducible.
In an UFD, every irreducible is prime.
Proof. We first recall that prime and irreducible elements are nonzero and non-
units. Let R be an integral domain, and π ∈ R a prime element. To show π is
irreducible, suppose that π = ab. Then of course π | ab and since π is prime, it
divides a or b, say a = πa0. Then

π = ab = πa0b,

so
π(a0b− 1) = 0.

Since R is an integral domain and π 6= 0, we have a0b = 1 which implies b ∈ R×.
Let R be a UFD, and and π ∈ R a irreducible element. To show that π is

prime, suppose that π | ab. If ab = 0, then at least one of a or b equals zero,
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and since π | 0 we are done in this case, so suppose that ab 6= 0. Since π | ab, we
know that ab is not a unit so ab can be factored into irreducibles:

ab = π1 · · · πr · π′
1 · · · π′

s

with πi | a, π′
j | b and with the possibility that r or s could be zero (though not

both). Since π | ab, unique factorization says that π is an associate of some πi
or π′

j implying π | a or π | b. ■

Proposition 3.4.7 In a PID, irreducibles generate maximal ideals.
Proof. Let π be an irreducible in the PID R, and suppose that

(π) ⊆ I ⊆ R.

Since R is a PID, I = (r) for some r ∈ R, and the inclusion (π) ⊆ (r) implies that
π = rs for some s ∈ R. Since π is irreducible, either r or s is a unit. If r is the
unit, then I = R. If s is the unit, then r and π are associates, so I = (r) = (π).
Thus (π) is maximal ideal. ■
Proposition 3.4.8 In any integral domain, the principal ideal (π) is a prime
ideal if and only if π is a prime element.
Proof. Suppose that π is a prime element, so in particular, π is nonzero and a
non-unit. Thus P = (π) is a proper ideal. Suppose that ab ∈ P = (π). Then
ab = πc for some c ∈ R. By Proposition 3.4.6, π is irreducible, so occurs in the
factorization of a or b. But that means that a ∈ P or b ∈ P.

Conversely, suppose that P = (π) is a prime ideal. To show that π is a prime
element, suppose that π | ab. Then ab ∈ P = (π). Since P is a prime ideal, either
a or b is in P = (π), meaning π | a or π | b. ■
Proof of Theorem 3.4.5. Suppose that R is a Euclidean domain, and let I be an
ideal of R. Without loss, be may assume that I 6= (0). Using the norm, d, with
which the Euclidean domain is equipped, choose a nonzero element b ∈ I so that
d(b) is minimal. We claim that I = (b). Of course, (b) ⊆ I, so choose a nonzero
element a ∈ I. Then we may write a = bq + r with either r = 0 or d(r) < d(b).
As b was chosen to have d(b) minimal, we must have r = 0 which implies that
a ∈ (b). Thus I = (b), and R is a PID.

Suppose that R is a PID. By Theorem 3.2.4, R is a Noetherian integral
domain. Let π be an irreducible element in R. By Proposition 3.4.7, the ideal
(π) is a maximal ideal, hence by Proposition 3.3.11 a prime ideal, and finally
Proposition 3.4.8 says that π is a prime element. That R is a UFD now follows
from Theorem 3.2.7. ■

It is certainly easiest to recognize a ring as a PID by noting that it is Eu-
clidean, and that it has unique factorization since it is a PID. But there are
counterexamples which show that these classes of rings are distinct.

The harder of the two is to produce PIDs which are not Euclidean. The
following are examples from algebraic number theory:

R = Z[
1 +

√
−d

2
] where d = 19, 43, 67, 163
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and the proofs are all similar in nature (and in standard references), but philo-
sophically, the challenge in showing that something is not Euclidean is showing
that there is no choice of norm d which satisfies the required division algorithm
property, and not simply that some natural function fails.

Adding to the challenge of finding counter examples is that no polynomial
ring A[x] will work for we have the following proposition.

Proposition 3.4.9 Let A be a commutative ring with identity, and assume that
the polynomial ring A[x] is a PID. Then A is a field, so that A[x] is a Euclidean
domain.
Proof. Since A[x] is an integral domain, so is A. Since by Proposition 3.3.1,
A[x]/(x) ∼= A, we infer by Proposition 3.3.11, that the ideal (x) is a prime ideal
so that by Proposition 3.4.8, the element x is a prime, hence irreducible (Propo-
sition 3.4.6) element of the ring. However, by Proposition 3.4.7, irreducibles in
a PID generate maximal ideals, which once again by Proposition 3.3.11 shows
that A[x]/(x) ∼= A is a field giving us that A[x] is a Euclidean domain. ■

The following theorem is of great utility in producing new UFDs from old
ones.
Theorem 3.4.10 Let R be a UFD. Then the polynomial ring R[x] is a UFD
(Main idea). The proof of this result is not intrinsically difficult, but it does take
some time and care to develop. The key is that associated to any integral domain
(e.g., Z) is its field of fractions (e.g., Q). So associated to the UFD A is a field
K which contains an isomorphic copy of A. Since K[x] is a Euclidean domain,
it is also a UFD and it is natural to compare factorizations of a polynomial with
coefficients in A in the rings A[x] versus K[x].

The crucial result is Gauss’s lemma which discusses how irreducibility
changes as one views factorizations in A[x] versus K[x]. For example, the poly-
nomial p(x) = 2x is irreducible in Q[x], but reducible in Z[x]. Fortunately this
example is as bad as things get and it is straightforward to address. ■
Remark 3.4.11 We now verify that it follows from Theorem 3.4.10 that both
Z[x] and Q[x, y] are UFDs.

Since Z is a Euclidean domain, it is automatically a PID and UFD by Theo-
rem 3.4.5, so that Z[x] is a UFD is immediate from Theorem 3.4.10.

Similarly, we know that Q[x] is a Euclidean domain, hence a UFD, so that
Q[x, y] = Q[x][y] is a UFD.

It then follows from the exercise below that Z[x] and Q[x, y] are not PIDs,
providing our examples of UFDs which are not PIDs.
Exercise 3.4.1

(a) Show that the ideal (2, x) is not principal in Z[x].

(b) Show that the ideal (x, y) is not principal in Q[x, y].

Remark 3.4.12 Something to ponder. Theorem 3.4.10 tells us that since
Z and Q are UFDs, so are Z[x],Q[x],Z[x, y],Q[x, y], as well as many others.
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Suppose that p(x) ∈ Z[x]. The question to consider is how does irreducibility
of p change as we view in in these larger domains. For example,

• If p is irreducible in Z[x], is it irreducible in Q[x]?

• If p is irreducible in Q[x], is it irreducible in Z[x]?

• If p is irreducible in Z[x], is it irreducible in Z[x, y]?

Consider why the last question is important. We know that Z[x] and Z[x, y]
are both UFDs and we can view Z[x] ⊂ Z[x, y]. Are irreducibles in Z[x] still
irreducible in Z[x, y], or are we forced to start from scratch in finding irreducibles
in this larger domain?

3.5 Identifying irreducibles
In previous sections we have discussed the notion of unique factorization of
elements into a product of irreducibles, but in no context other that the integers,
Z, do we have much experience identifying irreducibles. So we now take some
time to explore tests for (ir)reducibility in polynomial rings R[x], where R is a
UFD.

To get very far, we really need to leverage the notion of a greatest common
divisor. In Z, this is a familiar notion based upon factorization and resulting in
a unique positive integer when finding the gcd of nonzero integers. For example,
we know that gcd(12,−30) = +6, where somehow that sign of the integers does
not matter. Of course we recognize this as a matter of units which can be far
more extensive in general rings, so we take an approach that defines a gcd in a
more general setting.
Definition 3.5.1 Let R be an integral domain, and a, b ∈ R, not both zero. A
greatest common divisor of a, b is an element d ∈ R satisfying

• d | a and d | b (i.e., d is a common divisor)

• If d′ | a and d′ | b, then d′ | d, meaning any other common divisor divides
d, making d the greatest in terms of divisibility.

♢
Remark 3.5.2 It is an easy exercise that in an integral domain R, any two gcds
d, d′ of elements a, b differ by a unit, that is d = d′ · u for some u ∈ R×. Since
Z has only two units, ±1, this explains why in Z, it is safe simply to choose the
positive gcd.
Remark 3.5.3 Also in the integers, unless someone asked you to compute the
gcd of large numbers, your most likely method of finding a gcd was to factor both
numbers, and determine the largest power of each prime dividing both numbers.

But as it turns out, factoring in Z (and in other realms) is very hard, so hard
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that the security of certain cryptographic systems depends on that difficulty, so
while in theory, it is a great way to write down a gcd, for practical purposes, it
is not very good at all. We review how gcds manifest themselves in Euclidean
domains, PIDs, and UFDs.
Exercise 3.5.1 Greatest common divisors are guaranteed to exist in any UFD,
but how they manifest themselves differs depending on whether the UFD has
any more robust properties.

(a) Let R be a Euclidean domain with norm d : R \ {0} → Z≥0. The division
algorithm on R gives rise to a Euclidean algorithm. Show that just as in the
case of Z, the last nonzero remainder from the Euclidean algorithm is a gcd
of the given elements. Also note that backtracking through the Euclidean
algorithm allows you to write gcd(a, b) = ax+ by for some x, y ∈ R.

Hint. Just as in Z, show that if a = bq + r, then

gcd(a, b) = gcd(b, r)

where by gcd(a, b) we mean any greatest common divisor.

(b) Let R be a PID, and a, b ∈ R, not both zero. Since the ideal (a, b) is a
principal ideal, say

(d) = (a, b),
show that d is a gcd of a, b.

Hint. Observe that if the ideal (a, b) = (d), then d is a common divisor
of a, b. Moreover, recall that

(a, b) = {ax+ by | x, y ∈ R},

so if (d) = (a, b), then d = ax0 + by0 for some x0, y0 ∈ R. Use that to show
that d satisfies the other requirement of being a gcd.

(c) Let R be a UFD, and a, b ∈ R, not both zero. Show how to use unique
factorization to extract a gcd. In particular, after dispensing with the case
that one of a or b may be zero, both a and b can be factored with the same
set of irreducibles (up to units) if we allow exponents to be zero when an
irreducible divides only one of a or b.

We focus now on polynomial rings, characterizing irreducibles in them and
applications. One difficulty that arises relates to the context in which we view
a polynomial. We posed a number of interesting questions in Remark 3.4.12
surrounding the universe in which we view things. We now take some time to
explore them.

In thinking about unique factorization and irreducibles, units invariably in-
sert themselves into the picture. We stated in Proposition 3.3.15 that for an
integral domain R, the unit group of the polynomial ring is the same as the unit
group of the coefficient ring (R[x]× = R×). So when R is a field, every nonzero
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constant is a unit, so irreducible polynomials with coefficients in a field must
have degree at least one. For rings such as Z, the unit group is much smaller
and polynomials of degree zero can also be irreducible.

Because things are a bit simpler, we begin with polynomials with coefficients
in a field F. Again by Proposition 3.3.15, any polynomial of degree one in F [x]
must be irreducible. As we increase the degree, and factor a polynomial, irre-
ducible factors of degree one correspond to roots of the given polynomial. Recall
the theorem:
Theorem 3.5.4 Roots and linear factors. Let F be a field and p ∈ F [x] a
non-constant polynomial. Then (x− a) | p if and only if p(a) = 0.

(sketch). Apply the division algorithm in F [x], dividing (x − a) into p(x), and
use the evaluation homomorphism at a on the resulting equation. ■

It follows by a degree argument that for polynomials over a field, a polynomial
of degree 2 or 3 is irreducible if and only if it has no roots. Since finding roots
is of some interest, we remind the reader of the rational root test.
Theorem 3.5.5 Rational Root Test. Let R be a UFD and let K be its field
of fractions (e.g., R = Z and K = Q). Let p(x) = anx

n + · · ·+ a1x+ a0 ∈ R[x].
Let r, s ∈ R with gcd(r, s) = 1. The element α = r/s ∈ K is a (rational) root
of p only if r | a0 and s | an. In particular, if p is monic, then its only possible
rational roots belong to R.
Proof. Assume that α is a root of p, and evaluate p at α and clear the resulting
denominators to produce the equation:

anr
n + an−1r

n−1s+ · · ·+ a1rs
n−1 + a0s

n = 0.

If we move one of the end terms to the other side of the equation, we acquire
two equations

anr
n =− (an−1r

n−1s+ · · ·+ a1rs
n−1 + a0s

n)

a0s
n =− (anr

n + an−1r
n−1s+ · · ·+ a1rs

n−1)

By inspection of those equations,

s | anrn and r | a0sn.

However as gcd(r, s) = 1, we must have r | a0 and s | an. ■
We are often in the situation of the previous theorem, having a polynomial

with coefficients in a UFD R and wanting to determine whether it is irreducible.
Viewing the same polynomial in K[x], where K is the field of fractions, affords us
more tools since K[x] is a Euclidean domain. Thus it is important to understand
the relationship of irreducibles in R[x] versus K[x].

This need is amplified as it provides an essential tool to prove Theorem 3.4.10.
This relationship is completely described in Gauss’s lemma. To state the
theorem, we need a definition.
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Definition 3.5.6 Let R be a UFD, and p(x) = a0 + a1x + · · · + anx
n ∈ R[x].

We say that p is a primitive polynomial if gcd(a0, . . . , an) = 1, that is, there is
no common divisor of all the coefficients except for units. It is immediate that
for any p ∈ R[x] we can write p = C(p)p0 where p0 is primitive and C(p) ∈ R;
the constant C(p) is usually referred to as the content of p. ♢
Theorem 3.5.7 Gauss’s lemma. Let R be a UFD, and K its field of fractions.
Let p(x) = a0 + · · · + anx

n be a primitive polynomial in R[x]. Suppose that p
factors in K[x] as the product of non-constant polynomials p(x) = F (X)G(X).
Then there exists α, β ∈ K× so that

f = αF ∈ R[x], g = βG ∈ R[x], and p = fg.

Remark 3.5.8 In some texts, Gauss’s lemma is phrased as the product of
two primitive polynomials is primitive which implies that for two polynomials
p, q ∈ R[x], C(pq) = C(p)C(q), the content is a multiplicative function.

This version of Gauss’s lemma is necessary to prove the one above.
In the above notation, the following corollary clarifies the relationship be-

tween irreducibility of a polynomial in R[x] versus K[x].

Corollary 3.5.9 Let R be a UFD, K its field of fractions, and p ∈ R[x]. Then
p is irreducible in R[x] if and only if p is primitive (in R[x]), and irreducible in
K[x].

Proof. If p is irreducible in R[x], then it is necessarily primitive. If it were
reducible inK[x], then p = FG for non-constant polynomials inK[x]. By Gauss’s
lemma, there exists α, β ∈ K× so that

f = αF ∈ R[x], g = βG ∈ R[x], and p = fg.

Since deg f, deg g ≥ 1, this would imply p is reducible in R[x], a contradiction.
Conversely, suppose that p is primitive and irreducible in K[x]. If it were

reducible in R[x], then p = fg for f, g ∈ R[x] with deg f, deg g ≥ 1 since p is
primitive. Then neither f nor g are units in K[x], so the factorization shows p
is reducible in K[x], a contradiction. ■

So now we need some theorems which help us actually determine whether
a polynomial is irreducible. Remember we have the rational root test which
is useful for pulling off linear factors via Theorem 3.5.4, and can help resolve
irreducibility of polynomials defined over a field of degree at most 3. However,
even in the case of small degree, it may not be the tool of choice.

Example 3.5.10 Consider the polynomial p(x) = x3 + 82x2 + 3456782 ∈ Z[x].
The rational root test would have us check p(r) for all r | 3456782. As it turns
out, there are not that many divisors, but you would have to find them, and
that looks painful. □

The following is a very general criterion, but some luck is involved in its use.
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Theorem 3.5.11 Reduction criterion. Let R be an integral domain, p ∈ R[x]
a monic, non-constant polynomial. Let I be any proper ideal in R, and consider
the reduction map R[x] → (R/I)[x], denoted p 7→ p. If p cannot be factored into
the product of two non-constant polynomials, then p is irreducible in R[x].
Proof. The proof is by contradiction. Suppose that p cannot be factored into
the product of two non-constant polynomials, but p is reducible in R[x], say
p = fg. Since p is monic, the leading coefficients of f, g must be units, which
forces deg f, deg g ≥ 1 to provide a witness to reducibility. Set

f(x) = amx
m + · · ·+ a0 and g(x) = bnx

n + · · ·+ b0.

As we noted, am, bn ∈ R×.
Consider the reduction modulo I :

p = fg 7→ p = fg = f · g ∈ (R/I)[x].

We note that

f = (am + I)xm + · · ·+ (a0 + I) and g = (bn + I)xn + · · ·+ (b0 + I).

Since am, bn ∈ R× and I is a proper ideal, we see am + I 6= 0 + I and bn + I 6=
0 + I, so deg f, deg g ≥ 1 which gives a factorization of p into two non-constant
polynomials, a contradiction. ■
Example 3.5.12 Let’s try the reduction criterion on the polynomial p(x) =
x3 + 82x2 + 3456782 ∈ Z[x] on which we chose not to use the root test.

As a first guess, let I = 2Z. But then p = x3 = x · x2 which does not fit the
hypotheses of the criterion, so we try again.

Let I = 3Z. Then p = x3 + x + 2 ∈ Z/3Z[x]. It is easy to check that p has
no roots in Z/3Z and since its degree is 3 and Z/3Z is a field, we conclude p is
irreducible over Z/3Z, and so of course cannot be written as the product of two
non-constant polynomials. By the reduction criterion, p(x) = x3+82x2+3456782
is irreducible in Z[x]. □

The reduction criterion is surprisingly powerful. Consider the following ex-
ample of a polynomial in two variables.

Example 3.5.13 Let p(x, y) = −1 + x− y + x2y + y3 ∈ Q[x, y]. We can view p
as

p = y3 + (x2 − 1)y + (x− 1) ∈ Q[x][y].
Let R = Q[x]. So we see that p is monic in R[y]. Let I = (x) ⊊ R. Now
R/I = Q[x]/(x) ∼= Q via the evaluation map x 7→ 0 (see Proposition 3.3.1), so
p ∈ (R/I)[y] ∼= Q[y] is given by setting x = 0, so

p = y3 − y − 1 ∈ Q[y].
Since the degree is 3, p will be irreducible if it has no roots, and the root test
tells us the only possible roots are ±1, neither of which are roots. The reduction
criterion now says that p is irreducible in Q[x, y].
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We soon give a different proof that this polynomial is irreducible using Eisen-
stein’s criterion. □
Theorem 3.5.14 Eisenstein’s criterion. Let R be a UFD and p = anx

n +
· · ·+a0 ∈ R[x] a primitive polynomial. Let π ∈ R be an irreducible (hence prime
(Proposition 3.4.6)), with

π | ai, i = 0 . . . , n− 1, π ∤ an, and π2 ∤ a0.

Then p is irreducible in R[x].

Proof. We proceed by contradiction and assume that p is reducible in R[x]. Since
p is primitive, this means

p = fg where f, g ∈ R[x], with deg f, deg g ≥ 1,

say
f = b0 + · · ·+ brx

r and g = c0 + · · ·+ csx
s.

Recalling that π is a prime element, then since π | a0 = b0c0, it must divide one
of b0 or c0, but π2 ∤ a0 says it can divide precisely one, say π | b0 and π ∤ c0. Also
since π ∤ an = brcs, we see π ∤ br and π ∤ cs.

Since π | c0, but π ∤ cs, let ℓ be the smallest index so that π ∤ cℓ. So

0 < ℓ ≤ s < n and aℓ = bℓc0 + bℓ−1c1 + · · ·+ b0cℓ.

Since ℓ < n, we know that π | aℓ, and by the choice of ℓ, π | c0, . . . , cℓ−1, which
implies π | b0cℓ. But π prime then says π | b0 or π | cℓ, a contradiction. ■
Example 3.5.15 There exist irreducible polynomials of all degrees n ≥ 1 in
Z[x].
Solution. Let p be a prime in Z. Then by Eisenstein, xn ± p is irreducible in
Z[x]. □

Example 3.5.16 Show that x907 + 27x3 + 15x2 − 81x+ 6 is irreducible in Z[x].
Solution. It is irreducible by Eisenstein with p = 3. □
Example 3.5.17 Show that p = −1 + x− y + x2y + y3 is irreducible in Q[x, y].

Solution. We looked at this polynomial when considering the reduction cri-
terion. So here R = Q[x] is our UFD and we write p as an element of R[y]
as

p = y3 + (x2 − 1)y + (x− 1).

Moreover, π = (x− 1) ∈ R = Q[x] is an irreducible. We check that Eisenstein’s
criterion applies, and we are done. □

Given an integral domain R, it is often possible to more easily check the
irreducibility of a polynomial in R[x] by first applying an isomorphism to the
ring. That is, if φ : R[x] → R[x] is a ring isomorphism, we know that p ∈ R[x]
is irreducible if and only if φ(p) is irreducible in R[x] = φ(R[x]). A simple
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isomorphism is given by f(x) 7→ f(x ± a) for any a ∈ R, so f(x) is irreducible
iff f(x± a) is irreducible.

Example 3.5.18 Let p be a prime in Z. Then

f(x) = 1 + x+ x2 + · · ·+ xp−1 =
xp − 1

x− 1

is irreducible in Z[x].
Solution. Let g(x) = f(x+ 1). Then f is irreducible iff g is. We see that

g(x) =f(x+ 1) =
(x+ 1)p − 1

(x+ 1)− 1

=
xp +

(
p
1

)
xp−1 + · · ·+

(
p

p−1

)
x+ 1− 1

x

=xp−1 +

(
p

1

)
xp−2 + · · ·+

(
p

p− 1

)
which is irreducible in Z[x] using Eisenstein with the prime p since p |

(
p
k

)
for

1 ≤ k ≤ p− 1 and
(

p
p−1

)
= p. □

3.6 Applications
If we consider the polynomial p(x) = x7 + 12x3 + 2x + 6 ∈ Z[x], we know it is
irreducible by Eisenstein’s criterion (p = 2), so in particular, p has no roots in
Q. Where are its roots? Is there a smallest field containing all the roots of p?

Perhaps this seems an uninteresting question because somewhere in your
distant past, you learned that all the roots of p must be contained in C since C
is algebraically closed. Well, for starters, the complex numbers is an enormous
field (certainly uncountable), and are you really all that comfortable with how
to construct it?

In fact all the roots of all the polynomials in Q[x] are contained in a subfield
which is countable, and the smallest field containing the roots of any given
polynomial is only a finite-dimensional vector space over the rationals.

Now add to that the following question. Consider the polynomial x2 − 3 ∈
(Z/5Z)[x]. It is irreducible since it has degree two and no roots in the field Z/5Z.
Is there a field containing its roots? Certainly the real and complex numbers are
of no help here since this field has characteristic 5. So the ability to construct
such a field is really significant.

If K is a field and p ∈ K[x] is irreducible, we know that (p) is a maximal
ideal, and hence K[x]/(p) is a field. We shall show that this is a field containing
an isomorphic copy of K and a root of the polynomial p.

Let’s consider a motivating example. We want to construct a field K
containing Q which also contains a root of the polynomial p(x) = x7 − 10.
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Eisenstein’s criterion (with p = 2, 5) assures us this polynomial is irreducible in
Q[x], so in particular has no roots in Q. We claim that Q[x]/(x7 − 10) is such a
field K.

Now of course since this is motivation, we shall acknowledge the existence
of the real and complex numbers, and let 7

√
10 denote any such root in C. The

polynomial has one real and six complex roots. Consider the evaluation map

φ : Q[x] → Q[
7
√
10]

given by φ(f(x)) = f( 7
√
10), and the figure below.

Q[x] Q[ 7
√
10] ⊂ C

Q[x]/(x7 − 10)

φ

π
φ∗

Figure 3.6.1 A field containing a root of x7 − 10

The map φ is a surjective homomorphism with image Q[ 7
√
10] which is cer-

tainly an integral domain as a subring of the field C. Moreover, it is clear that
the ideal (x7 − 10) ⊆ kerφ, but also we know (x7 − 10) is a maximal ideal since
x7 − 10 is irreducible in the PID Q[x] (see Proposition 3.4.7), and since φ is not
the zero homomorphism, it follows that kerφ = (x7 − 10). Thus we conclude

Q[x]/(x7 − 10) ∼= Q[
7
√
10].

This means that

• Q[ 7
√
10] is a field

• Under the isomorphism φ∗, the element α = x+(x7−10) ∈ Q[x]/(x7−10)
corresponds to 7

√
10 ∈ Q[ 7

√
10]. But what does that really mean?

First, let’s understand how Q is a subfield of Q[x]/(x7 − 10). Consider the
map

Q → Q[x] → Q[x]/(x7 − 10)

which takes a ∈ Q to the coset a+ (x7 − 10). In particular

10 7→ the coset 10 + (x7 − 10).

So what is α7 − 10 ∈ Q[x]/(x7 − 10), meaning what is α7 − [10 + (x7 − 10)]?
For compact notation, let I = (x7 − 10).

α7 − [10 + I] = [x+ I]7 − [10 + I] = [x7 + I]− [10 + I] = [x7 − 10] + I = 0 + I

Which says the element α = x+ I ∈ K = Q[x]/I is the seventh root of 10.



CHAPTER 3. BASIC RESULTS IN RING THEORY 64

Remark 3.6.2 The example above is entirely representative of the general situ-
ation. If F is any field, and p ∈ F [x] is irreducible, then K := F [x]/(p) is a field
containing an isomorphic copy of F and a root α = x+(p(x)) of the polynomial
p, and to ease the notation, we generally denote the field K not as the quotient,
but as K = F (α) which denotes the smallest field containing (an isomorphic
copy of) F and the root α.

When first seeing this, one is probably more in their comfort zone seeing
things like Q(

√
2) or Q( 7

√
10), but when you think harder, if the polynomial is

something like p(x) = x7+12x3+2x+6 which is irreducible in Q[x], what better
notation would there be than simply to write Q(α), where α is some root of p.
The point of the construction is that we know that we can construct such a
field and an appropriate root.
Remark 3.6.3 One might have noticed that in the example of the construction,
the notation Q[ 7

√
10] (square brackets) was used instead of the later notation

such as Q(
√
2) (parentheses).

There is a distinction between the notations F [α] (the smallest ring contain-
ing F and α) in contrast to F (α) (the smallest field containing F and α) which
involves a discussion of whether α is algebraic or transcendental over F , but
in the cases above they are equal.

There is however a useful observation to be made. First we observed that
F [α] ∼= F [x]/(p) was a field since (p) is maximal, so that F [α] actually equals
F (α), the smallest field containing F and α.

The beauty of knowing that F [α] is a field is that every element of the field
can be written as a0 + a1α+ · · ·+ anα

n for some n and ai ∈ F. In particular, an
element like 1/α has such a representation!

We conclude this section on applications by giving a characterization of F [α]
when α is a root of some irreducible polynomial p with coefficients in F.

Theorem 3.6.4 Let F be a field and p ∈ F [x] an irreducible polynomial of degree
d. Then F [x]/(p) is a field which as a vector space over F has dimension d with
basis {1, x, . . . , xd−1}. Here, we use the notation xj = xj + (p).

That means that when we write F [α] ∼= F [x]/(p), every element of the field
F [α] has a representation as a0 + a1α + · · ·+ ad−1α

d−1 for uniquely determined
ai ∈ F.
Proof. By the division algorithm, every element f(x) ∈ F [x] can be written as

f(x) = p(x)q(x) + r(x)

where either r = 0 or deg r < deg p = d. This means that f(x)+(p) = r(x)+(p).
Thus it is clear that {1, x, . . . , xd−1} spans F [x]/(p) as a vector space over F.

To show independence, suppose that

a0 + a1x+ · · ·+ ad−1x
d−1 = 0 in F [x]/(p).

This would imply that

a0 + a1x+ · · ·+ ad−1x
d−1 ∈ (p).
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But as deg p = d, the only way that could happen is if all the coefficients ai = 0.
This proves independence. ■



Chapter 4

Definitions

Here we accumulate basic definitions and examples from a standard first course
in abstract algebra.

4.1 Basic Definitions
Listed in alphabetical order.

Definition 4.1.1 Two elements a, b in a ring (with identity) R are called asso-
ciates if a = ubv for some units u, v in R. In a commutative ring, we can simply
write a = bv. ♢
Definition 4.1.2 Let R be a commutative ring with identity. Then two ideals
I, J of R are said to be comaximal iff I + J = R. ♢
Definition 4.1.3 Let X be a non-empty set. A relation on X is a subset
R ⊆ X × X, that is a collection of ordered pairs. Often instead of saying
(x, y) ∈ R, write x ∼ y and say x is related to y.

An equivalence relation on X is a relation which satisfies three properties:

• x ∼ x (i.e., (x, x) ∈ R) for all x ∈ X. This is called the reflexive property
of the relation.

• If x ∼ y, then y ∼ x, that is, whenever the ordered pair (x, y) ∈ R, then
also (y, x) ∈ R. This is called the symmetric property of the relation.

• If x ∼ y and y ∼ z, then x ∼ z, that is, if (x, y), (y, z) ∈ R, then so it
(x, z). This is called the transitive property of the relation.

♢
Definition 4.1.4 An integral domain R is a Euclidean domain if it is equipped
with a function (norm) d : R \ {0} → Z≥0 so that given two elements a, b ∈ R
with b 6= 0, there exist q, r ∈ R with a = bq + r, and either r = 0 or d(r) < d(b).

♢

66



CHAPTER 4. DEFINITIONS 67

Definition 4.1.5 Let G be a group, and x ∈ G. Any positive integer n for
which xn = e is called an exponent for the element; the smallest exponent is
called its order. The order may be infinite.

If there is a positive integer n so that xn = e for every x ∈ G, then n is called
an exponent for the group. ♢
Definition 4.1.6 A group is a nonempty set G with a binary operation ∗
satisfying the properties:

• G is closed under the operation, that is for a, b ∈ G we have a ∗ b ∈ G.

• ∗ is an associative operation.

• There exists an identity element, that is there exists an element e ∈ G,
so that e ∗ g = g ∗ e = g for all g ∈ G.

• Every element has an inverse, that is, for every g ∈ G, there exists an
h ∈ G with g ∗ h = h ∗ g = e. One shows that the inverse of an element is
unique, so we denote the inverse of g by g−1.

♢
Definition 4.1.7 Let R be an integral domain, and a, b ∈ R, not both zero. A
greatest common divisor of a, b is an element d ∈ R satisfying

• d | a and d | b (i.e., d is a common divisor)

• If d′ | a and d′ | b, then d′ | d, meaning any other common divisor divides
d, making d the greatest in terms of divisibility.

♢
Definition 4.1.8 Let R be a ring. A subset I ⊆ R is called an ideal if I is an
additive subgroup of R, with the property that R · I ⊆ I and I · R ⊂ I. This is
also called a two-sided ideal. There are also left and right ideals in which only
one condition holds. Of course in a commutative ring, all ideals are two-sided.

Recall that the property of being a (two-sided) ideal is precisely the condition
required to make the quotient R/I a ring with well-defined operations on the
cosets. ♢
Definition 4.1.9 Let R be a ring. An element s ∈ R is an idempotent if
s2 = s. ♢
Definition 4.1.10 A function f : X → Y between sets X and Y is injective if
for every x, x′ ∈ X, f(x) = f(x′) implies x = x′. ♢
Definition 4.1.11 Let F denote the field of real or complex numbers. For
z = a + bi ∈ C (a, b ∈ R and i2 = −1), we have the notion of the complex
conjugate of z, denoted z = a − bi. Note that when z ∈ R, that is z = a =
a+0i ∈ C, we have z = z. The magnitude (norm, absolutevalue) of z = a+ bi
is |z| =

√
a2 + b2.
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Let V be a vector space over the field F. An inner product is a function:

〈·, ·〉 : V × V → F

so that for all u, v, w ∈ V and λ ∈ F :

1. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉

2. 〈λv, w〉 = λ〈v, w〉

3. 〈v, w〉 = 〈w, v〉, where the bar denotes complex conjugate.

4. 〈v, v〉 is a positive real number for all v 6= 0.

♢
Definition 4.1.12 An inner product space is a vector space V defined over a
field F = R or C to which is associated an inner product. If F = R, V is called
a real inner product space, and if F = C, then V is called a complex inner
product space. ♢
Definition 4.1.13 Let R be a commutative ring with identity. An element
π ∈ R is said to be irreducible if π 6= 0, π 6∈ R×, and whenever we write
π = ab, either a or b is a unit in R. ♢
Definition 4.1.14 The Kronecker delta is defined by

δij =

{
1 if i = j

0 otherwise.

♢
Definition 4.1.15 Let R be a commutative ring with identity, and M an ideal
of R. Then M is a maximal ideal iff

• M is a proper ideal

• Whenever I is an ideal of R with M ⊆ I ⊆ R, then either I =M or R.

♢
Definition 4.1.16 Let G be a group and H a subgroup of G. The following
conditions are equivalent and define what it means for H normal subgroup of
G.

• gHg−1 = H for all g ∈ G

• gH = Hg for all g ∈ G

• gHg−1 ⊆ H for all g ∈ G

See Proposition 1.3.6 for a proof of their equivalence. ♢
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Definition 4.1.17 Let G be a group and H a subgroup of G. The normalizer
of H in G is

NG(H) = {g ∈ G | gHg−1 = H}.
In particular, K is a normal subgroup of G iff NG(K) = G. ♢
Definition 4.1.18 Let X be a non-empty set. A partition of X is a collection
P = {Xi | i ∈ I} of nonempty subsets so that

• X =
⋃
i∈I

Xi, and

• Xi ∩Xj = ∅ for all i 6= j.

♢
Definition 4.1.19 Let R be a commutative ring with identity. An element
π ∈ R is said to be prime if π 6= 0, π 6∈ R×, and given a, b ∈ R with π | ab, then
π | a or π | b. ♢
Definition 4.1.20 Let R be a commutative ring with identity, and P an ideal
of R. Then P is a prime ideal iff

• P is a proper ideal

• For every a, b ∈ R, if ab ∈ P , then either a ∈ P or b ∈ P.

We remark that in a noncommutative ring, a different definition is required:
P is a prime ideal iff P is proper and for any ideals I, J ⊂ R, IJ ⊆ P implies
I ⊆ P or J ⊆ P. If the ring is commutative, this definition is equivalent to the
previous one. ♢
Definition 4.1.21 Let R be a UFD, and p(x) = a0 + a1x + · · · + anx

n ∈ R[x].
We say that p is a primitive polynomial if gcd(a1, . . . , an) = 1, that is there is
no common divisor of all the coefficients except for units. It is immediate that
for any p ∈ R[x] that p = c(p)p0 where p0 is primitive and c(p) ∈ R which is
usually referred to as the content of p. ♢
Definition 4.1.22 A ring is a nonempty set R with two binary operations, +,×
so that

• (R,+) is an abelian group

• × is an associative operation

• (a+ b)× c = (a× c) + (b× c)

• a× (b+ c) = (a× b) + (a× c)

It is a commutative ring if × is commutative. The ring R has an identity
if there is an element 1 ∈ R so that 1 × r = r × 1 = r for all r ∈ R. Generally,
we write rs instead of r × s.
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For an element r ∈ R, −r is its additive inverse, and r−1 is its multiplicative
inverse (if it exists). We denote by R× the unit group of a ring R with identity.

♢
Definition 4.1.23 A nonempty subset H of a group G is a subgroup of G if
it is closed under products and inverses. More succinctly, it is a subgroup if for
every x, y ∈ H, xy−1 ∈ H. It is usually denoted H ≤ G or H < G for a proper
subgroup. ♢
Definition 4.1.24 A function f : X → Y between sets X and Y is surjective
if for every y ∈ Y , there exists an x ∈ X such that f(x) = y. ♢
Definition 4.1.25 Let R be a ring with 1. An element u ∈ R is a unit if there
exists an inverse in R, that is there exists an element v ∈ R, with

uv = vu = 1.

♢
Definition 4.1.26 A vector space is a non-empty set V and an associated
field of scalars F , having operations of vector addition, denoted +, and scalar
multiplication, denoted by juxtaposition, satisfying the following properties: For
all vectors u, v, w ∈ V , and scalars λ, µ ∈ F

closure under vector addition

u+ v ∈ V

addition is commutative

u+ v = v + u

addition is associative

(u+ v) + w = u+ (v + w)

additive identity

There is a vector 0 ∈ V so that
0 + u = u.

additive inverses

For each u ∈ V , there is a vector
denoted −u ∈ V so that u+−u =
0.

closure under scalar multipli-
cation

λu ∈ V.

scalar multiplication distrib-
utes across vector addition

λ(u+ v) = λu+ λv

distributes over scalar addi-
tion

(λ+ µ)v = λv + µv

scalar associativity

(λµ)v = λ(µv)

V is unital

The field element 1 ∈ F satisfies
1v = v.

♢
Definition 4.1.27 A nonzero element a in a ring R is a zero divisor if there
is a nonzero b ∈ R with ab = 0 or ba = 0. In noncommative rings, one condition
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may hold, but not the other (e.g., in matrix rings). If desired, one can talk about
left and right zero divisors, though that will not be our focus. ♢
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